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Abstract— Omnidirectional vision systems provide a large
field of view, this property can benefit algorithms developed to
solve robotic tasks. One interesting problem is the estimation of
the rotation between omnidirectional images. Since the images
taken by omnidirectional sensors can be mapped to a sphere, the
problem of attitude estimation of a 3D camera rotation can be
treated as a problem of estimating rotations between spherical
images. Usually, this rotation estimation problem has been
solved using point correspondences or gradient information
of the points of the images. The respective computational
time is very time consuming for these point algorithms. In
this paper we present an effective solution to the attitude
estimation problem with the radon transform, which uses line
information instead of points. The algorithm is defined under
the conformal geometric algebra framework, to take advantage
of the geometric information provided by the omnidirectional
projection.

I. INTRODUCTION

In this paper we apply the classic theory of Harmonic
Analysis to recover information given by the lines of the
omnidirectional images of a catadioptric system, which con-
sists of a conventional camera and a convex mirror. In order
to be able to model the catadioptric sensor geometrically, it
must satisfy the restriction that all the measurements of light
intensity pass through only one point in the space (effective
viewpoint). The complete class of mirrors that satisfy such
restriction where analyzed by Baker and Nayar [1]. In [2] the
authors deal with the epipolar geometry of two catadioptric
sensors. Later, in [3] a general model for central catadioptric
image formation was given. Also, a representation of this
general model using the conformal geometric algebra was
shown in [4]. In this work we use the model proposed in [5]
to compute analytically the projection and back projection
of 3D lines. Using the spherical equivalence, we propose
an image analysis using the Fourier transform on the unit
sphere S2 and on the rotation group SO(3). In recent years
harmonic analysis has been used in computer vision to
obtain 3D rotations with the Radon and Hough transforms.
Harmonic analysis is used in [6] to obtain the essential
matrix of two omnidirectional images and in [7] to recover
the relative orientation of two cameras using the Radon
transform as a correlation of points on S2 and SO(3) without
correspondences.

II. GEOMETRIC ALGEBRA

In general the geometric algebra Gn = G(Vn) is con-
structed over a vector space Vn in which the geometric
product is defined. We also denote with Gp,q,r a geometric

algebra over Vp,q,r where p, q, r denote the signature p, q, r
of the algebra. The geometric product of two bases vectors
ei, ej is defined as

eiej =

⎧⎪⎪⎨⎪⎪⎩
1 for i = j ∈ 1, ..., p

−1 for i = j ∈ p+ 1, ..., p+ q
0 for i = j ∈ p+ q + 1, ..., p+ q + r

ei ∧ ej for i �= j
(1)

A generic element in Gn is called a multivector. Every
multivector M can be written in the expanded form

M =
n∑

i=0

〈M〉i (2)

where 〈M〉i represents the i-vector part.
An important operation that is used in the geometric

algebra is called reversion denoted by ”˜” and defined by

〈̃M〉i = (−1)
i(i−1)

2

〈
M̃i

〉
, for M ∈ Gn, 0 ≤ i ≤ n. (3)

In geometric algebra the highest grade blade is called
pseudoscalar. The unit pseudoscalar is defined as I =
e1 ∧ e2 ∧ · · · ∧ en and is denoted with with Ip,q . The unit
pseudoscalar can be used to define the dual of a multivector
M in Gn as

M∗ = MI−1
n , (4)

where InI
−1
n = 1 and I−1

n differs from In by at most a sign
. The dual of an r-blade is an (n-r)-blade, in particular the
dual of the pseudoscalar is a scalar. For more details, the
interested reader is referred to [8] and [9].

