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Abstract— In this work we study the use of an omnidirec-
tional camera for the estimation of a consistent metric represen-
tation of an indoor scenario. The proposed approach is based on
Rao-Blackwellized Particle Filters and allows the robot to use
a single vision sensor for estimating an occupancy grid map of
the environment. The prediction phase of the filter is performed
by means of an accurate visual odometry algorithm, whereas
the update phase is based on floor segmentation, allowing to
treat the omnidirectional camera in full similarity with laser-
based approaches to SLAM. The technique is validated in
simulation and through real experiments and it is shown to
perform consistent map estimation while reducing the costs
and the equipment of the robotic system.

I. INTRODUCTION

The capability of building a map while traveling in an un-
known environment represents one of the main prerequisite
of truly autonomous mobile robots. For this purpose a robot
has to jointly estimate both its pose and a representation
of the surrounding objects with respect to a given reference
frame. In order to create a consistent map, a crucial issue
arises when the robot comes back to already traveled areas
(i.e., when loop closing occurs), since it is crucial that it
recognizes the place revisiting episode. If the loop closing
occurrences are neglected and only robot motion is estimated,
the positioning error unavoidably accumulates, preventing
correct map estimation; this case is often referred to as
relative or odometric localization. In vision-based setups
several techniques do exist for the estimation of odometric
motion of the robot from the frames acquired during motion
using monocular, omnidirectional [17] or stereo cameras
[9]. Some authors tried to alleviate the error accumulation
by considering the loop closing episodes in the estimation
procedure: in [3] loop closing detection is based on image
similarity, whereas in [16] a vocabulary tree is employed
to recognize already visited areas and bundle adjustment is
applied for correcting the position estimates.

In Probabilistic Robotics the joint estimation of robot pose
and world representation is known as Simultaneous Localiza-
tion And Mapping (SLAM). When dealing with landmark-
based models of the environment, Extended Kalman Filter
(EKF) has been demonstrated to be an effective solution to
SLAM: EKF is applied as observer of a dynamic system
whose states include both robot pose and landmark positions
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[4]. In indoor environments, however, metric representations
are often employed, in the form of occupancy grid maps
[6], [15]. In a grid map representation, the world model
is discretized in a regular grid and for each cell of the
grid an information about the probability of the cell being
occupied is maintained. Such a model is desirable for several
reasons: widespread path planning algorithms (A*, D*, etc.,
see [12]) can be adapted to deal with grid maps; grids
are intuitive models of the environment and can be easily
understood by a human user when displayed on a human
machine interface (HMI); finally they overcome the problem
of data association that occurs in landmark-based SLAM
and that can be difficult to tackle in symmetric, structured
environments. In this last scenario Particle Filters (see [1] and
the references therein) constitute a widespread and successful
approach for the estimation of SLAM posterior.

Robotic literature encompasses several contributions on
Rao blackwellized Particle Filters (RBPF) SLAM in indoor
environments, see, e.g., [19] and [23]. In such approaches the
wheel odometry is usually employed in the prediction phase
of the particle filter, whereas exteroceptive measurements
are acquired from laser range finders and used for sample
weights update. The laser range finder or laser scanner is
a commonly used sensor in robotics and allows to acquire
accurate measurements of distance from obstacles within a
given range (usually 5-16 m). This sensor, however, is not
suitable for several applications due to its weight burden, or
simply for its cost. Moreover it can be difficult to extract
semantic information from laser data as required for high
level reasoning in autonomous systems. Odometry estimation
by means of wheel encoders, on the other hand, can provide
poor motion estimation.

As the aforementioned drawbacks can be technological
barriers for low-cost low-power indoor robotic applications,
we propose a methodology for estimating grid-based SLAM
posterior using a single omnidirectional camera and Rao-
Blackwellized Particle Filters. Our technique allows to treat
the problem in full similarity with respect to laser-based
techniques. The prediction phase of the filter is based on
visual odometry, whereas a floor segmentation algorithm is
used to extract range information for filter update.

