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Abstract

This dissertation describes the implementation of an omni-directional vi-

sion system as sole sensor for a robot building a topological map of an in-

door environment, using the Spatial Semantic Hierarchy created by Benjamin

Kuipers [Kuipers 00]. So far, no attempt to implement the SSH using a vi-

sion sensor has been made. We will show that an omni-directional vision

system is a good sensor for the SSH.

We built a simulator for the omni-directional vision system. Using this

simulator, we created typical omni-directional images of an indoor man-made

environment. From a qualitative analysis of these images, we identified the

transitions in the image sequence and the features in the images them-selves

which are strictly related to the SSH representation. We designed algorithms

to extract this information from the images. Finally, we tested these algo-

rithms with simulated experiments and using a real robot fitted with an

omni-directional vision sensor.

The omni-directional sensor is realized with a multi-part omni-directional

mirror and a colour camera under the mirror. We used the colours to solve

the correspondence problem in the frame sequence. Our approach worked

properly in simulation but was not robust enough to cope with very noisy

images in the real world. More sophisticated solutions are outlined. We

present detailed descriptions of the image processing and of the matching

algorithm used for the solution of the correspondence problem.
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Chapter 1

Background

1.1 Mobile Robotics

A mobile robot is a robot able to perform its tasks in different places and to

move from place to place. Often, the robot does not need a map to perform a

simple displacement, especially if the environment it travels through is very

simple or highly engineered. But, if the robot’s task requires an understand-

ing of the world, the robot has to answer the three questions posed by Levitt

and Lawton [Levitt & Lawton 90]:

• Where am I?

• How do I get to other places from here?

• Where are other places relative to me?

In other words, it needs a map of its world. With the term map we do not

refer only to the geographical maps humans are used to. There are a wide

range of different maps a robot can use. Two examples that are poles apart

are metric and qualitative maps. In metric maps the space is represented in

a single global coordinate system. In the qualitative maps, the environment

is represented as a set of places and paths connecting these places. There

1



2 The Caboto Project

is no metric or geometric information, such as distances, angles, etc. but

only the notion of proximity and order [Kortenkamp et al. 98]. Different

kinds of maps answer the three basic questions using different properties of

the environment. We have to keep in mind that the distance which separates

two objects is only one of the properties of the space in which the two objects

are embedded. The choice of which property to exploit and therefore which

kind of map to use depends on the task the robot will be required to perform.

The task of moving the robot using a map is called navigation.

What if there is no map? Can the robot be induced build its own map?

This idea opens another stream of research: the map building task. In this

case, the robot has to travel through an unknown and unexplored environ-

ment and to construct a map of it. Again, depending on the task these

maps can be very different. If the robot has to produce a map useful for hu-

mans, a metric map will have to be composed at the last stage of the process

. Moreover, the robot travelling through an environment could also gather

data which would enable it to build a 3-D model and not just a map of the

environment [Ishiguro et al. 95]. On the other hand, for tasks in which the

map is going to be used only by the robot, the human readability is not an

issue, a wide range of possibilities using the more cryptic features have been

investigated [Bianco & Zelinsky 99] [Franz et al. ]. One of the most effective

representations of an environment is the so called topological map. This is

a qualitative map which extracts from the environment the topological re-

lationships between the different places and paths. The advantages of such

a representation are its compactness, because it represents only interesting

places and not the whole space, and its intrinsic solution to the problem

of movement uncertainty. This is because when a robot goes to places, its

position is known with a certain error and this error accumulates while it

moves. Because topological maps do not rely on a global coordinate system,

the error in position is reset whenever the robot reaches one of the distinct
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places identified within the space. One of the key issues in the generation of

topological maps is the abstraction from the continuous sensory experience,

to a discrete set of distinct places. These are the basic elements on which

to build the topological map. Topological maps have been used in other

areas of robotics. One example which has been influential on this research

is work of Wright and Deacon [Wright & Deacon 00]. Topological maps can

be upgraded to metric maps by adding metric information to the places and

to the relationship between paths and places. Therefore, a map can be seen

as a hierarchal structure built layer by layer. Benjamin Kuipers created a

formalisation of this intuition: the Spatial Semantic Hierarchy (SSH).

1.2 The Spatial Semantic Hierarchy

The SSH is a model of the knowledge of large-scale spaces of humans, in-

tended to serve as a “method for robot exploration and map building”

[Kuipers 00]. The SSH is made up of several layers: the sensory level, the

control level, the causal level, the topological and the metrical level. Each

layer can be implemented independently, even if they strongly interact. Let

us see in details what each layer is about:

• The Sensory Level is the interface with the agent’s sensory system.

It extracts the useful environmental clues from the continuous flux of

information it receives from the robots’ sensors.

• The Control Level describes the world in terms of continuous actions

called control laws. A control law is a function which relates the sen-

sory input with the motor output. Each control law has conditions

for its appropriateness and termination. A selected control law is re-

tained until a transition of state is detected. These transitions can be

detected with a function called a distinctiveness measure. The distinc-
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tiveness function must be identified depending on the sensor used and

the features which are to be extracted from the environment.

• The Causal Level abstracts a discrete model of the environment from

the continuous world. This discrete model is composed of views1 , ac-

tions 2 and the causal relations between them. At this stage causal

maps and planning are possible using these three basics elements. For

this purpose, it is convenient to classify actions into two categories:

travels and turns. “A turn is an action that leaves the agent at the

same place. A travel takes the agent from one place to another”

[Pierce & Kuipers 97].

• The Topological Level represents the environments as places, paths and

regions, with details of how they are connected or contained one in the

other. To use Kuipers words:

The topological model of the environment is constructed by

the non monotonic process of abduction, positing the mini-

mal set of places and paths needed to explain the regularities

observed among views and actions at the causal level.

• The Metrical Level augments the topological representation of the en-

vironment by including metric properties such as distance, direction,

shape, etc. At this stage, it is possible to build a global geometric map

of the environment in a single frame of reference. This may be useful,

but is seldom essential.

So far, the SSH has only been implemented on either simulated robots or

real robots with very simple sensors as sonars. No attempt to use a vision

sensor has been made.

1A view is defined as the sensor’s reading at a place where a transition of state is
detected.

