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Abstract— SLAM (simultaneous localization and mapping)
mechanisms are a key component towards advanced service
robotics applications since knowledge about the own pose and
representations of the environment are needed for a series
of high level applications. A futher challenge is to design
service robots for life-long and robust operation in dynamic
environments. To achieve this, two approaches are combined in
this work.

First, an approach from our previous work [1] is used to
handle the problem of the ever growing amount of landmarks
over time. Typically, SLAM approaches just accumulate fea-
tures over time and do not discard them anymore. Therefore,
the required resources in terms of memory and processing
power are growing over time. In the presented approach, the
absolute number of landmarks can be restricted by an upper
bound since we introduce a method to specifically select and
replace landmarks once the upper bound has been reached.
The second approach [2] is related to improving the robustness
of the landmark assignment problem in case of image based
features as needed with natural landmarks.

Real-world experiments are used to demonstrate the perfor-
mance of our approach. These experiments are performed on a
P3DX-platform with an omnidirectional vision based bearing-
only SLAM approach.

I. INTRODUCTION

Localization and mapping are fundamental problems in
service robotics. Knowledge about the own pose and repre-
sentations of the environment are needed for a series of high
level applications. For example, acting in a goal oriented
manner as required in fetch-and-carry tasks is simplified
significantly.

Omnidirectional cameras are beneficial for SLAM because
the large field of view of 360 degree allows the observation
of landmarks in every direction. Therefore, the orientation
of the robot for landmark recognition is not important. With
this property, it makes no difference in which direction
the robot travels along a path. For robots with standard
camera systems, it is difficult to reobserve landmarks when
they travel a known path in the opposite direction. As
long as no calibrated System is needed, omnidirectional
cameras are cheap and small and thus perfect for service
robotics applications. As drawback, one does not get range
information to landmarks as needed with many algorithms.
However, bearing-only SLAM mechanisms can take advan-
tage out of an omnicam image since these only require angles
to landmarks. To determine angles to landmarks, even no

methods to correct image distortion or to correct perspective
have to be applied.

Although many SLAM solutions already exist, most of
them still do not address core requirements of service
robotics. Service robots should be designed for life-long and
robust operation in dynamic environments.

Life-long operation raises the question of limited re-
sources. Typically, SLAM approaches just accumulate fea-
tures over time and do not discard them anymore. For
example, dynamic objects can introduce lots of new features
that are never again removed but that are of use for a short
period of time only. Therefore, the required resources in
terms of memory and processing power are growing over
time.

Robustness in everyday environments is mostly related to
the landmark association problem. In service robotics appli-
cations this is demanding since one cannot rely on artificial
landmarks. In contrast, one has to rely on natural landmarks.
These are often identified on recurring structures like door
and window frames. Thus, simple feature matching is not
sufficient and would result in false assignments. In particular,
EKF-based (Extended Kalman Filter) SLAM approaches are
seriously affected by false assignments.

The contribution of this paper is twofold. First, we
describe an approach to handle the landmark assignment
problem in case of image based features. We exploit that
feature vectors can be sorted based on an Euclidean distance
measure. Thus, the set of landmark candidates that are similar
in terms of their descriptor can be retrieved efficiently.
However, this similarity does not yet take into account the
probability of expecting a certain landmark candidate at
a certain observation position. Thus, the set of landmark
candidates is further shortened based on the Mahalanobis
distance. This approach combines efficient feature retrieval
with spatial plausibility, resulting in a suitable trade-off
between efficiency and robustness.

Second, an approach to address the ever growing number
of landmarks in life-long operation is presented. The abso-
lute number of landmarks is restricted by an upper bound.
This requires a method to specifically select and replace
landmarks once the upper number of landmarks has been
reached. Our approach is to evaluate landmarks based on
their utility for localization purposes which is different from
just replacing the most uncertain landmark.
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Fig. 1. The overall bearing-only SLAM system based on SURF features
[3] as visual landmarks

II. RELATED WORK

The general approach of using an Extended Kalman Filter
(EKF) for bearing-only SLAM based on artificial landmarks
has been described and evaluated in [4] and [5]. The bearing-
only SLAM approach was then extended to work with
SIFT features (Scale-Invariant Feature Transform) as visual
landmarks [6].