A. Conformal Geometric Algebra

The conformal geometric algebra (CGA) embeds the
vector space Vn in a higher dimensional space Gn+1,1 =
G(Vn+1,1), called the homogeneous conformal space [10].
In the (CGA) we add two extra bases to our Euclidean vector
space; these are e+ and e−, where e2+ = 1 and e2− = −1.
With this two bases we define two null vectors e0 = e−−e+

2
and e∞ = e− + e+. Where e0 is interpreted as the origin of
the coordinate system and e∞ is interpreted as the point at
infinity. The outer product of the bases e+ and e− defines
the bivector E = e+ ∧ e−, which represents the Minkowski
plane.
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A point in the conformal space is defined as

X = x +
1

2
x2e∞ + e0 . (5)

The circle C∗ is defined with the outer product of three
points lying on it, C∗ = A ∧B ∧ C. If one of the points is
the point at infinity then we get the line

L∗ = A ∧B ∧ e∞ = dE +me∞ (6)

where d = (b − a) and m = (a ∧ b)I3, representing
the direction and moment of the line L∗ respectively. The
direction can be extracted from the line L∗ as

d = −(L∗ · E) (7)

B. Rigid Motion

In Gn the rotation transformations can be applied to objects
using a rotor. Let R denote the rotation operation

R(X) = RXR̃, (8)

where x is any multivector.
The translation of entities is carried out with a translator

T =
(
1 + e∞t

2

)
, where t represents the translation vector.

The translator is applied in the same way as the rotator and
also to any entity of the CGA.

III. PARACATADIOPTRIC IMAGE FORMATION AND

CONFORMAL GEOMETRIC ALGEBRA

In [5] the authors shown the equivalence of the paracata-
dioptric projection and the projection on two spheres S and
S0.

A. Paracatadioptric point projection

Let X be a point in the space, its projection onto the
sphere can be found by finding the line passing through it
and the sphere center, that is

L∗ = S ∧X ∧ e∞ . (9)

Then, this line is intersected with the sphere S

Q = S · L∗ , (10)

where Q denotes a point-pair (Q∗ = X1 ∧ X2). The point
closest to X can be found with

Xs =
Q∗ − |Q∗|
Q∗ · e∞ . (11)

Finally, the projection onto the paracatadioptric image plane
is simply

Xc = S0XsS̃0 . (12)

The point Xc is the projection of the point X onto the
catadioptric image plane, which is exactly the same point
obtained through the parabolic projection.

B. Back Projection of Point Images

Given a point Xc on the catadioptric image, its projection
to the sphere is simply Xs = S̃0XcS0. The point Xs lies
on a line that passes through the sphere center, that is L∗ =
P1∧S∧e∞. The original point X , also, lies on this line, but
since we have a single image the depth can not be determined
and thus the point X can no be calculated.

C. Paracatadioptric Line Projection

Given a line L in 3D space its projection onto the para-
catadioptric image plane is in general a circle, but when the
line is parallel to the optical axis of the mirror its projection
is a line. The paracatadioptric projection of the line can be
found by defining a plane containing the line and passing
through the center of the sphere S

Π∗ = L∗ ∧ S . (13)

Then, the plane Π∗ is intersected with the sphere to obtain
a great circle defined as

C∗
s = S · Π∗ . (14)

Finally, the circle Cs is projected onto the image plane
using

C∗
c = S0C

∗
s S̃0 . (15)

Cc

Cs

L

S

Fig. 1. Projection of the line L onto the paracatadioptric image plane.

D. Back-projection of Paracatadioptric Lines

Let C∗
c be a paracatadioptric projection of a line in 3D

space, its projection onto the sphere S can be found simply
with

C∗
s = S̃0C

∗
c S0 . (16)

The plane where the circle lies on is defined as

Π∗
s = C∗

s ∧ e∞ . (17)

The paracatadioptric projection of a line L∗ in 3D space
(Fig. 1) can be found by defining a plane where the line L∗

and the center of the sphere S lie, that is Π∗ = L∗ ∧ S.
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E. Radon transform with lines

The Radon transform was written as a correlation of points
between two omnidirectional images in [11], to obtain the
Euler angles of the relative orientation between the two
cameras. This Radon transform with points is defined as

G(R, t) =

∫
p∈S2

∫
q∈S2

g(p, q)Δ(Rp, q, t)dpdq, (18)

where the similarity function g is a measure of how likely the
SIFT points p and q are the projections of the same scene
point and the Δ function is the Kronecker delta function
relating the points p and q with the epipolar constraint of a
stereo camera system. For sake of simplicity we are calling
SIFT points to the SIFT descriptors returned by the SIFT
algorithm [12].

To extend the Radon transform as a correlation in the space
of lines to estimate pure rotations, we need to redefine the
integral (18), the similarity and the delta functions to the
space of lines.