2An action is defined as the application of a sequence of control laws.
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1.3 The aim and approach of the project

The purpose of this project is to explore the possibility of using an omni-

directional vision system as sole sensor for a robot building a topological map

of a man-made environment 3 , using the Spatial Semantic Hierarchy.

We started by building a simulator of the omni-directional vision sys-

tem. This simulator was used in a virtual environment, an office-like build-

ing, to generate simulated omni-directional images. We performed a qual-

itative analysis of these simulated images. From this analysis, we identi-

fied transitions in the image sequence and features in the images them-self,

strictly related to the SSH representation. We designed algorithms to ex-

tract this information from the images. Finally, we tested these algorithms

both with simulated experiments and the use of a real robot fitted with an

omni-directional vision sensor.

1.4 Omni-directional Vision

The term omni-directional vision refers to a vision system able to see in

all directions. It is possible to implement this multi-directional vision in

several ways. The term omni-directional vision has been used to indicate

very different realization of vision in all directions, generating a mix-up in

the terminology. Sometimes, it was used as synonym for panoramic vision.

In the past few years the two terms have been differentiated. The term

omni-directional vision is presently used for vision systems which able

to capture a 360o image in one shot (See Figure 1.1 and 1.2). Panoramic

vision is used for systems which are able to produce panoramic images by

panning a camera around its vertical axis and merging the single images

in a panoramic cylinder, see Figure A.1. An omni-directional sensor has

usually a wider angle of view in the vertical direction than a panoramic one.

3like an office or a building
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In this dissertation, we only considered panoramas about the vertical axis.

Strictly speaking, to cover exactly all directions of view, directions around

an horizontal axis also have to be considered. However, the applications for

such a truly omni-directional vision sensor are still limited and only a small

number of researchers have created such sensors. A couple of examples can

be found on the following web pages

• www.cfar.umd.edu/ larson/EyesFromEyes.html

for an example of a 360o eye;

• www.cs.columbia.edu/CAVE/omnicam/prototypes.htm

for an example of a “single sensor that has a complete sphere of view”.

Figure 1.1: Omni-directional image. (Courtesy of B. Kröse at IAS group,
University of Amsterdam)

Figure 1.2: Panoramic cylinder built from the omni-directional im-
age.(Courtesy of Prof. B. Kröse at IAS group, University of Amsterdam)
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From here on, we will therefore use the term omni-directional to refer to

sensors with a 360o field of view about the vertical axis.

1.5 Our specific realization

There are three basic classes of sensors which can see in all directions. They

make use of different techniques:

• use of multiple images;

• use of special lens;

• use of convex mirrors;

In this dissertation we will only consider omni-directional vision sensors

fitted with convex mirrors. For a review on the other type of realizations see

Appendix 6.1. omni-directional sensor fitted with a convex mirror is com-

posed of a perspective camera pointed upwards at the vertex of the convex

mirror. The optical axis of the camera and the geometrical axis of the mirror

are aligned. This system is usually fixed on top of a mobile robot as in Fig-

ure 1.3. The robot depicted in the picture is the goal keeper of the Azzurra

Robot Team (ART)4 . This is the robot we used for our experiments.

1.6 Why is omni-directional vision good for

map building?

Omni-directional vision produces images with a wide angle of view but with

low resolution. This is not a problem, because most of the task which require

an understanding of what is happening in the surroundings do not need high

4Azzurra Robot Team (ART) is the Italian team at Robocup Championship, the robot
football competition.



8 The Caboto Project

Camera

Mirror

Figure 1.3: The robot with its omni-directional vision sensor.

resolution images. It is better to gather the biggest amount of information

from the highest number of directions than to have a detailed analysis of a

small area. In robotics several tasks do not require a detailed analysis of

the scene but high speed and rough understanding of the region around the

robot. Examples of these are:

• navigation;

• obstacle avoidance;

• exploration;

• map building;



Chapter 1. Background 9

• surveillance;

• telepresence;

In the case of a map building robot, the advantages of omni-directional

vision are clear. For this task a vision sensor with high acuity is useless, it

is not necessary to capture the details of objects and surfaces, but only to

estimate their positions and dimensions. An omni-directional image captures

at once all the objects visible from the robot location. This image has a strict

connection with the views introduced in the causal level of the SSH, i.e. with

the sensor reading at a distinct place. With an omni-directional sensor, the

robot does not need several shots to understand the surroundings. It does

not need to turn and take a look around. It does not need to be fitted with

moving parts (camera or mirrors) to increment its field of view. These are

just implementational considerations, there are deeper aspects supporting

the use of an omni-directional sensor in the process of building a map with

the SSH.

To understand these considerations we have to take a look at how a omni-

directional sensor maps the scene into the image plane. Consider Figure 1.4.

In this figure a conical mirror is represented, but the properties which are

illustrated apply to any kind of omni-directional sensor.

The vertical edges in the scene are mapped in the image plane as radial

lines originating from the point corresponding to the tip of the mirror. There-

fore, to extract the vertical edges from the images, the image is searched for

radial lines. The azimuth of a radial line in the image corresponds to the

azimuth of the vertical edge in the scene, as viewed from the optical axis of

the camera. The vertical lines in the environment provide an optimal clue

to divide the environment into topologically different places and they can be

used to generate a distinctiveness measure needed to distinguish transition of

state in the robot ontology. Another advantage of the omni-directional vision
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Figure 1.4: The conic projection. (Courtesy of Prof. Y. Yagi at Osaka
University)

P1 P2

P3

P5

P4

Figure 1.5: The “exploring around the block” problem. The problem of
recognising the same place under different state labels.

is its rotational invariance. If the robot rotates of a certain angle about the

optical axis of the camera, the relative position of the objects in the image

does not change. The image is only rotated and the objects appear to have

experienced an azimuthal shift equal to the angle of rotation. This permits a

straightforward solution to the problem of exploring around the block, i.e. of

recognising the same place under different state labels. See Figure 1.5. Using
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the SSH terminology, it is easy to spot whether the current view is the same

as has been experienced before and therefore to consider this view not as a

different place but as the same place reached from a different direction.

Another problem which is easily solved by omni-directional vision is to

discriminate the type of movement the robot is performing at a given time.

Using optical flow techniques, Svoboda showed that with an omni-directional

vision system it is very easy to discriminate between a small rotational move-

ment and a small translational movement [Svoboda et al. 98]. This task is

very difficult for a vision system fitted with a perspective camera. Moreover,

using active vision on an omni-directional vision system it is possible to es-

timate precisely the motion of a robot. See again [Svoboda et al. 98] for a

literature review.