A visual bearing-only SLAM system based on a Rao-
Blackwellized particle filter is presented by Strasdat [7]. It
is based on SURF [3]. The feature matching is improved
by using a cost function taking into account the expected
landmark position in terms of image coordinates.

Andreasson proposes in [8] an efficient graph-based visual
SLAM approach called MiniSLAM. The approach uses
odometry data and image similarity of the omnidirectional
images to determine the maximum likelihood estimate of the
image poses.

Landmark rating needs a measure for determining the
benefit of a landmark for localization purposes. In [9], the
observation region of a landmark together with the landmark
pose uncertainty is used for defining a measure for the benefit
of a landmark. K-means clustering [10], [11] is used to
identify regions in the environment with a high landmark
density. The k-means algorithm separates the landmark rep-
resentatives into n clusters. The number of clusters is set
proportional to the number of landmark representatives and
is selected empirically.

A quality measure to compute the best landmark out
of a set of landmarks is also used by Dissanayake [12].
First, all landmarks are collected whose state changes in the
current step from visible to invisible. From this set only the
highest quality landmark is kept and all others are discarded.
Thus, the selected highest quality landmark is a single
representative for the set of previously visible landmarks.
However, selection of landmark representatives is based on
a local set of landmarks and thus depends on the exploration
path and the resulting visibility sequence. There is still no
global measure of landmark quality. Nevertheless, this is one
of the rare approaches addressing landmark deletion with
respect to a landmark’s use in terms of observability.

A fundamentally different approach is proposed by Stras-
dat [13]. The presented approach uses Monte-Carlo Rein-

forcement Learning to learn landmark selection policies that
optimize the navigation task. He demonstrates his approach
in two scenarios. The first is a single goal navigation task.
The second is a round-trip navigation task where subgoals
are visited more than once. Due to the complexity of the
learning algorithm and the number of training episodes,
it is not feasible to learn these policies during real-world
experimentation. Therefore, Strasdat recommends to learn
the policies in simulation.

III. LANDMARK ASSIGNMENT

Robust assignment of identifiers to SURF-Features is one
of the major problems in EKF based Visual SLAM ap-
proaches. This is due to the brittleness of the EKF in case of
false assignments. Common data association approaches as
for instance Joint Compatibility Branch and Bound (JCBB)
[14] assume indistinguishable landmarks. SURF features
used in our approach has distinctive descriptors. A strong
hypothesis of data association is obtained after the descrip-
tor comparison. Therefore an expensive branch and bound
search O(1.53n)[14] as in JCBB is not needed.

Our approach is to combine efficient feature retrieval with
spatial plausibility. The latter is based on the Mahalanobis
distance. This reduces the number of false positives and thus
increases robustness. For performance reasons, a memory-
efficient and computationally-efficient kd-tree [15] is used
to store the SURF features. Its search complexity is O(n ∗
log(n)) with n the number of features in the kd-tree.

The comparison of SURF as well as SIFT descriptors can
be based on different methods. The Euclidean distance ratio
is recommended and used by Lowe [16]. Even though this
approach is widely used, it is sensitive to the number of
similar feature descriptors. A different approach interprets
descriptor vectors as bins. The comparison of two descriptors
is then equivalent to the comparison of two distributions.
Appropriate standard methods are then provided in statis-
tics. A χ2 test for comparing multidimensional vectors is
recommended by Kiang [17]. Since the sample size is too
small, he also states that the ANOVA test (analysis of
variance) cannot be used for descriptor comparison. In first
approaches, we used the correlation coefficient since it can
be calculated easily. This is not a suitable approach since it
checks for similarity only but ignores the distance between
the descriptor vectors.