Let L and L′ represent two lines in the 3D space, defined
in the CGA, related with a rotation L′ = RLR̃ or L =
R̃L′R. The direction of the lines δ and δ′ can be extracted
from the lines using (7). Let Π and Π′ represent respectively
two planes defined by the lines L and L′ and the center of
the sphere S, which can be computed with (13). The normal
vector of the plane Π can be computed with

η = −(Π∗I ∧ E)E. (19)

Since η and R̃δ′R are orthogonal, we have that η ·
(R̃δ′R) = 0. This constraint will be used to define the delta
function and the integral. Thus, the integral of the Radon
transform on lines is

G(R) =

∫
δ′∈S2

∫
η∈S2

g(η, δ′)Δ(η · (R̃δ′R))dηdδ′ (20)

where g is a similarity function between the lines of both
images and Δ the delta Kronecker function on the constraint
of lines. So, (20) can be used as a correlation function
between g and Δ, where g,Δ : S2 × S2 → {0, 1}.

Applying the spherical Fourier expansion to the similarity
function g of (20), we have

g(ω1, ω2) =
bw−1∑
l1=0

∑
|m1|≤l1

bw−1∑
l2=0

∑
|m2|≤l2

ĝl1l2m1m2
Y m1

l1
(ω1)Y

m2

l2
(ω2), (21)

where Y m
l are the spherical harmonics

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ)eimφ. (22)

In (21) we used g(ω1, ω2) instead of g(η, δ′) to simplify
notation.

Similarly, we get the expansion of the Δ function for each
(ω1, ω2) ∈ S2 × S2 and R ∈ SO(3) as

Δ(ω1, Rω2R̃) =
bw−1∑
p1=0

∑
|k1|≤p1

bw−1∑
p2=0

∑
|k2|≤p2

Δ̂p1p2

k1k2
(R)Y k1

p1
(ω1)Y

k2
p2

(ω2). (23)

Since ω1 · (Rω2R̃) = ω2 · (R̃ω1R) = 0, we can write

Δ̂p1p2

k1k2
(ω1, R̃ω2R) (24)

instead of Δ̂p1p2

k1k2
(R) in (23) and by the shift theorem we

have

Δ̂p1p2

k1k2
(ω1, R̃ω2R) =

∑
|b|≤p2

Up2

bk2
(R)Δ̂p1p2

k1b
, (25)

where Δ̂p1p2

k1b
≡ Δ̂p1p2

k1b
(ω1, ω2). Substituting (21), (23) and

(25) in (20) we get

G(R) =

∫
ω1∈S2

∫
ω2∈S2⎡⎣∑

l1

∑
|m1|≤l1

∑
l2

∑
|m2|≤l2

ĝl1l2m1m2
Y m1

l1
(ω1)Y

m2

l2
(ω2)

⎤⎦ ·

·
⎡⎣∑

p1

∑
|k1|≤p1

∑
p2

∑
|k2|≤p2

·
⎧⎨⎩ ∑

|b|≤p2

Up2

bk2
(R)Δ̂p1p2

k1b

⎫⎬⎭ ·

· Y k1
p1 (ω1)Y

k2
p2 (ω2)

]
dω1dω2. (26)

Because the spherical harmonics are an orthonormal set∫
ω∈S2

Y m
l (ω)Y m′

l′ (ω)dω = δll′δmm′ , (27)

which can be applied in (26) to obtain

G(R) = ∑
l1

∑
|m1|≤l1

∑
l2

∑
|m2|≤l2

∑
p1

∑
|k1|≤p1

∑
p2

∑
|k2|≤p2⎧⎨⎩ ∑

|b|≤p2

ĝl1l2m1m2
Δ̂p1p2

k1b
Up2

bk2
(R)

⎫⎬⎭ ·

·

⎧⎪⎪⎨⎪⎪⎩
∫
ω1∈S2

Y m1

l1
(ω1)Y

k1
p1 (ω1)︸ ︷︷ ︸

δl1p1
δm1k1

dω1·

·
∫
ω2∈S2

Y m2

l2
(ω2)Y

k2
p2 (ω2)︸ ︷︷ ︸

δl2p2
δm2k2

dω2

⎫⎪⎪⎬⎪⎪⎭ (28)