The main disadvantage of omni-directional vision with respect to perspec-

tive vision is the already mentioned poor resolution. This is because with

an omni-directional sensor light is gathered from a much wider area than

with a perspective camera. Therefore, if the sensitive surface of the CCDs

is the same, more points have to be mapped into the same pixel. The shape

and size of the mirror influences the resolution of the sensor. Within certain

limits, it is possible to design mirrors that maximise the image resolution in

the most interesting regions of the scene.

Other disadvantages of the omni-directional images are the high distortion

introduced into the image and the poor human readability. A mirror with

a single focal point, like a hyperboloidal mirror, overcomes these difficulties.

In fact the geometry of such a mirror permits transformation of portions of

interest of the omni-directional image into a perspective image. See Figure

A.5.
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1.7 The dissertation overview

In Chapter 2 we describe the implementation of the simulation of the omni-

directional sensor and the virtual environment. The qualitative analysis per-

formed on these simulations is described and the results are presented. In

Chapter 3, we introduce our idea for the vision system software and we ex-

pand it in detail, explaining which information this software is able to extract

from the images and how it performs this task. In Chapters 4 and 5 we per-

form experiments with this software respectively on a simulated sequence of

omni-directional images and on a sequence acquired with a real robot fit-

ted with an omni-directional vision system. Eventually, Chapter 6 draws the

conclusions from the project, listing what this project has achieved and what

it failed to achieve. Appendix 6.1 presents a survey on the different ways of

building an omni-directional vision sensor.

To pay tribute to Venice, home town of the author, this project and the

real robot we will use are called Caboto.

Giovanni Caboto was explorer and cartographer. He lived in the second

half of the XV century. Like the author, he was born in Venice and he came

to Britain. He had a ship from Henry II King of England to “navigate and

discover all the unknown lands”.



Chapter 2

The Simulator Visualisation

As reported in the previous chapter, omni-directional images are not easy to

understand. They present a point of view (and a field of view) we are not

used to.

The first part of the project consisted of building a simulator to generate

omni-directional images of a virtual environment. The aim of this simulator

was to gain an intuitive understanding of the dynamic of the sensor (i.e. how

the image changes when the robot moves), and of the proprieties of omni-

directional images. The qualitative analysis of the images permitted us to

extract clues about the distinctiveness measure and features we should use

in the process of building the map of the environment. We used a simulator

for two main reasons. First, the robot on which we implemented the omni-

directional vision system was not available at the University of Edinburgh

but only at the University of Padova (Italy) and it was therefore not possible

to carry out extensive preliminary tests. Second and more essential, the

simulations provided an environment easily controllable and reconfigurable.

Moreover, the absence of noise permitted us to focus on the understanding

of basic features rather than on implementational problems.

13
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2.1 Building the simulations

To generate simulation of omni-directional images we used a ray-tracing pro-

gram called POV-Ray. This is a free program for creating three-dimensional

graphics. It is downloadable at the web site www.povray.org. POV-Ray

permits the creation of a complex 3D virtual environment from a simple text

file containing the description of the scene. In POV-Ray the basic elements

of the world are: the camera, the lights and the objects. The camera rep-

resents the view of the observer of the scene. The lights are necessary to

illuminate the scene and the objects present in there. The objects can be

simple primitives (like spheres, cylinders, boxes, etc.) or compound objects

of these primitives. An object can be defined with several attributes. Some

of them are required, like its position and its colour, others are optional

like the amount of reflection or the roughness of its surface. The POV-Ray

language allows the application of transformations to the objects. The trans-

formations can be both spatial (rotation, translation, etc.) or morphological

(scale, ratio, etc.). The POV-Ray language provides also some commands to

create sequences of images. In fact, specifying the position of an object as a

function of the time, the object can be displaced from frame to frame.

Using POV-Ray we created a virtual environment in which to carry out

the simulations. A simulated robot moves in this environment taking snap-

shots with its omni-directional viewer. The environment is a basic model of

a man-made environment like an office or a building. This is a maze com-

posed of boxes of different colours. See Figure 2.1. The maze is designed

to present to the robot typical views of an indoor space. Typical views are

corners, doors, corridors and convex objects (like cabinets or boxes). The

robot is represented as a red square with a white sphere on top of it. The

robot moves through the maze along a predefined path to encounter all the

typical views. We generated a sequence of simulated images captured by the
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Figure 2.1: The virtual environment generated for the simulations of the
vision system. The robot is the red square with the white sphere on top of
it.

18 cm

8 cm 3.
5 

cm

Figure 2.2: The Mirror Profile.

omni-directional viewer while the robot moves in the maze.

To simulate the omni-directional viewer we built a model of the omni-

directional sensor present on the real robot of the University of Padova. The

mirror of the real sensor is a multipart-mirror composed of a cone intersect-

ing a sphere. It has a hybrid shape with respect the ones reviewed in Section

A.3. The dimension of the cone, the radius of the sphere and the position

of the point of intersection are calculated such that the cone and the sphere

are tangential at the intersection point. If they were not tangential, a dis-

continuity would be present in the image. Figure 2.2 depicts a sketch of the
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mirror profile with its dimensions.

We reproduced a model of this mirror in POV-Ray. The multi-part mirror

is defined as the intersection of two primitives: a sphere and a cone. The

surfaces of the two primitives are defined as totally reflective, so they behave

like mirrors on which the image of the surrounding world reflects. This

reflection is the image captured by a perspective camera placed under the

mirror and pointing upward to the mirror.

In Figure 2.3.a we show a perspective view of the simulated environment

and in Figure 2.3.b how the same scene is seen by the omni-directional viewer.

Note that the body of the robot does not appear in the simulated images.

We simulated only the viewer not the whole body. In the next paragraph,

we will explain which kind of feature we extracted from the omni-directional

images to understand the surrounding environment.

2.2 The feature selection

To extract from the images the information about where are the objects in

the environment and where the robot is going, we need to select a feature,

or a set of features, to search for. These features must be present in the

environment or in the pictures of the environment and must be reliably, and

possibly easily, detectable. First, we have to decide if we want to search for

features naturally present in the scene or if we want to exploit the use of

artificial landmarks. The task for which this robot is designed: map build-

ing, presumes the existence of an unknown and unexplored environment.