The first step (A) in the assignment process is to find the
nearest neighbor (Euclidean distance) in the kd-tree. We then
compare this descriptor from the database with the descriptor
of the observed SURF feature by a χ2 Test. If the result
of the χ2 Test is above a threshold, the match failed and
the feature gets a new identifier. Otherwise, the observed
feature is a reobservation of an already known landmark
(either initialized or uninitialized) and the feature is assigned
with the identifier from the database.

In case we successfully matched an initialized landmark
(B), this so far is based solely on the similarity of the
descriptors of the landmarks. There is no validation of the
spatial plausibility of the pose of the matched landmark done
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Fig. 2. The decision tree behind the identifier assignment procedure
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Fig. 3. Extension of the standard SLAM approach by mechanisms for
landmark rating and selection.

until now. However, the EKF provides additional information
about expected observation poses. Thus, we can apply a
validation gate based on the Mahalanobis distance to cross
check the plausibility of feature matches before this match
is forwarded to the EKF.

An initialization of a new landmark (C) is performed only
if there exists a well-conditioned pair of measurements for
a non-initialized landmark. As described in detail by Bailey
[4], a new feature is considered well-conditioned if the true
probability density function of its location closely resembles
the Gaussian approximation obtained from a Jacobian-based
linearized transform. After initialization of a landmark, the
remaining measurements of it are applied in a batch update.
In the batch update, the position and the variance of the
landmark is known. Therefore, it is possible to again use
the Mahalanobis distance as validation gate to reject wrong
assignments (false positives).

IV. LANDMARK RATING AND SELECTION

The principal steps of a SLAM mechanism are illustrated
in Figure 3. The highlighted steps denote the functions

for landmark rating and selection presented in [9]. The
sensing step keeps track of the set of robot poses from
which a landmark has been observed so far. This provides
the basis for describing from where in the environment a
certain landmark is observable. The observability is then
used to evaluate the benefit of a landmark for localization
purposes. At arbitrary points in time, one can determine
the benefits of landmarks for localization purposes. One
approach would be to determine the landmark with the lowest
impact on reducing the robot pose uncertainty while still
ensuring coverage of the operational area. This landmark
might then be removed from the SLAM representation of
the environment.

The viewpoint location of every landmark is the key to
cover the operational area of the robot with landmarks.
Therefore, this work focuses on the improvement of the
landmark distribution. A future approach would determine
regions that currently have a too low localization support.
These regions are either not covered by observable land-
marks or the observable landmarks do not reduce the pose
uncertainty below the desired uncertainty. One could then
specifically explore such regions.

To estimate regions of viewpoints locations at all, we
intent to cluster them into local groups. In the previous work
[9] K-means clustering as one kind of the partitional cluster-
ing techniques is used. The DBSCAN clustering algorithm
[18] is a density-based approach with only two parameters,
MinPts and Eps. Removing a landmark from a region
with high localization support results in a small degradation
of robot localization quality only. Clustering algorithms are
used to identify regions in the environment with a high land-
mark density. DBSCAN clustering is especially suitable to
determine those regions. The algorithm typically constructs
clusters around local dense maxima, separated by regions
of low density. Further advantages of DBSCAN clustering
are that the algorithm does not need to know the number
of clusters in advance and the efficiency (0(n ∗ log(n))) of
the algorithm is equal to K-means [18] [19]. The difference
of information content [12] Di of the landmarks within
each cluster Ci is calculated. The cluster with the maximum
difference is determined by max(Di). From this cluster
the landmark with the lowest information content is then
removed. Removing landmarks within low density regions is
critical. All landmark representatives with a distance greater
Eps to the Eps-neighborhood are considered as outliers.
Outliers are not part of a cluster and are thus never removed.

V. RESULTS

In this section, the results of the experiments are discussed
in detail. The performance is demonstrated within a standard
indoor environment by means of real-world experiments. We
ran the same experiment three times with the same real-
world dataset. The runs are different only with respect to
their landmark reduction mechanism. Due to using the same
real-world dataset, the results of the runs can be directly
compared. The experiment has been performed in our lab,
the adjacent hallway and a neighbored room (see figure V).
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Fig. 4. The real world environment and the robot used in our experiments.
The upper left image show the ZAFH laboratory, the lower left image the
adjacent hallway and the right image our Pioneer 3DX robot equipped with
Microspace PC and omnidirectional camera.