=
∑
l1

∑
|m1|≤l1

∑
l2

∑
|m2|≤l2

∑
|b|≤p2

ĝl1l2m1m2
Δ̂l1l2

m1b
U l2
bm2

(R). (29)
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Let us remember that in SO(3) the elements U ’s are or-
thonormal,∫

R∈SO(3)

U l
mk(R)U l′

m′k′(R)dR = δll′δmm′δkk′ . (30)

Now, for each l′2 = 0, 1, . . . , (bw − 1) and b′, m′
2 ∈

{−l2, . . . ,−1, 0, 1, . . . , l2} let us multiply by U
l′2
b′m′

2
(R) in

both sides of (28), taking the integration on SO(3) and using
(30) to obtain

∫
SO(3)

G(R)U
l′2
b′m′

2
dR =∑

l1

∑
|m1|≤l1

∑
l2

∑
|m2|≤l2

∑
|b|≤p2

·

·ĝl1l2m1m2
Δ̂l1l2

m1b

∫
SO(3)

U
l′2
b′m′

2
(R)U l2

bm2
(R)dR︸ ︷︷ ︸

δl2l′2
δbb′δm2m′

2

(31)

=
∑
l1

∑
|m1|≤l1

ĝ
l1l

′
2

m1m′
2
Δ̂

l1l′2
m1b′ . (32)

From the last equality we have the 3D Fourier transform Ĝ
of G on SO(3). Indeed, rewriting the indexes as l′2 → l2,
b′ → b and m′

2 → m2, the Fourier transform Ĝ of G on the
rotation group SO(3) is given as

Ĝ = (Ĝl2
bm2

) (33)

where l2 = 0, 1, . . . , (bw − 1) and b, m2 ∈ {−l2, . . . ,−1,
0, 1, . . . , l2} and the entries are

Ĝl2
bm2

=
∑
l1

∑
|m1|≤l1

ĝl1l2m1m2
Δ̂l1l2

m1b
. (34)

Our expression (34) obtained for lines and pure rotations is
consistent with the formula for points obtained in [7] for the
case of a pure rotation.

Although we know how to calculate the analytical ex-
pressions of the continuous Fourier and Radon transforms
in spherical coordinates, it is necessary to use a discretiza-
tion process for their applications with real omnidirectional
images. Given a function on the space L2(S2) with band-
limit bw, its spherical Fourier transform SFT can be obtained
with the FFT algorithm of order O(bw2 log2 bw) on S2, see
Driscoll and Healy [13], for details. Similarly, we can use
the FFT algorithm of order O(bw3 log2 bw) in the case of
the rotation space SO(3), see Kostelec and Rockmore [14],
for details.

IV. SIMILARITY, CHARACTERISTIC AND COST

FUNCTIONS

Now that we have the analytical expression of the Radon
transform with lines (20), let us see how to use it during the
discretized process.

Suppose that the omnidirectional camera has performed
a pure 3D rotation. Using the model [5] we compute the
back-projection of lines projected onto the paracatadioptric

Fig. 2. This image is the output of the SIFT algorithm to obtain a reduction
of the searching space. This is not a perfect correspondence between the
points of the two images, but can help us to reduce the searching space of
points.

image plane. Let C∗
c denote the projection of a 3D line onto

the paracatadioptric image plane, its back-projection C∗
s can

be computed using (16). The plane Π passing through this
plane is (17) and finally the normal vector of the plane can
be computed with (19).

Given two omnidirectional images let us apply the SIFT
algorithm [12] to obtain the SIFT points associated with
them. See Figure 2. Now, choose randomly a set of these
SIFT points. At the center of each of these points a mask
of size m×m is applied. Now, for each set of SIFT points
inside of each mask, we are going to find the best fitting
circle using RANSAC and then use Levenberg-Marquardt
with the following cost function to minimize

min
h,k,r

error = (x− h)2 + (y − k)2 − r2 +

+

∣∣∣∣arctan( cy − k

cx − h

)
− θc

∣∣∣∣ . (35)

The first terms are the constraint to get a circle of radius r
centered on (h, k). The last term is the constraint verifying
that the line passing through the center of the mask (cx, cy)
and slope tan(θ), could be lined up to the average SIFT-
vector with slope tan(θc) and initial point (cx, cy). See
Figure 3. θc is the average angle of the SIFT-points inside
the mask. Furthermore, we are considering only those SIFT-
points inside the mask with SIFT-angles values θ in the
interval [θc −Δθ, θc +Δθ], for some Δθ > 0. In this way
we are considering the main tendency of the SIFT vectors
inside the mask.

