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Abstract— In this paper we present a new way to compute a
topological map using only orientation information. We exploit
the natural presence of lines in man-made environments in
dominant directions. We extract all the image lines present
in the scene acquired by an omnidirectional system composed
of 6 aligned cameras. From the parallel lines we robustly
compute the three dominant directions using vanishing points.
With this information we are able to align the camera with
respect to the scene and to identify the turns in the trajectory.
Assuming a Manhattan world where the changes of heading in
the navigation are related by multiples 90 degrees. We also
use geometrical image-pair constraints as a tool to identify
the visual traversable nodes that compose our topological map.
Experiments with an indoor sequence have been performed to
validate this approach.

I. INTRODUCTION

In the field of robotics the representation of the space
plays a very important role. In general this representation
allows the robot to perform different tasks to interact with
the environment. Among these tasks we can mention lo-
calization, path planning, navigation, etc. Along the years
several representations have been proposed but Kuipers [5]
proposes the Spatial Semantic Hierarchy where four levels
are considered. The two most used in the literature are
the metric and the topological maps. The metric maps
are quantitative representations of the environment. This
representation usually uses raw data or lines and has some
disadvantages. It requires accurate determination of the robot
position, it is inefficient for planning, the resolution does not
depend on the complexity of the environment [10]. On the
other side the topological maps are purely qualitative, and
many of its benefits are independent of the accuracy or even
the existence of quantitative knowledge of the environment.
These characteristics make the topological maps robust to
poor odometry and position errors. Topological approaches
represent the environment using a graph structure where
nodes represent different places in the world and edges
denote traversable paths between them [2]. Furthermore, the
elements of the topological map are strongly related to the
semantics of the environments.

There exist several approaches that deal with the automatic
generation of topological maps. The difference between them
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depends on the method and the sensors used. In [9] they use
two laser range finders and one omnidirectional camera. They
propose the concept of fingerprints to characterize the places
visited by the robot and the partially observable Markov
decision processes (POMDP) for global localization. In [2]
they try to identify the loop closings. This happens when the
robot revisits a place. More specifically, an equivalent sensor
reading occurs twice in the sequence. They use a single
omnidirectional sensor and the Dempster-Shafer theory to
model the uncertainty. In [8] they use a panoramic sensor and
two different types of features, the Kanade-Lukas-Tomasi
(KLT) and 3D color histograms. The map is modeled as
a physics-based mass and spring system. More recently [1]
propose an appearance based topological map. They also use
an omnidirectional system combined with the planar motion
constraint and the epipolar geometry. They use the number
of inliers and outliers to define a similarity value that links
different locations. These are the edges of the topological
map.

In man-made environments the presence of straight lines
is common [7]. Moreover, these lines are aligned with the
principal orthogonal directions of the world coordinate frame
[4]. From the images of parallel lines we can compute
the orientation of the camera with respect to the scene.
With the relative orientation of the camera and the guaranty
that frames are reachable to each other and the temporal
ordering constraints given by a video sequence, we decide
to explore the creation of a topological map using only
orientation information. With the use of lines we overcome
some problems of feature-based approaches, such as lack of
texture in the scene or the similarity of features, which is
commonly observed in long corridors.

In this paper we use an omnidirectional camera composed
of 6 aligned wide angle cameras. Even these aligned cameras
share a part of their field of view, this shared area is not
enough to compute the rotation of the omnidirectional cam-
era from a 3D line-based structure from motion approach.
In opposition we exploit the presence of straight lines in
man-made environments which are more robust than feature
points. From the images of parallel lines we compute the
vanishing points which provide the relative orientation of the
camera with respect to the scene. We propose to combine the
orientation information with the epipolar geometry to build
a topological map in an indoor environment. We extract the
orientation of each frame with respect to the scene using
the vanishing points. The changes of direction are detected
when two consecutive frames have a drastic change on their
orientation. We use a feature matching, particularly SIFT [6]

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 19-25



features, between these frames to identify the direction of
the turn. Finally, the epipolar geometry is used to identify
the frames that represent the nodes in the topological map.
We compute the essential matrix between every n frames
from which we extract the rotation component and compare
to that obtained from the visual compass. If they are coherent
we recompute the essential matrix with the next frame. The
process stops when either the rotations are not coherent or
the essential matrix computation fails. We choose the last
frame as a new node in the topological map and the process
restarts.