Therefore, we have to discard the use of artificial landmarks. Several author

selected features that strictly speaking are not present in the environment but

only in the pictures of the environment, like brightness pattern or other fea-

tures only loosely related to the objects in the world. Usually, these features

are extracted from the pictures with the use of heavy mathematical tools
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(a) (b)

Figure 2.3: (a) The perspective view of the virtual environment. The robot
is the red square with the white sphere on top of it. (b) How the same scene
is seen from the simulated omni-directional viewer. Note that the body of
the robot does not appear in the image.

[Kröse et al. 00] [Winters & Santos-Victor ] [Franz et al. ]. We decided not

to follow this approach, but to select features that humans can easily un-

derstand and that are strictly binded to the objects in the real world. This

has a double beneficial effect: to collect easily interpretable data and to keep

low the mathematical complexity of the project. The former is an important

issue in the design and implementation of the vision system; especially be-

cause this was the first time the author designed and built a vision system.

Without the help of experience, if the data are not easily interpretable, it

is hard to spot eventual errors and bugs. The features we selected are the

vertical edges present in the world. The vertical edges are diffusely present in

the environment the robot is designed for: an indoor man-made environment

like an office or a building. Examples of vertical edges are doors, the sides of
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a cabinet, the legs of a chair, etc. A big advantage of choosing vertical edges

as features is they are mapped by the omni-directional mirror as radial lines.

Therefore, we search the images for radial lines. When the robot moves, the

edges appear to move in the image. Analysing this movement it is possible

to extract information both on the topology of the environment and on the

robot’s movements.

2.3 The assumptions

In the image analysis, we make use of some assumptions. It is worth to make

them explicit here.

• The robot is moving in a indoor environment. This is a man-made
environment like an office or a building;

• The lighting in the environment does not change during the motion of
the robot;

• The objects present in the scene are static: they do not change their
positions;

• The floor is almost flat and horizontal;

• The walls and the object present in the scene have vertical edges and
surfaces;

• The axis of the camera and the mirror are vertical;

• The robot can only turn on the spot or move on a straight line. It
cannot make more complex movements;

The last assumption is strong but permits to greatly simplify the vision

system. Several constraints on the edge movements are based on this last

assumption. Let us see why we made this assumption.
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2.4 Running the simulations

We decided to move the robot in the maze with two basic movements: trans-

lations and rotation on the spot. This was done to mimic the distinction

made by the SSH between the two type of actions: travel and turns. This

distinction not only simplifies the construction of the movements in the vir-

tual environment, it also generates a huge amount of simplifications in the

process of building the vision system. If we force the robot to move only

in straight lines and to turn on the spot to change the heading direction,

it is possible to identify two separate sets of constraints on the apparent

movements of the edges. The apparent motion of the edges depends on the

movements of the robot and on the topology of the environment.

The topological events for translations

In Figure 2.4 is presented a simulation of the translation of the robot. For

a better understanding of the scene two frame sequences are presented: the

perspective view of the environment in which the robot is moving and the

corresponding sequence acquired by the omni-directional camera of the robot.

The situation depicted in the sequence is a typical situation faced by the

robot: it exits a corridor and it aims for an object. In this sequence several

thing happen. Focus your attention on the following:

• The robot approaches some objects and it moves away from others;

• Objects in the heading directions appear to expand;

• Objects in the escaping directions appear to contract;

• The vertical edges of the scene appear as radial lines that move changing
their azimuth;

• There is an optical flow of radial lines with respect to the heading
direction;
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It is possible to identify some topological events in the frame sequence.

These events happen at a single point in the space, therefore they can be

used to identify distinct points in the space. This is the key that permit us

to extract from the continuous world a set of distinct places as required by

the Spatial Semantic Hierarchy.

• A new edge exits from occlusion, Figure 2.5;

• An edge disappear because occluded by another object, Figure 2.6;

• The two vertical edges are 180◦apart in the vision sensor, Figure 2.7;

• The robots sees two pairs of vertical edges 180◦apart, Figure 2.8. This
identify a single point in the space. This point is the crossing point of
the imaginary lines connecting opposites edges, as shown in the bird’s
eye view in Figure 2.9;

The movements of the edges in the frame sequence are subject to the

following constraints. These constraints will be used by the algorithm that

track the edges in the frame sequence.

• New edges exit from occlusion at a smaller1 angle than the occluding

edge;

• When an edge is occluded by another, the one that survives is the one

with the smaller azimuth in the previous frame;

• The edges closer to the robot have a bigger azimuthal speed;

• Given a certain speed of the robot there is a maximum displacement

an edge can experience from a frame to the next;

• The colours on the side of the edges change only slightly from a frame

to the next one;

1We define an angle as “smaller” than another, when it is closer to the robot’s heading
direction
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New edges exit from occlusion at a smaller angle than the occluding edge,

referring to the absolute value of the angles. It is possible to look at it as if

one edge splits in two when a new edge exits from occlusion, Figure 2.5.

When an edge is occluded by another, the one that survives is the one with

the smaller azimuth in the previous frame (always referring to the absolute

value of the azimuth). It is possible to look at it as two edges merge when

one edge disappear because occluded by the other, Figure 2.6.

The two vertical parts of a door frame are 180◦apart in the vision sensor

when the robot is passing through a door, Figure 2.7;

The robots sees two pairs of vertical edges 180◦apart, Figure 2.8. This

identify a single point in the space. This point is the crossing point of the

imaginary lines connecting opposites edges, as shown in the bird’s eye view

in Figure 2.9.

The topological events for rotations

Refer to Figure 2.10, in this sequence the robot is turning on the spot in front

of the blue box where it stopped in the sequence of Figure 2.4. As before we

draw from these pictures the considerations and the constraints that apply

to the movement of the vertical edges in the image. Focus your attention on

the following events:

• The robot turns on the spot;

• The distance of the robot from the objects does not change;

• Objects do not change their shape;

• The vertical edges of the scene appear as radial lines that move only
by changing their azimuth;

• The number of visible edges is constant: no edges appear or disappear;

The last consideration comes from the fact that there is no relative dis-

placement between the robot and the objects. Therefore, the occlusions do
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not change. In other words, the image does not change, it appears only

rotated around its centre.