Let η be the point on S2 associated to a circle of the
first omnidirectional image plane. Taking the SIFT points
on the second omnidirectional image and the mask of size
m×m we can find, in the same way, the best fitting circle
η′ associated to η. Notice that even though we obtained one
point to represent a circle, we still have the robustness of
the process because this point is the normal vector of a
fitting circle. Then the characteristic function Δ must obey
the constraint for lines

Δ(RηR̃, η′) = δ(((RηR̃) ∧ η′)I−1
3 ) (36)

=

{
1 if |(R(η) ∧ η′) I−1

3 | < ε
0 other case
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a) b)

Fig. 3. (a) θc is the average angle of the angles of the SIFT vectors inside
the mask m×m. The arctan summand of the cost function (35) will try
to line up the average SIFT vector with angle θc with respect to the line
passing through the points (h, k) and (cx, cy). (b) Searching interval of the
SIFT vectors.

Fig. 4. (a) Vectors from the SIFT points. (b) One of the detected circles
on a real image.

for 0 < ε = π/(8 bw), where bw is the bandlimit of
the discretization process. Thus, the Δ function (36) is
measuring how close are the two circles η and η′. Finally,
following the work in [7], we take the similarity function as

g(δ̃, δ̃′) = exp
{
−
∥∥∥δ̃ − δ̃′

∥∥∥} (37)

if exp
{
−
∥∥∥δ̃ − δ̃′

∥∥∥} > ε′ and zero in other case, and

where ‖·‖ is the Euclidean norm and δ̃ and δ̃′ are the 128-
dimensional SIFT vectors of the center points of each mask.
ε′ > 0 is an arbitrary threshold.
In summary, the steps of the algorithm to recover the rotation
only are:

Input: Two omnidirectional images.
Output: The 3D orientation relative between cameras.

1) Apply the SIFT algorithm to detect SIFT features.
2) Using the SIFT points detected on each image, we

obtain the best fitting circles on each image.
3) Project each circle detected on the image plane onto

the sphere using (16), compute their respective planes
with (17) and compute their normal (19).

4) Apply equations (36) and (37) to obtain the functions
Δ and g on S2 × S2.

5) Compute the spherical Fourier transform of f and g,
on S2 × S2, that is, f̂ and ĝ.

6) Using expression (34) compute Ĝ, the Fourier trans-
form of G on the rotation group SO(3).

7) Compute G from the inverse Fourier transform of Ĝ.
8) Locate the maximum of G(R) on R = R(α, β, γ) to

obtain the orientation relative between cameras R.

Fig. 5. Percentage of the correct matches of the algorithm versus percentage
of noise for a bandlimit B = 16, generating N simulated correspondences
lines.

Fig. 6. Estimation of the Euler angles where the rotation axis is not
parallel to the axis of the mirror. Square lines, triangle lines and circle lines
are the result of the Radon with lines, Radon with points and exact values,
respectively.

V. EXPERIMENTS

In this section we apply the Radon Transform using Lines
to estimate rotations using real and synthetic images.

A. Noisy synthetic images

N 3D-lines were randomly generated and rotated with
different Euler angles α, β, γ for perfect correspondence of
the similarity and characteristic functions. Noisy lines were
included on each image, that is, lines without correspondence
on the other image.
N correspondences lines pairs in a range of 100 to 3000

were generated and then we recovered their Euler angles with
different values of noise percentage. During the simulation
process we had used the correspondence information only
to measure the percentage of the correct matches of our
algorithm, but obviously this information is not used with
the real images. We can see from Figure 5 that even with
a 60% of noise the algorithm was successful 80% of time,
where in this particular case N = 1500.