The rest of the paper is divided as follows. In section II
we present in more detail our proposal. In section III we
present some experiments with real images where we show
the performance of our approach, detecting the turns. Finally
in section IV we present the conclusions and future work.

II. OUR APPROACH

In man-made environments the presence of structured data
such as lines is common. They are useful in scenes where
texture is not enough to acquire classical features, needed
for example, to perform a correspondence-based matching,
from which position and orientation is obtained. In this kind
of environments the use of lines overcomes this problem.
In this work we use lines to compute the orientation of the
camera with respect to the scene. From only the absolute
orientation with respect to the world and the relative two-
view orientation of the camera we compute our topological
map.

A. Computing the relative orientation

In our approach we compute the relative orientation of the
camera with respect to the scene based on the computation
of the vanishing points. The vanishing points are computed
using a voting scheme. The first step consist of extracting
the segments of lines li present in every single image. The
Canny extractor is used to extract the edges, then a link
function is used to compute the connected components. The
two endpoints of one of these connected components are
x1,x2. The second step is to compute the putative vanishing
points. The line segment passing through the two endpoints
is represented by a plane normal of a plane passing through
the center of projection and intersecting the image in a line l,
such that l = x1×x2. The unit vectors corresponding to the
plane normals li can be viewed as points on a unit sphere.
The vectors li corresponding to parallel lines in 3D world all
lie in one plane. The vanishing direction then corresponds to
the plane normal where all these lines lie. Given two lines
the common normal is determined by vm = li×lj . Then, for
every pair of plane normals we compute putative vanishing
points vm. The number of total putative vanishing points
corresponding to n plane normals are (n(n−1)/2). The third
step consist of computing the distance between the putative
vanishing points and all the plane normals. Since in the noise
free case liTvm = 0, we use this product as a measure
of error of the line li pointing in the dominant vanishing
direction vm. The plane normals with a distance smaller than

Fig. 1. Relation between the rotation matrices from Essential matrix and
from vanishing points.

some threshold vote for the corresponding vanishing point.
The most voted is chosen as the first vanishing point vi.
Then we look for the second most voted and orthogonal to
the first vanishing point vj . Then we look for the third most
voted vanishing point and orthogonal to the other two vk.
If just two vanishing points are computed, the third one is
obtained by computing the cross product of the other two
vk = vi × vj .

Since the vanishing points are projections of the vectors
associated with three orthogonal directions i, j, k, they
depend on rotation only. In particular we can write that

vi = Rei vj = Rej vk = Rek.

From matrix R we are able to extract the orientation angles
corresponding to the three main axis (α, β, γ).

B. Topological Map

Topological maps try to simplify the representation of
the environment by modelling space using graphs. This
representation is suitable when we just need to know if
a new place is reachable from our current position. In
this case the metric information of the environment is not
needed. Depending on the task, topological or metric maps
are required to solve different problems. In this section we
explain how to construct a topological map from orientation
only information. In this work we represent the frames as
nodes and edges meaning visual traversality between such
frames.