This work is structured as follows. In Section II-A we
introduce some notions on Rao-Blackwellized Particle Filter
SLAM. Then, in Section II-B and II-C, we describe the
proposed approach, whereas in Section III we present the
results of simulations and real tests which validate the
approach. Conclusions are drawn in Section IV

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 32-37



II. RBPF-SLAM AND OMNIDIRECTIONAL VISION

A. SLAM with Rao-Blackwellized Particle Filters

Although the high dimensionality of state space in grid-
based SLAM makes challenging the application of sample-
based representations of the posterior of robot pose and
occupancy grid map, an elegant solution to reduce dimen-
sionality of the sampling space can be obtained through
Rao-Blackwellization [5]. Since the map probability can be
computed analytically given the robot path, it is possible to
factorize the joint probability as follows:

p(x1:k,m | z1:k, u0:k−1) = p(m | x1:k, z1:k)
·p(x1:k | z1:k, u0:k−1) (1)

In (1) the state includes the robot trajectory x1:k =
{x1, x2, . . . , xk} and the map m, both estimated from the
measurements z1:k = {z1, z2, . . . , zk} and the commands
u0:k−1 = {u0, u1, . . . , uk−1}. Equation (1) provides the
basis for RBPF SLAM: the particle filter is applied to
the problem of estimating potential trajectories and a map
hypothesis is associated to each sample. According to par-
ticle filter framework the posterior of robot trajectory is
approximated by a set of weighted random samples:

p(x1:k | z1:k, u0:k−1) ≈
n∑

i=1

ω
[i]
k δ(x1:k − x[i]

1:k) (2)

where n is the particle set size, x[i]
1:k is the pose of the

i-th particle at time k, ω
[i]
k is the corresponding weight(∑n

i=1 ω
[i]
k = 1

)
, and δ(·) is the Dirac delta function. Filter

prediction is obtained by drawing particles from the proposal
distribution π(xk+1 | xk, uk), which is often approximated
with a Gaussian density, whose mean and covariance depend
on the odometric information uk, whereas the weights are
updated according to [20]:

ω
[i]
k = ω

[i]
k−1p(zk | x[i]

k−1, uk−1,m
[i]
k−1), i = 1, . . . , n. (3)

Particles degeneracy (i.e., the situation in which most part of
the sample set has negligible weight) is then prevented by a
resampling phase that randomly chooses the samples which
best fit current and past observations, according to particles
weights. A common condition for resampling is based on the
effective sample size [1], which is an approximated measure
of particle diversity:

Ñeff =
1

∑n
i=1

(
ω

[i]
k

)2 . (4)

Particles are re-sampled if the previous quantity drops below
a given threshold, usually fixed to n/2, see [21].

In the following sections we will discuss how information
from omnidirectional vision can be included in the filter for
the SLAM posterior estimation.

B. Visual Odometry and Filter Prediction

According to the previous section, in order to perform
the prediction phase of the particle filter, the robot needs
to estimate the relative motion from the previous pose
xk−1 = [xk−1 yk−1 θk−1]> to the current pose xk, i.e., the
odometric information uk−1 = [∆xk−1 ∆yk−1 ∆θk−1]>.
As pointed out in Section I, however, several approaches
allow to estimate robot motion from visual information. Here
we recall a simple approach based on feature matching,
between consecutive frames acquired at time k − 1 and k,
that resembles the procedure proposed in [17]. We assume
that a camera model and the camera height h are available
and the robot motion is planar.

Feature keypoints (SIFT, SURF, Shi-Tomasi, etc. [10])
are first extracted from the frames, restricting the search
to the annulus between a radius rmin and a maximum
distance rmax from the camera center (see Figure 1). Fea-
tures detected from this search region have high probability
to belong to the ground plane, which, as explained later,
is a crucial prerequisite for retrieving the relative motion
of the rover. The keypoints in the two images are then
pairwise matched using suitable criteria on the Euclidean
distance between feature descriptor vectors (double con-
sistency check, KD-tree, etc.). Matched feature points are
reprojected on the normalized image coordinate system and
used for estimating the planar roto-translation that describes
robot motion between each image pair [17]. Let Fk−1 =
{x[1]

f,k−1, x
[2]
f,k−1, ..., x

[m]
f,k−1} and Fk = {x[1]

f,k, x
[2]
f,k, ..., x

[m]
f,k}

be the sets containing the normalized coordinates of features
extracted from the (k − 1)-th and k-th frames, respectively.
Hence the homography describing the transformation that
has to be applied to the features in Fk−1, in order to obtain
the corresponding keypoints in Fk can be estimated as the
minimum of the following cost function:

min
R,t

m∑

j=1

‖x[j]
f,k−1 − x̂f,k−1(R, t, x

[j]
f,k)‖2 +

+‖x[j]
f,k − x̂f,k(R−1,−t, x

[j]
f,k−1)‖2 (5)

where R ∈ R2×2 is a rotation matrix, t = [tx ty]> ∈ R2 is a
translation vector, x̂f,t(R, t, x