The only topological consideration we can draw from the rotation se-

quence is that nothing changes and all the views the robot experiences are

related to the same physical place. Therefore, in the implementation of the

SSH all the views that differ only for a rotation around the centre of the

image must be correlated to the same place.

We can extract the following constraints for the edges:

• All the edges experience the same azimuthal shift;

• The colours on the sides of the edges change only slightly from a frame
to the next one;

Running the simulations, we discovered a flaw in the assumptions we

made. This problem exists both in translations and in rotations. All the

vertical edges in the scene are mapped into radial lines in the image, but

the converse is not always true. It is not true that all the radial lines in

the image correspond to vertical edges in the scene. There could be some

radial lines in the image that are actually radial to the vision sensor. For an

example see Figure 2.11. There, the right baseline of the corridor happens to

be radial in the first frame. In fact, if the robot is moving on a straight line,

an accidentally radial line will appear as radial only for few frames, unless

the line lies in the direction of the motion. If the robot is turning on the

spot, the accidentally radial line will not disappear until the robot moves

away from that spot. This suggests that it is not enough to match the edges

in two consecutive frames, but that we need a check over a longer period of

time: a memory, as to say. For instance, we could require a minimum life

time before confirming a candidate radial line as a vertical edge.
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2.5 Conclusion

In this chapter we gained a qualitative understanding of an omni-directional

image and how the vertical edges move in a sequence of these images. We

identified two set of topological events, one for translations and one for ro-

tations, to be used to build a distinctiveness measure. Once formalised, this

measure can be used to abduct a discrete set of places from the continuous

world. These places, and the paths connecting them, will be the elements of

the topological map of the environment.

We also identified two set of constraints for the movements of the edges.

These constraints will be crucial in the design of the matching algorithm of

the software that tracks the edges along the omni-directional frame sequence,

as we will see in the next chapter.
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Figure 2.4: (Top) Perspective view of the robot moving along a corridor. The robot is the red square with the white
sphere on top of it. (Bottom) The corresponding sequence acquired by the omni-directional camera of the robot
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(1) (2) (3)

Figure 2.5: The simulation of an edge exiting from occlusion. Note that in
the first frame a part of the two cyan boxes is occluded by the corridor walls.
In the second frame all the edges of the cyan box are visible. In the third
the cyan boxes are clearly visible.

(1) (2) (3)

Figure 2.6: The simulation of an edge going to be occluded. In the first
frame, the edge between the yellow corridor boxes and the red walls are
clearly visible. In the second frame, they are just visible. In the third frame,
they disappeared.

(1) (2) (3)

Figure 2.7: The simulation of the robot passing through a door. In the first
frame, the edges of the yellow corridor boxes are not yet at 180◦. In the
second frame, they are at 180◦. In the third, they are not longer at 180◦.
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(1) (2) (3)

Figure 2.8: The simulation of the crossing point of the imaginary lines con-
necting opposites edges. In the first and third frame, the edges of the blue
box and the corridor are not exactly 180◦ apart. In the second they are.

Figure 2.9: The bird’s eye view of the crossing point of the imaginary lines
connecting opposites edges.
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(1) (2)

(3) (4)

Figure 2.10: The simulation of a sequence acquired by the omni-directional
camera of the robot while it turns on the spot

(1) (2) (3)

Figure 2.11: The simulation showing that not all radial lines are vertical
edges. Notice how the baseline of the right yellow corridor box appears to
be radial only in the first frame and in the others frame it is not.



28 The Caboto Project



Chapter 3

The Vision System Software

In the last chapter we created simulations to gain intuition about the features

of the image and the events we could use in the map building process. In

this chapter we develop algorithms to detect these features and events. We

present the basic structure of the vision system. We introduce first the

idea on which the system is based and then give details of the implemented

algorithm.

As we see in the introduction, the vision system has to perform two tasks

necessary for the navigation of the robot: to detect and locate the objects in

the surroundings of the robot and to give information about the movements of

the robot it-self. Because the robot does not have direct access to information

on its position or on its movements, the autonomous behaviours that will

control the robot must come from the mix of these two sources of information.

For instance, the obstacle avoidance, first level for a safe navigation, is a

combination of the knowledge of where the obstacle are, with respect to the

robot, and where the robot is going.

29
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3.1 The idea

We present here the ideas that led to the creation of the vision software. The

vision software is thought to work in real time while the robot moves from

point to point. Its work can be ideally divided into two parts: to extract

the selected features from the single frame and to use the information in the

frames sequence to understand the environment. From a single frame the

robot extracts the vertical edges and from the frame sequence it understands

how the edges moves in the image. From the apparent motion of the edges we

can draw conclusions about the topology of the surroundings. For instance,

if an object occludes a second one, it must be closer to the robot than the

second one. Let see how it works. The robot takes a snapshot at a certain

location, Figure 3.1. While it moves to the next location, it processes the

image. First, it performs an edge detection to extract the edges from the pic-

ture, generating a black and white image, Figure 3.2. Second, the black and

white image, containing only the detected edges, is processed with a Hough

transform to identify the radial lines, see Figure 3.3 where the detected radial

lines are marked with a black dot. Lastly, the most delicate task is performed:

the edge matching. The robot has to recognise an edge from frame to frame.

Therefore every edge has to be matched with its corresponding edge in the

previous frame. The matching process exploit the colours in the image. The

average of the colours in small areas around the detected edge is used as a

signature of the edge. By comparing these signatures in consecutive frames

we solve the correspondence problem. Figure 3.4 shows the output image of

our program after the edge matching. The coloured dots are used to label

the edges, every edge is associated to a unique colour. The black star-like

dots beside each edge are the regions where we calculate the average of the

colours to calculate the edge signature.

The approach used has been inspired by the paper of Yagi [Yagi et al. 95]
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Nevertheless, the novel matching algorithm is designed by the author.

3.2 The algorithm

In this paragraph, we present the algorithm that tracks the edges throughout

the image sequence. This can be divided into three main parts: an edge

detector, the Hough transform and the matching algorithm. The program

we developed in this project is not real time as in the design specification.

This is because in the project we focused more in the problem-understanding

and in the accuracy of the results than in the optimisation of the software.

For this reason in the design and choice of the software the speed was not an

issue.