1) Keyframes: The computation of the keyframes is
performed in two steps. The first step is to identify the
keyframes from only orientation information. The frame
where a change of direction, i.e. a turn, is detected and added
to the topological map automatically. The change of direction
of the motion axis is detected when a change of approxi-
mately π/2 is observed in the magnitude of the angle of the
main horizontal axis in two consecutive frames. However,
this change can also be observed in other circumstances.
To avoid false detection of turns we compute the visual
traversality test between the fifth frame prior to and the fifth
frame after the possible turn frame. The visual traversality
test is explained in detail below. If these two frames are not
connected, the turn has been performed and the turn frame
is added to the topological map. This vanishing points based
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approach gives us the existence of a turn of 90◦ but the
projective information does not give the direction of turn. In
order to identify the direction of the turn (+90◦ or −90◦)
we measure the average motion in pixels of the features in
the two analyzed frames. If the features move to the left the
motion performed by the camera is to the right and viceversa.
When a turn is performed, the direction of motion is assigned
to the new one that is detected. This means that the two
horizontal axis are switched, an event that is recorded only
in the topological map.

In the second step we compute the visually traversable
nodes of the topological map. To decide if two frames
are connected (visually traversable test), we compute the
essential matrix E = [t]×R between the frames f1 and f2

using a correspondence-based approach. SIFT points are the
most used local and robust features and we use them in
this work. From the essential matrix we extract the rotation
matrix R and translation vector t as explained in [3]. Then
we compare the rotation matrix R to the one obtained from
the combination of the rotation matrix of f1 and f2 with
respect to the scene, Rc = R1R2

T, respectively. (See Fig.
1). If both matrices are congruent and the number of SIFT
correspondences is bigger than a threshold, the two frames
are connected. In the real world, the interpretation is that the
space between the two frames is visually traversable. In this
case we increment f2 by n frames and compute again the
essential matrix. When the computing of the essential matrix
is not possible, that means the space between f1 and f2 is
not visually traversable. In this case we add the frame f2 as
a visually traversable node to the topological map. We restart
the computation of the essential matrix with the node f2 as
the initial image and look for the next visually traversable
node as explained before.

III. EXPERIMENTS

In this section we present the experiments using an indoor
sequence acquired by an omnidirectional camera composed
of 6 perspective cameras1. We use a total of 17,000 frames
(3400 by each camera, the top sensor is not used). The
trajectory performed involves several turns inside a building.
The calibration of the individual cameras and the alignment
matrices of the cameras with respect to the camera head
coordinate frame are given by the manufacturer.

A. Orientation computation

As we mentioned before the first step of our approach is
to compute the vanishing points. In Fig. 2 we observe the
extraction and classification of the lines from the cameras
used by the omnidirectional system. Each color represents
a direction in the scene. From the three vanishing points
obtained we extract the rotation angles for each axis. As the
camera is moving on a platform an almost planar motion is
performed. The motion around the z-axis is the main motion
observed through the trajectory.

In Fig. 3 we show the computation of the rotation angle
corresponding to the main axis of the omnidirectional camera

1Ladybug 2 http://www.ptgrey.com/

Fig. 2. Lines corresponding to the computed vanishing points.

Fig. 3. Rotation angle of the x-axis through the whole sequence in
radians (red). Number of lines scaled by 0.01, supporting the two horizontal
directions of the camera. x-axis (blue) and y-axis (green). The horizontal
axis of the plot represents the frame number (we recommend to see the
color version of the paper).

and the number of lines (scaled by 100) supporting the
two main directions of this system. We observe changes of
magnitude of π/2 in consecutive frames. This displacement
indicates a possible change on the axis of motion. A few
examples of these possible turns are the frames 287, 686,
1357, 3018 and 3081. We analyze two particular cases, given
by frames 287 and 1645. In the first case (Fig. 4(a)), we
observe an orientation change of 1.46 radians. In this case
a turn has been performed, from left to right. We observe
that the number of lines supporting the main axis decreases
(blue) while the number of lines supporting the other non-

(a) (b)
Fig. 4. (a) Turn performed in the trajectory. (b) Change of orientation with
respect to the scene. Corresponding rotation angle of the x-axis in radians
(red) to the frame number indicated in the horizontal axis of the plot. In
blue, number of lines supporting the x-axis vanishing direction. In green,
number of lines supporting the y-axis vanishing direction. Both numbers
are scaled by 0.01.
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(a) (b)