We have not taken any precautions to avoid direct sunlight,
specular reflections and differences in brightness. The low
height of the robot leads to occlusions of landmarks by tables
and chairs. These experiments are performed on a P3DX-
platform (see figure V) with a bearing-only SLAM approach
[4] [5] with SURF Features [3] as landmarks.

The basic configuration is the same in all three runs. The
path length of a run is approximately 150m and results
in 510 observation positions. The travel distance between
two observation positions is approximately 0.3m. During the
experiment, two major loops with a length of approximately
14m have to be closed. Each of the three experimental runs
however, has an individual configuration with respect to the
landmark reduction mechanism and the clustering algorithm.
The first run has no landmark limitation: as many landmarks
as possible (579) are initialized. The other two runs are
limited by an upper bound of 150 initialized landmarks.
They differ in the way how viewpoint location clusters are
built, either K-means or DBSCAN clustering techniques are
used. Using K-means clustering, the number of clusters is
set dynamically to 1/4 of the number of currently known
landmarks. The parameters of DBSCAN are set to ε = 0.5
and the minimum number of landmarks in each cluster
has to be two. The uncertainty of the observation angle
measurement is set to σα

2 = 0.2727deg2. This value is
derived from a 1-pixel jitter in the omnidirectional image.
The parameters σd

2 and σφ
2 of the action model of the

robot are determined according to λd = 0.001m2/m and
λφ = 4deg2/360deg. Due to the lack of GPS in indoor
environments, it is quite difficult to get the ground truth
position of the robot. We solve the problem of determining
the ground truth position by manually measuring the distance
from the robot to two a priori known coordinates in the
environment with a Bosch Digital Laser Rangefinder (DLE
150). The 2σ value of our ground truth poses is [0.06m2;
0.04m2].

In the first part of the experiments, we introduced methods
in terms of localization quality of the robot in the envi-

ronment. An ever growing number of landmarks does not
automatically result in an improvement of the localization
quality. In addition to that we test the capability of the
methods to cover the operational area with landmarks. A
good landmark coverage is pivotal for the localization of a
service-robot. The method should select those landmarks that
best cover the operational area taking into account the benefit
for localization purposes.

A. Localization quality

The localization quality directly depends on the quality
of the landmarks and their distribution over the operational
area. Our approach shows that if the landmark reduction
is done in a correct way, the localization quality does not
suffer from the reduction. Figure 5 illustrates the localization
error against ground truth measurements. The error value
plotted there is the Euclidean distance from the ground truth
measurement to the mean of the robot’s state estimation.
Together with the summary of the estimated trajectory (fig.
6), one can see that the localization error is within the same
range no matter whether using landmark reduction or not.
The progression of the robot pose uncertainty (eigenvalues
from the covariance matrix of the x and the y component)
is compared in figure 7. The uncertainties in all three runs
are within the same range. This verifies that the localiza-
tion quality does not necessarily suffer from the landmark
reduction.
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Fig. 5. Comparison of the localization error against ground truth.

B. Landmark coverage quality

The landmark coverage of the environment is, as pre-
viously mentioned, a crucial factor for the relocalization
capability. If the landmark reduction algorithm removes all
landmarks from one area, a later relocalization within this
area would be difficult. The two tested clustering algorithms,
K-means and DBSCAN, lead to different results in landmark
coverage. The landmark reduction using DBSCAN leads to a
well distributed landmark coverage over the operational area,
as illustrated in figure 8. In contrast thereto, the landmark
reduction based on K-means clustering results in a much
more dense representation around the later timesteps as
illustrated in figure 9. Both figures show the clusters of
viewpoint locations. A viewpoint location is the position
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0 100 200 300 400 500 600
10

−4

10
−2

10
0

time

ei
ge

n 
va

lu
e 

[m
2 ]

 