3.2.1 The edge detector

The edge detector used is the Canny edge detector [Canny 86]. This edge

detector is computationally intensive, but it works well and compared with

other edge detectors, like the Sobel’s one, it produces thinner lines. The

Canny edge detector does not produce a shift of the edge position with respect

to their position in the original image. There is a problem: the Canny edge

detector works with monochromaitc images and we have RGB colour images1

. To overcome this problem two approaches are possible. We can transform

the colour image into a grey level one and use this as input for the Canny

edge detector. Otherwise, we split the colour image in three images, one for

each colour channel and we apply the Canny edge detector separately to each

channel image. In the end, we combine the three resulting images by applying

the logical OR operator. In other words, each pixel reported as an edge pixel

1An RGB colour image is a colour image where each pixel is represented as a triplet of
values: one value for the amount of red in the pixel, one for the amount of green and one
for the amount of blue
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Figure 3.1: The unprocessed image
as view from the robot’s camera.

Figure 3.2: The image after the
Canny edge detection.

Figure 3.3: The edge image after
the Hough transform.

Figure 3.4: The final result showing
the edge matching.
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at least in one of the three edge detections is an edge pixel of the final

image. The two possibilities are displayed in Figure 3.5. The latter process

is computationally intensive but it is very accurate. Simulations showed that

working with the grey level image obtained from the colour image can result

in a loss of information. As you can see in Figure 3.5 working with the grey

scale image we lost the two vertical edges on the left of the image.

3.2.2 The Hough transform

Once we have extracted the edges in the image, we have to select only the

edges corresponding to the vertical edges in the scene. Therefore, we need

a process to identify the radial edge in the picture. The Hough transform

is such a process [Hough 62]. For this task a new parametrisation of the

image was found by the author which greatly simplifies the complexity of

the transform. The new parameters are the angular coordinate and the

radial coordinate of the pixels in a polar coordinate system with the origin

in the centre of the image. In such a polar coordinate system, a radial line

is described as a sequence of pixels with the same angular coordinate and

varying radial coordinate. See Figure 3.6 a). To find out where the radial

lines are in the image we apply the following algorithm: for each edge pixel

we calculate its angular coordinate, we round it down to the unit of degree

and we increment a counter corresponding to this number. When all the

edge pixels are processed, we look at the histogram of the counters values.

The counters that show a value over a certain threshold correspond to the

position of the radial edges in the image. See Figure 3.6 a). The threshold

corresponds to the minimal length (in pixels) of the radial lines that we

consider as vertical edges. The choice of the threshold to set for the minimal

length of a vertical edge must be well assessed. A threshold set too low

can detect as composing a radial line also pixels that have the same angular

coordinate but not belong to the same line or lines that occure to be radial
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Figure 3.5: The two possible processes for a Canny colour edge detection.

just for a small bit. On the other hand, a threshold set too high does not

identify some vertical edges, especially when they just appeared in the field

of view and they are like small segments in the periphery of the image.
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Figure 3.6: A the Hough transform.
(a) The black squares are enlarged pixel. Notice they all have the same
angular coordinate. (b) The histogram for the Hough transform.

3.2.3 The matching algorithm

Once we have identified the vertical edges in the pictures, we have to track

them along the frame sequence, i.e. we have to be able to recognise an edge

in different frames. To identify an edge, we use the colours on the left and

the right side of the detected edge. To extract colour information, robust to

the noise of the picture, we calculate the colour as the average colour over a

window positioned across the edge. In Figure 3.7 is presented a close up of a

processed image showing the averaging windows. Each window is composed

of two sub-windows. These are the star-like dots on the sides of each edge.

The colour of a pixel in the image is represented by a RGB triplet. The

average colour calculated over the pixels of each sub-windows is represented

by a RGB triplet, as well. Each component of the triplet is the average of

the values of the corresponding colour channel over the pixels of the sub-

windows. The windows are placed on a circumference that intersect all the

significant edges, Figure 3.8. The windows are designed to follow the edge as

it moves around in the circle. To understand how this is done, think of the

two sub-windows connected by a rod. The rod is kept always tangential to
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the ideal circle shown in red in Figure 3.8. The length of the rod is enough

to keep the sub-windows at a certain distance from the edge, this permits us

to avoid eventual border effects caused by the edge, but short enough not to

overlap with another edge detected nearby. The shape of the sub-windows

has been chosen to be approximately circular for two reasons. First, because

in this way the minimum distance between the edge and the sub-windows

is approximately constant and second because while the sub-windows moves

around with the edge, it spans always over the same pixels. The former

assures us that the sub-windows never goes too close to the edge. The latter

that we calculate the average colours around the edge always on the same

pixels.

Figure 3.7: A close up of a processed image showing the averaging windows.
They are the star-like dots around the radial edges.

At this stage, the program is able to assign to each edge its colour signa-

ture. To track the edges along the whole frame, the program tries to match

the edges in the current frame against the edges on the previous frame and

so on for the whole length of the sequence. The matching is done with the

colour signature, but this could be not enough to correctly identify an edge
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Figure 3.8: The disposition of the averaging windows in the 360◦.

in the previous frame. In fact, there could be other edges in the image that

have similar colours signatures. Using the two sets of constraints drawn in

the previous section for the edge motion, it is possible to avoid mismatches

by shrinking the area where to look for the corresponding edge. In the case of

linear motion, the first constraint is that the absolute value of the azimuthal

coordinate of the edge can only increase from one frame to the next, the sec-

ond is that this increment is bounded to a maximum step. The size of this

step depends on the maximum speed of the robot. In the case of rotation,

the displacement of the single edge cannot be bounded: we do not know

a priori what the turn will be and there is not a maximum turn the robot

can take2 . There is only a loosy bound given by the maximum rotational

velocity, but this is not such a constraint. Therefore, an edge can match any-

one of the edges in the image with a similar signature. The only constraint

we can use is that every edge has to experience the same azimuthal shift.

Therefore, we implemented a backtracking algorithm that finds a matching

for every edge checking that all edges experienced the same azimuthal shift.

2Remember the robot does not have any direct access to informations about its move-
ments



38 The Caboto Project

The backtracking is necessary to search completely the space of all possible

edge matching.

There is a problem: we have these two different sets of constraints for the

two different type of motion and the robot does not have access to any infor-

mation to decide which set should be used. To overcome this, the matching

algorithm tries to match the edges assuming the robot performed a rotation.