[j]
f,k) are the features in the k-

th frame, roto-translated according to homography H(R, t),
and x̂f,k(R−1,−t, x

[j]
f,k−1) are the features in the (k − 1)-

th frame, once the reverse transformation H−1(R, t) is
applied. As suggested in [16], RANSAC is applied for robust
homography estimation, in order to restrict the estimation
to coplanar features and reduce the effect of outliers. Since
feature matching can be inaccurate for rotation estimation,
the aforementioned procedure can be further improved by
using a more precise compass estimation using appearance-
based techniques [17]. According to [11] it is possible to
extract the rotational component of the homography by
comparing the appearance of patches from two frames. If
we call ∆θ∗k−1 the compass obtained from the appearance-
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Fig. 1. Feature extraction for visual odometry. Arrows indicate the motion
of the features between subsequent frames. The green mask corresponds to
the annulus from which features are extracted.

based approach, the optimization problem (5) reduces to:

min
t

m∑

j=1

‖x[j]
f,k−1 − x̂f,k−1(R∗, t, x

[j]
f,k)‖2 +

+‖x[j]
f,k − x̂f,k((R∗)−1,−t, x

[j]
f,k−1)‖2 (6)

where R∗ is the rotation matrix:

R∗ =
[

cos(∆θ∗k−1) − sin(∆θ∗k−1)
sin(∆θ∗k−1) cos(∆θ∗k−1)

]
. (7)

Finally the relative robot motion information uk−1 can be
extracted from the homography by simply rescaling the
translational components of H:

uk−1 =




∆xk−1

∆yk−1

∆θk−1


 =




ht∗x
ht∗y
∆θ∗k


 , (8)

where h is the camera height and t∗ is the solution of the
optimization problem (6). Once this information is computed
the robot can apply the prediction phase of the particle filter:
samples describing the pose at time k − 1 are predicted
according to uk−1 and provide the prior for the estimation
of the current pose xk. In order to sample from the proposal
distribution π(xk | xk−1, uk−1) the robot also requires some
guess on the uncertainty in the odometry estimation process,
that can be evaluated experimentally.

C. Floor Segmentation and Weights Update

The update phase of the particle filter is based on some
visual information from the omnidirectional device. As
mentioned above our purpose is to treat the RBPF-SLAM
problem in full similarity with laser-based approaches, hence
we are looking for some distance measurement that can be
extracted from the camera. We first notice that a range sensor
measures distances from nearby obstacles, providing l range
measurement for each discrete angle αi, i = 1, . . . , l. If
we assume that floor looks reasonably different from the
walls and obstacles and obstructions in the scenario start near
the floor level (no overhanging obstacle), one can retrieve
this distance information by simply detecting the boundary
between the ground plane and the surrounding obstacles.

In order to extract this boundary from the omnidirectional
frame, the robot has to distinguish regions (in the image) that
belong to the ground floor, from areas which are expected
to be occupied by obstacles. Image segmentation provides a
possible solution to perform such a partition: each frame,
acquired by the robot, is segmented into regions which
are distinguishable with respect to some characteristic or
property [18]: regions that are close to current robot position
are classified as belonging to the floor, and the boundary
of such region provides the searched distance information.
According to [7], in this work we applied a segmentation al-
gorithm which is based on graph formalism: Let G = (V, E)
be an undirected graph with vertices V = {v1, . . . , vNp

}
corresponding to each pixel in the image, and edges eij =
(i, j) ∈ E , that are incident on pairs of neighboring vertices,
namely vi and vj . Each edge eij has a corresponding weight
wij , which is a measure of the similarity between vi and
vj . Hence image segmentation reduces to a partition of G in
subgraphs sharing similar characteristics.

Edge weights can be computed by evaluating color or
intensity difference. If the function Λ : R2 →: R5 associates
each node (pixel) vi with the corresponding feature vector
containing both node coordinates vix , viy and the RGB
values vir , vig , vib

, then the edges weights are computed
as:

wij = ‖Λ(vi)− Λ(vj)‖, ∀ (i, j) ∈ E . (9)

Let us define the internal difference within the region Ra

as:
I(Ra) = max

(i,j)∈E, i,j∈Ra

wij , (10)

and the mutual difference between region Ra and Rb as:

M(Ra, Rb) = min
(i,j)∈E, i∈Ra,j∈Rb

wij , (11)

The segmentation procedure starts by considering each pixel
as a different region. Such regions are pairwise compared
and two regions are merged together in a bigger cluster if
the following condition holds:

M(Ra, Rb) ≤ min
(
I(Ra) +

γ

|Ra| , I(Rb) +
γ

|Rb|
)

,

(12)
otherwise a boundary exist between them. In (12) γ is a
constant parameter and the operator | · | returns the size of
the region.