 

eigen value λ
1

eigen value λ
2

0 100 200 300 400 500 600
10

−4

10
−2

10
0

time

ei
ge

n 
va

lu
e 

[m
2 ]

 

 

eigen value λ
1

eigen value λ
2

0 100 200 300 400 500 600
10

−4

10
−2

10
0

time

ei
ge

n 
va

lu
e 

[m
2 ]

 

 

eigen value λ
1

eigen value λ
2

Fig. 7. Eigenvalues of the robot position covariance matrix during the
run with restricted number of landmarks. The y-axis is log-scaled. The
top figure shows the robot uncertainty without landmark reduction. The
other figures illustrate the robot uncertainty during runs with landmark
reduction mechanisms (middle figure K-means based mechanism, bottom
figure DBSCAN based mechanism).

from where a landmark can be observed. All representatives
belonging to a cluster (spatial closeness) are drawn with the
same color.

C. Robust Data Association

A robust data association is one of the main components of
a robust Visual SLAM approach. In an additional experiment
[2] we can show that the presented method, results in a
robust data association. During validation of reobservations
we rejected approximately 120 wrong associations. In the
other case, during the landmark initialization process, we
identify approximately 45 false positive. For clarification
figure 10 shows one example of a false positive. Table I
shows the results for the evaluated comparison methods. The
first method is the test described by Lowe [16]. For Lowe
Test we search in the kd-tree these two features where the
descriptor vector has the smallest Euclidean distance to the
observed feature descriptor. The observed SURF feature of
the current image is considered as not matching a known

feature if the ratio of the smallest and the second smallest
distance value is above a given threshold (value 0.6). This
is similar to the SIFT feature descriptor comparison by
Lowe [16]. The Euclidean distance to the nearest neighbor
and the second nearest neighbor in the database is 0.1487
respectively 0.2872. Thus, the Lowe test results in a match
(0.1487 < 0.2872 ∗ 0.6⇒ matching = true).

For the correlation coefficient test we search that fea-
ture in the kd-tree where the descriptor vector has the
least Euclidean distance to the observed feature descriptor.
Then we calculate the correlation coefficient of those de-
scriptors. If the correlation coefficient is above a threshold
(corrCoeff > 0.9), we assume a match.

In the next test the observed feature descriptor is compared
with the descriptor from the kd-tree with the least Euclidean
distance by a χ2 Test. The threshold for the χ2 Test is set
to 0.15.

During our experiment we demonstrate that decisions
based solely on information of the image processing step
cannot solve the landmark assignment problem. The overall
result of all considered methods (see table I) is that the
new feature in the right image matches with the previously
observed feature with the ID 63 in the left image. However,
as can be seen in figure 10, this assignment is wrong. The
validation gate is the only mean to reject this assignment.
It exploits additional information like the position and the
uncertainty of the landmark as available from the EKF. We
now can detect with high probability that the assignment in
this example is wrong. In all our experiments, the threshold
used with the Mahalanobis distance test is set to 0.1015.

VI. CONCLUSIONS

The experimental setting included varying lighting con-
ditions and repeating structures. Despite that, the approach
successfully solved the SLAM task in everyday environments
even with limited system resources. Thus, the proposed
approach successfully addresses the aspect of suitability for
daily use as mandatory in service robotics.
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Fig. 9. Landmark clustering using K-means after 509
timesteps.

TABLE I
RESULTS OF SURF FEATURE DESCRIPTOR COMPARISON METHODS

Comparison
Method

Value Threshold Classification

Lowe 0.15 < 0.6 ∗ 0.29 d1 < 0.6 ∗ d2 matching
Correlation
Coefficient

0.9882 > 0.90 matching

χ2 Test 0.079 < 0.15 matching
Mahalanobis
Distance

656.781 < 0.1015 not matching

Fig. 10. Based solely on a descriptor comparison we could not distinguish
the feature in the left image (timestep 7) from that in the right image.
Therefore the feature in the right image (timestep 24) gets the same ID (63)
as the feature in the left image.
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