If this does not results in a good matching, it assume a translation and applies

the appropriate rules. A good matching is defined as a matching where

more than half of the edges present in the image are correctly identified. If

neither of the two set of rules is able to match more than half of the edges,

the match that correctly labelled more edges is returned.

We defined a good match as requiring the match of more than half of the

edges present in the image, because we cannot require that every edge in

the current frame is matched with an edge of the previous frame. In fact, if

a new edge exited from occlusion in this frame it cannot be matched with

anything. On the other hand, it is very unlikely that a wrong matching could

identify more than half of the edges.

In all the tests performed by the matching algorithm we introduced a

certain amount of tolerance. We have tolerance on the colour signature, on

the azimuthal shift and on the azimuthal increase. Let us consider them in

detail. The tolerance on the colour signature states that two colour signatures

are considered the same if the values of each colour component differs by less

than a certain threshold. The tolerance on the azimuth shift states that two

azimuthal shifts are equal if the shift angle differ less than a certain threshold.

The tolerance on the azimuthal increase allows an edge to pass this check

even if its actual azimuthal coordinate is slightly smaller than in the previous

frame. The tolerances reported have been tuned during the experiments on

simulated and real sequences in order to have a matching algorithm flexible

enough to cope with the noise but not so loose to produce mismatches.
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After the matching process is completed, the program writes in a log file

the information about the edges in the current frame: the unique label of

the edge, its azimuthal position and the values of its left and right averaging

windows. This file is useful for debugging purpose and can be used off-line for

the reconstruction of the topology of the environment. So far, only the first

two of the types of topological transition we saw in Section 2.4 are detected

on the fly. In fact, the software is able to detect the topological event if the

number of edges changes from one frame to the next.

To test the software we wrote, we performed first an experiment with a

simulated sequence of frames and then we implemented the system on the

actual robot.
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Chapter 4

The Simulated Experiment

To perform the simulated experiments, we generated a sequence of images

captured by the camera under the mirror while the robot moves in the maze.

This sequence of images were used as input for the vision system. Unfortu-

nately, in POV-Ray it is possible to create only off-line simulations. It is only

possible to generate a sequence of images, it is not possible to introduce an

interaction between the vision system software and the rendering program.

In other words, it is not possible to create an interaction between the robot

and the virtual environment.

4.1 The experimental set-up

In this simulation the robot goes through the whole maze along the pre-

planned path showed in Figure 4.1. It goes straight on until it finds the

first corner. There it turns on the spot of 90◦anti-clockwise. It moves again

straightforward until the door of the corridor. It turns again on the spot of

90◦, clockwise this time. Eventually, it goes straight up to the blue box.

This path permits us to test the edge tracking algorithm while the robot

moves in a straight line, while it turns clockwise and anti-clockwise and when

it passes from translation to rotation.

41
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= Translation

= Rotation on the spot

Figure 4.1: The path of the robot through the virtual environment.

The maze used is brightly coloured. Each box and wall in the environment

has a different colour and the colours chosen are bright and vivid. Moreover,

the colours stand out one against the other. This makes it easy for the

software to recognise the edge signatures and for the reader to locate the

robot in the maze, just from the colours present in the image.

4.2 The results

Running these experiments, we encountered some problems. Some of them

were already previewed by the experience we gained with the simulator vi-

sualisation, others were unexpected.

For instance, we discovered that the pixels belonging to a radial lines do

not actually have a unique angular coordinate. The case presented in Figure

3.6 is an ideal one. In the real case, an edges spreads over more than one

angular coordinate. See Figure 4.2 for an hypothetical example. In the image

the black squares represent the edge pixels of the picture enlarged for sake

of clarity. The spread of the pixels is caused by their finite dimension and by

the round off error we introduce in the calculation of the angular coordinate.
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Figure 4.2: The spread of the pixel
in the Hough transform.
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Figure 4.3: The histogram for the
Hough transform.

The spread depends on the ratio between the size of the single pixel and the

angular resolution we are interested in.

We solved the problem with a software trick, every time we find a peak

over the threshold in the counters histogram, we seek in its neighbourhood

the counter with the maximum value and then we pick this one as the az-

imuthal position of the vertical edge. We found that a good width for the

neighbourhood is 3◦. The drawback of this technique is that, when one edge

exits from occlusion behind a second edge, we recognise it as a vertical edge

only when the two are more than 3◦ apart. Nonetheless, this is accurate

enough for our purposes. See Figure 4.4, behind the left edges of the corridor

two new edges appear. These are not immediatly detected. As you can see,

they are spotted only in the next frame, when they are more than 3◦ apart.

The foreseen problems were essentially problems in the setting of the

different thresholds and tolerances in the edge tracking program. As we said

in Section 3.2.2, the choice of the threshold on the azimuthal counter in the

Hough transform affects what is recognised as a radial edge, and then as a

vertical one. Two problems sensitive to the choice of the threshold are the

ephemeral edges and the false edges. These cannot be eliminated just tuning
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(1) (2) (3)

Figure 4.4: A simulated example of edges exiting from occlusion and not
immediately detected. In the first frame the edges of the corridor occludes
the ones of the two lateral boxes. In the second frame, the edges of the boxes
are visible but not detected. In the fird frame, they are detected.

(1) (2) (3)

Figure 4.5: The simulation of an ephemeral edge. Notice that the edge on
the left marked with the red dot is not present in the second frame.

the threshold but their effects can be lowered.

We called ephemeral edges, those edges whose presence in the frame

sequence is not detected for some frames and after a few frames is detected

again. An example is the left edge in Figure 4.5. This happens because the

value of the edge counters are under the threshold just for few frames. The

reason can be either that the pixels of the edge spread in the neighbourhood

in such a way that none of their counter is over the threshold or that there is

a variation on the number of the edge pixels introduced by the Canny edge

detector. So far, the program is not able to handle correctly the ephemeral
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(1) (2) (3)

Figure 4.6: The simulation of a false edge. Notice that in the second frame
the right baseline of the corridor is detected as a radial line. This does not
happen neither in the previous frame or in the next.

edges. It does not realize that the new edge that appeared is actually the

same that disappeared a few frames before. This is because the matching

process uses only two frames: the current one and the previous one. This

problem suggests the need of implementing a memory that spans over more

frames causing a persistence of the edges for a certain number of frames after

they disappeared. In this way, when an ephemeral edge reappears, it can be

matched with this persistent image of the edge.