(c)
Fig. 5. Change of direction corresponding to a turn detected in two
consecutive frames (a) and (b). (c) frame aligned to the new scene, the
turn has been completed (0.064 radians).

vertical orthogonal axis increases (green) and at the frame
where the turn is detected a switch is performed. In Fig. 5
we show the two frames where the turn was detected and
a frame where the camera is aligned to the new position in
the scene, i. e. when the orientation angle of this frame with
respect to the scene is close to zero. In this particular case
the turn has been performed in approximately 20 frames. To
detect the turns performed in the opposite direction (right-
to-left), we observe the changes of orientation of magnitude
close to π/2. From negative to positive values.

The second case analyzed corresponds to the 1645 frame
(Fig. 4(b)) where a change of 1.53 radians has been observed.
In this case the radical change on the orientation does not
correspond to a turn. The angle between the main axis
of the camera reference system and the motion axis is
bigger than π/4. In this case, the camera is pointing to a
different direction from where the motion is performed. A
characteristic of this behavior is that the camera is not aligned
to the scene, i.e. its orientation is not close to zero. The end
of this phase is identified when there is a change in the
orientation from a negative value to a positive one with a
magnitude close to π/2 (see Fig. 4(b) frame 1713). In this
case we also observe how the number of lines supporting the
two non-vertical directions switches when the radical change
of orientation is observed. The start, middle and ending steps
of this phase can be observed in Fig. 6(a)(b) and (c). Fig.
6(d) shows the SIFT correspondences between the frames
1640 and 1650. The number of correspondences indicates
that the two frames are connected. Therefore this change on
the orientation does not correspond to a turn.

B. Drawbacks of the approach

It is possible that the lines present in the scene are not
aligned with the principal orthogonal directions of the world
coordinate frame. In this case the estimation of the vanishing

(a) (b)

(c) (d)
Fig. 6. Change of direction that does not correspond to a turn. (a) frame
1645. (b) frame 1672. (c) frame 1713. (d) Visual traversality test between
frames 1640 and 1650.

Fig. 7. Bad estimation of the vanishing points in frame 200.

points is not reliable. We can observe this situation in Fig.
3, from frame 200 to frame 283. An example of the lines
detected in this situation can be observed in Fig. 7.

C. Building Topological Map

In order to build a topological map we need to identify
the keyframes that represent the nodes. Above we explain
how to identify the turn frames. These frames are added to
the topological map. The rest of keyframes are computed
using an essential matrix to identify the visual traversable
frames. The essential matrix is computed using a feature
based approach. We extract the SIFT points from two frames.
To have a better distribution of the points we use a bucketing
in every image. We match these well distributed points to
have the first putative correspondences (see Fig. 8(a)). The
presence of outliers is inevitable. In that order we use a
robust approach with a geometric constraint to avoid the
outliers Fig. 8(b). With eight correspondences we compute
the essential matrix. From which we extract the rotation
matrix.

From the rotation matrices corresponding to the two
frames we extract the rotation angles corresponding to each
axis. If the difference between the angles is greater than a
predetermined threshold or the number of matches is less
than 10, these frames are not connected. In Fig. 9 we observe
two non-connected frames. In this case the second frame is
selected as a keyframe and it is added to the topological map.
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(a) (b)
Fig. 8. Connected frames. Frames 35 and 45. (a) Putative matches. (b) Robust matches.

(a) (b)
Fig. 9. Non-Connected frames. Frames 675 and 685. (a) Putative matches. (b) Robust matches.

When the frames are connected we recompute the essential
matrix with the next frame and repeat this action until we
find a couple of non-connected frames. Fig. 8 shows two
frames that are connected.

As we mentioned before we detect the turns in the
trajectory (Fig. 5). To identify the direction of the turn we
verify the motion of the features between the two frames
where the turn was detected.