Figure 6 depicts another simulation with bandlimit bw =
32. The mirror is rotated with a rotation axis not parallel to
the axis mirror. Approximately every 25◦ the Euler angles
were calculated with our Radon transform with lines. For
an angle less than 180◦ the errors are in the same range
of magnitude as the Radon transform with points of [7]. In
particular, after a 200◦ rotation the mean cumulative error
was of 23◦.

B. Real images and rotation

In this section we used the implementation of the al-
gorithm with real omnidirectional images obtained with a
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catadioptric system of a mobile robot. A ramp was used
to have a rotation axis non-parallel to the mirror axis. A
Gaussian filter was used to smooth the outdoor images. The
objective is to recover the Euler angles of a pure rotation R ∈
SO(3) that gives us the relative orientation between cameras.
The two omnidirectional images are the projection of these
two cameras. Two particular real outdoor omnidirectional
images that were used are shown in Figure 4.

Let bw be the band-limit of the discretization process,
then the discretization errors of the Euler angles in the
parameterization Z(γ)Y (β)Z(α) are given by Δαbw =
Δγbw = π

2bw and Δβbw = π
4bw . In particular, for bw = 16,

Δα16 = Δγ16 = 5.625◦, Δβ16 = 2.8125◦ and for bw = 32,
Δα32 = Δγ32 = 2.8125◦, Δβ32 = 1.40625◦.

In the present work we are considering the general case
where the rotation axis is not parallel to the z-axis. In the
first case a ramp was used to get a rotation axis non-parallel
to the mirror axis with α = γ = 0◦ and β = 11.5◦, that is,
a rotation with the y-axis only. Remember that x and y axes
are on the image plane and the z-axis is orthogonal to it.

In the second case we used several Euler angles as shown
in the Table I where five rotations were performed using the
mobile robot. We can see from this Table that the recovered
Euler angles with band-limits 16 and 32, have values of the
errors Δα, Δβ and Δγ less than their discretization errors
Δαbw, Δβbw and Δγbw, except for a pair of cases.

I II III IV V
α 30◦ 50◦ 70◦ 80◦ 84◦
β 11.35◦ 11.35◦ 11.35◦ 11.35◦ 11.35◦
γ 10◦ 10◦ 15◦ 20◦ 20◦

TABLE I

GROUND TRUTH ROTATION EULER ANGLES USED WITH REAL IMAGES.

The results using the algorithm of Radon with lines are
basically the same as with points, but less points are needed,
as we can see from Table I. In Table II we can see the total
pair points of S2 × S2 used with each of these algorithms
to generate the results of Table I. Approximately a 23% less
pair correspondences of lines were required with respect to
points. Remembering that 3D points and 3D lines are points
of S2, then we are using 23% less points on S2 that need to
be processed with the tools of the harmonic analysis. This is
an advantage with respect to the algorithm using 3D points,
[7], [11].

I II III IV V
RL 318 305 315 413 347
RP 394 377 423 546 469
Δ% 19% 19% 26% 24% 26%

TABLE II

PAIR CORRESPONDENCES USING RADON WITH LINES (RL) AND RADON

WITH POINTS (RP) TO OBTAIN THE RESULTS OF TABLE I. THE

PERCENTAGE CHANGE OF THE RATIO
|RL−RP |

RP
SHOW US THAT WE

NEED LESS PAIR CORRESPONDENCES USING LINES.

C. Conclusions

In this work the authors presented an application of the
Radon transform to obtain the 3D rotation of a paracatadiop-
tric system using lines without correspondences. The para-
catadioptric model presented in [5] has been used to compute
the back-projection of paracatadioptric lines onto the sphere.
The algorithm shows an improvement of approximately 23%
less information using lines than the algorithm with points
[11], [7]. Real and synthetic images were used to test the
algorithm. To obtain the Radon transform with lines we also
require an analogous epipolar constraint with points and a
similarity function for lines. Our algorithm takes advantage
of the fact that lines are less noise sensitive than points.
However, the algorithm of the Radon transform with lines
will not be successful if it does not detect enough lines on
the images. Thus, it will be necessary to find an algorithm
for better lines detection. The authors believe that the use of
a harmonic analysis based on Radon transform using lines
is promising for omnidirectional image processing.
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