The described approach considers the internal character-
istics of each region in the pairwise comparison, hence it
is effective in segmenting image scenes with texture or
non-uniform colors; moreover it is efficient, requiring a
complexity of O(Np log Np), where Np is the number of
pixels in the image [7].

Therefore the update phase of the particle filter can be
simply implemented according to the following procedure:

1) image segmentation is performed on the omnidirec-
tional image and the region closest to the robot is
classified as ground floor;

2) omnidirectional image is backprojected on the ground
plane, using the camera model;
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Fig. 2. (a) Ground extraction using a graph-based segmentation algorithm.
The red region corresponds to the floor in the omnidirectional image. (b)
Ranges obtained from ray casting on the back-projected image.

3) a simple ray-casting procedure allows to obtain a
distance information for each discrete angle around the
robot, i.e., ri, i = 1, . . . , l;

4) sample weights in the particle filters are updated ac-
cording to the distance measurements.

The weight update is performed according to (3), where
the sensor model p(zk | x[i]

k−1, uk−1,m
[i]
k−1) is usually a

Gaussian function of the mismatch between the expected
scan (function of estimated robot position and corresponding
map hypothesis) and the actual measurement.

An example of floor segmentation is reported in Figure 2-
(a) whereas the corresponding scan is shown in 2-(b). Finally
we remark that, although the hypotheses for segmentation
are in general quite restrictive, they are reasonable in indoor
environments and experimental evidence shows that the pro-
posed approach is applicable in common corridor or office-
like scenarios.

III. EXPERIMENTAL TEST AND DISCUSSION

A. Simulations

In this section we report the results of the application
of the proposed approach in a simulated environment. The
scenario was designed in POV-Ray, a freely available 3D
modeling software, and it is a rectangular loop with dimen-
sions 60 m × 30 m. Each corridor is 5 m wide, whereas
the camera height is 0.72 m. The layout of the simulation
scenario is shown in Figure 3. The calibrated catadioptric
system was designed according to the specifications of the
omnidirectional device used in real tests, see Section III-B.

We now compare the outcome of the mapping process
based on visual odometry for pose estimation with respect

Fig. 3. Layout of the virtual scenario, created in POV-Ray. The simulated
robot is a P3-DX, similar to the rover used in the real tests of Section III-B.

to a full SLAM approach. In the former case the range
information provided by floor segmentation are simply used
for mapping using a ray tracing procedure from odometric
robot pose; mapping with known robot position is straightfor-
ward, and well known probabilistic approaches for updating
a grid map do exist, see [22] and the references therein. In
the SLAM case, instead, the uncertainty in pose estimation
is considered, and localization and mapping are solved at
the same time, taking into account the correlation between
map and pose estimation. In the following test the Shi-
Tomasi features are tracked for visual odometry, whereas
the parameter γ used in the graph-based segmentation was
set to 400. The map obtained using visual odometry-based
pose estimation and omnidirectional camera as range device
is reported in Figure 4-(a): white cells have a probability
of being occupied close to zero (obstacle-free areas), black
cells are likely to contain an obstacle, whereas gray cells
correspond to the places in the map that have not been visited
by the robot. In the simulation the robot started in the bottom-
left corner of the scenario and traveled the loop for two times,
ending at the bottom-right of the rectangle. When using
naive visual odometry, robot pose estimation worsens as
time evolves, due to odometric error accumulation; moreover
such an approach is not able to detect and exploit loop
closing occurrence. Hence, after the robot traveled the whole
rectangle in anti-clockwise direction, coming back to the
bottom-left corner, the mapping process tends to produce
remarkable inconsistencies that become critical as longer
distances are traveled. In Figure 4-(b) we report the case
in which a SLAM approach is applied. The hypotheses
carried on by the particle filter allow the robot to properly
model the uncertainty in odometric pose estimation, whereas
in the case of Figure 4-(a) the uncertain nature of motion
estimation is neglected, leading to an over-confident mapping
process. After the robot travels the loop for the first time,
it arrives in a region of the environment that was already
mapped; therefore the update phase (Section II-C) of the
particle filter assigns higher weights to samples that are
consistent with the estimated map model. Usually, after
the loop closing episode, few samples, which are the best
candidates for modeling the SLAM posterior, have high
weights and this leads Ñeff to drop below the threshold for
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Fig. 4. (a) Estimated grid map using visual odometry for pose estimation
and omnidirectional camera as range device: the map is obtained with a ray
tracing procedure from the odometric pose estimate. (b) Estimated map with
Rao-Blackwellized Particle Filters SLAM using a single omnidirectional
camera.
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resampling. The resampling phase discards the less probable
samples hence assuring filter consistency and correct map
estimation. It is worth noting that features are extracted in the
neighborhood of robot position (we considered rmax = 0.3
m) whereas range information corresponds to regions in
the image plane which are usually far from robot location
(the robot is supposed to respect some safety distance from
obstacles). As a consequence, visual odometry estimates and
range information are expected to be independent, and the
prediction and update phases of the particle filter are not
biased by the use of a single sensor. Similar considerations
are reported in [13], where a stereo camera is employed for
both prediction and update in EKF-SLAM. In Figure 5, for
each time instant, we report the mean distance of the detected
Shi-Tomasi features from the camera center and the average
distance measured using the omnidirectional camera as range
device.
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Fig. 6. Comparison of wheel odometry (blue), laser-stabilized odometry
(green), and visual odometry (red) in a real experiment.