An example of the topological map created by our ap-
proach can be observed in Fig. 10. The red circles are the
detected turns and the green ones are the visually traversable
frames computed by the epipolar geometry. The distance
between the nodes is related to the number of frames that
separates them. We also observe the corresponding orien-
tation of the frame with respect to the scene. We take the
orientation of the first frame as the world reference system.
The trajectory corresponds to a loop. The initial and final
keyframes are not close since we do not have the correct
scale to plot the map. We observe that the initial and final
frames have a similar orientation. The blue circles represent
areas where a change of orientation is detected but it does
not correspond to a turn (see Fig. 4(b)). As we observe the
direction of the motion is not changed in these cases.

From the constructed topological map and the orientation
information we observe that it is possible to detect corridors
and to perform loop-closure.

1) Corridor detection: Assuming a continuous motion
from the image sequence. If turns are not detected. This

means the orientation of the omnidirectional system is con-
tained inside of certain range. Moreover, if the number of
lines supporting the non-vertical dominant direction is clearly
bigger than the rest. With this information we can infer that
the camera is traversing a corridor. In Fig. 11(a) we observe
how the angle (in red) is inside the range (0.4, 0.7) radians. It
starts at frame 716 and finishes at frame 1357. The number of
lines supporting this dominant direction (blue line) is clearly
superior to the rest (green line). In Fig. 11(b,c) we show the
initial and the final frames where the corridor is detected.

2) Loop-Closure detection: In order to detect the loop-
closure we compute the essential matrix between the actual
keyframe and all the previous keyframes stored in the
topological map. A loop-closure is detected when the two
keyframes have the same orientation and the number of
correspondences between the two frames is bigger that a
previously defined threshold. In the sequence used just one
loop is present. In Fig. 12 we observe frame 287 (-0.77
radians) and frame 3365 (-0.74 radians) that besides having
a similar orientation they have 46 correspondences validated
by the epipolar geometry.

3) Traversable area detection: In order to analyze the
situation of the keyframes with respect to the scene we
compute the position of the lines present on the scene. We
observe that the position of lines perpendicular to the main
axis of the omnidirectional camera indicate if it is possible
to move in that direction. We divided the space in four big
areas corresponding to the main directions, up, down, left and
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Fig. 10. Topological map of the indoor sequence.

right. We count the number of lines inside each area for each
dominant direction. In Fig. 13 we show an example where the
number of perpendicular lines (green) in the left cell indicates
that it is possible to move into that direction. As we can see
in Fig. 13(a), those lines are pointing to the corridor where
the camera come from. Therefore, it is actually possible to
move in that direction.

IV. CONCLUSIONS

We have presented a new approach to compute a topolog-
ical map in an indoors environment using an omndirectional
camera. We exploit the presence of straight lines to compute
the vanishing points, from which we estimate the orientation
of the camera with respect to the scene. From only orienta-
tion information we are able to detect turns in the trajectory
and with an initial reference system we are able to construct
a coherent topological map. We use geometrical constraints,
particularly the essential matrix, to select the keyframes that
represent the nodes in the topological map. The nodes are
visually traversable to each other. We performed experiments
with a sequence of real images in an indoor environment. We
observe that the use of only orientation information and the
epipolar geometry as a tool give a coherent construction of
a topological map.

REFERENCES

[1] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose. Navigation using an
appearance based topological map. In Robotics and Automation, 2007
IEEE International Conference on, pages 3927–3932, April 2007.
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(a)

(b)

(c)

Fig. 11. Corridor detection. (a) Detection in the sequence showing the
number of lines scaled by 0.01, supporting the two main directions of the
camera. x-axis (blue) and y-axis (green). (b) Initial frame. (c) Final frame.

Fig. 12. Frames 287 and 3365 where the loop-closure is detected.

(a)

(b) (c)
Fig. 13. Identification of traversable areas. (a) Frame 690 with lines
supporting the dominant directions x−axis (red), y−axis (green) andz−axis
(blue). (b) Space of lines represented by their normals and point to the
corresponding vanishing points. (c) Lines spread on the four displacement
areas (up, right, down and left).
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