B. Real Tests

The technique presented so far was also validated through
real experiments, in the environment of Figure 1. The
tests were performed with an ActivMedia Pioneer P3-DX
equipped with omnidirectional camera and laser scanner (the
latter is used only for benchmarking). Camera model is
obtained using the omnidirectional camera and calibration
toolbox [14]. We observe that the catadioptric system is a
hand-assembled device composed by a cheap USB webcam
and an off-the-shelf hyperbolic mirror.

We first report some results on the visual odometry
approach described in Section II-B. As mentioned in the
Introduction, wheel odometry is inaccurate and provides
a pose estimate that quickly diverges from current robot
position. For this reason, several authors proposed to improve
the accuracy of relative motion estimation, by using of a
scan-matching procedure among laser scans acquired at sub-
sequent poses. This approach is usually referred to as laser-
stabilized odometry [8]. Visual odometry results, compared
with the corresponding wheel odometry and the improved
approach based on scan-matching are shown in Figure 6.
Once relative motion between frames is retrieved, according
to (8), the vision-based pose estimate is simply computed
by integration. It is possible to observe that the accuracy of
visual odometry is comparable with the one obtained with
scan-matching.

Finally we compare, in a real test, the SLAM posterior
estimation using a traditional laser-based approach (and
laser-stabilized odometry), and the corresponding outcome
using a single omnidirectional camera for both prediction
and update of the particle filter. In Figure 7(a) we report the
estimated map with the proposed approach, whereas Figure
7(b) shows (for the same experiment) the map estimated
through SLAM with wheel odometry and laser scanner. The
overall length of corridor in which the experiments took
place was 30 m. As expected the map estimated from camera
is less accurate and misses few details of the environment.
Moreover the laser has a maximum range of 8 m, whereas
the segmentation provides reliable distance measurements
within a range of 4 m (as observable from the smaller
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Fig. 7. (a) Map estimated through RBPF-SLAM with omnidirectional
camera. (b) Map estimated through RBPF-SLAM with wheel odometry and
laser range finder.

length of the corridor and the side hall in Figure 7(a)).
On the other hand the occupancy grid map obtained from
omnidirectional vision gives a consistent representation of
the scenario and enables robot navigation while preserving
the inexpensiveness of the application. Although in grid-
based SLAM visual inspection is a common approach for
evaluating map quality, we preferred to give quantitative
evidence of the estimated map quality by comparing it with
the corresponding laser-based map. For this purpose we used
the metric proposed by Carpin in [2], called acceptance
index, which gives information on map similarity, once a
suitable roto-translation is applied. The acceptance index
ranges from 0 to 1 and, applied to the maps of Figure 7,
returned a value of 0.98, hence confirming map similarity.

IV. CONCLUSION

This work presents an application of an omnidirectional
camera to Simultaneous Localization and Mapping with
particle filters. The sensor is used for visual odometry and
as range device at a time, providing information for both
filter prediction and weights update. The proposed approach
allows the robot to estimate a grid map representation of the
environment by using a single vision sensor. The grid map,
contrarily to landmark-based representations, can be safely
used for robot navigation and it is an intuitive representation
for human operators who monitor the robotic system via
HMI. Moreover the application of RBPF-SLAM provides
a natural way of managing loop closing episodes, thus
avoiding the error accumulation problem, which is typical
of visual odometry, and without need to solve complex data
association problems, that can threaten filter consistency. The
approach was validated through simulations and real tests
and was shown to produce reasonable map representations,
assuring remarkable advantages in terms of cost and power
consumption, when compared with laser-based SLAM ap-

proaches. Current research effort is devoted to the test of
the proposed technique in different indoor scenarios and to
improve its robustness to environment characteristics.
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