The false edges are the accidentally radial lines described at the end of

Chapter 2. The vision software erroneously detects them as radial lines. In

Figure 4.6 is presented the same sequence of Figure 2.11. The right base line

of the corridor is detected just for one frame as a new vertical edge. This

suggests the need of a confidence measure on the confirmation of an edge.

An edge should be confirmed only if it is present in a minimum number of

frames.

4.3 Conclusion

Despite these problems, the vision system software showed to be able to

correctly track the edges all along the path followed by the robot in these
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simulations. See sequence in Figure 4.7 and Figure 4.8

The problems of the ephemeral edge and of the false edges could probably

be solved off-line from the software that exploits the information on the edge

to build the topological map. In other words, the memory of the system

could be implemented at a higher level than the sensory level. Probably, it

would be easy for this program to analyse the log file of the vision system

and spot the presence of an ephemeral or false edge, easier than for the vision

system to spot them on the fly.
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Figure 4.7: (Top) The camera view of a simulated image sequence for a translation of the robot. (Bottom) The
tracking of the edges in this sequence.
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Figure 4.8: (Top) The camera view of a simulated image sequence for a rotation of the robot. (Bottom) The tracking
of the edges in this sequence.



Chapter 5

The Real Experiment

The final test for our program was to work with a real robot in a real environ-

ment. The robot is Lisa, the goal-keeper of the Azzurra Robot Team (ART).

ART is the Italian national team for the Robocup World Championship, the

robot football competition. The environment chosen for the experiment is

the robot football playground at the Intelligent Autonomous Systems Lab-

oratory at the University of Padova. In this chapter we will describe the

robot itself and the environment in which we carried out our tests. We will

describe the problems encountered working with a real robot and how we

solved them.

5.1 The body of the Robot

Our robot has the same hardware of Lisa, but its task and its software are

totally different, so it deserves the different name: Caboto.

5.1.1 The chassis

Caboto has a custom built chassis. It is a black box of approximately 50 cm

x 40 cm x 40 cm. It has a steel frame. The frame structure is closed by tin

49
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sheets. There are two driven ribbon wheels and two small spheres under the

base boundary to balance the robot. Around the chassis there is a kicker, a

tool of its goalie life. On the top, there is the omni-directional vision system.

Figure 5.1: The chassis and the in-
side of Caboto.

Figure 5.2: The Omni-directional
Vision System of Caboto.

5.1.2 The Driving System

The driving system is that of a commercial Pioneer 2-AT. The two ribbon

wheels are driven independently by two motors of 15W each. The motors

are fixed to the steel frame. The maximum speed of the robot is 1.6 m/s and

it can turn on the spot.

5.1.3 The Computational Power on Board

Caboto, as Lisa, is totally autonomous. It has a complete computer inside

and it can carry its batteries. The communication link, with other robots

and computers, is assured by a wireless network link realized with a Lucent

Wavelan PCMCIA card. This allows us to monitor the robot behaviour

remotely. Table 5.1 presents a detailed description of the Computational

Power of the robot.
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CPU AMD K6 266MHz

Mother Board Asus TX97E

RAM 64 Mb DIMM

HD 4Gb

Frame Grabber BT848 Intel

Graphic Card 2Mb RAM

Table 5.1: The Computational Power on board of Caboto

This hardware runs the Linux operative system. Kernel version 2.2.15;

distribution Mandrake 7.0.

5.2 The Vision System Hardware

The vision system hardware of Caboto is the same as for Lisa. It is composed

of three elements: the mirror that collects the light from all directions, the

CCD camera that converts the light into an analogue electronic signal and

the frame grabber that converts the analogue signal into a digital signal.

5.2.1 The mirror

The mirror is the element that characterises this vision system as an omni-

directional vision system. The mirror is mounted vertically over the camera

with its geometrical axis coaxial at the optical axis of the camera. It is

supported by a transparent Perspex cylinder. The height of the cylinder is

approximately 20 cm. The mirror has a hybrid shape with respect to the ones

reviewed in Section A.3. It is composed of a cone that intersect a sphere. The

dimension of the cone, the radius of the sphere and the position of the point

of intersection are calculated such that the cone and the sphere are tangential

in the intersection point. If they were not tangential, a discontinuity would
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be present in the image. For convenience of the reader in Figure 5.3 we

present again the sketch of the mirror profile with its dimensions shown in

Figure 2.2. Figure 5.4 shows the distances of the mirror from the camera and

the floor.

18 cm

8 cm 3.
5 

cm

Figure 5.3: The Mirror Profile.
35
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m
Figure 5.4: The Vision System.

This mirror has been realized from a sheet of steel pressed between two

dies. This kind of working is not very accurate, it is cheap but not accurate.

That is why the mirror presents visible irregularities. For our task this is

not such a problem, we are more concentrated on the topological aspect of

the environment, than on the metric aspect. Therefore, the sensor is reliable

enough, even if not all points are mapped in the correct position because of

these irregularities.

5.2.2 The camera

The camera used is a standard perspective camera. It is a SONY XC-999

with a 6mm lens. It is a high resolution colour camera. It uses the Hyper

Had technology to reduce the smear effect down to an imperceptible level.
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The real sensor is a CCD with horizontal resolution of 470 TV lines 752 x

582 in the PAL format. The dimensions are 22x22x120mm and it weights

approximately 200 g. This is an analogue camera, therefore it needs a frame

grabber to convert the analogue signal into a digital signal.

5.2.3 The frame grabber

The duty of the frame grabber is to convert the analogue signal that exit from

the camera into a digital signal and to store it in the computer memory. The

frame grabber is an Intel BT848. It is controlled by the Video4Linux driver.

5.3 The experiment set-up

As we said in the introduction, the environment chosen for carrying out the

experiments was the robot football playground at the Intelligent Autonomous

Systems Laboratory at the University of Padova. The environment is very

simple and with few standard colours present in it. It is built following

the specifications of the Robocup1 . The room has white walls and a floor

covering of green carpet. In this room we built a simple corridor with a turn.

In the corridor were two boxes to reproduce a door-like view. See Picture

5.5. All the vertical surfaces were painted with uniform colours, exept the

two boxes. This was done to avoid textures that could fool the edge detector.

During the experiments, also the boxes where covered with a uniform colour

fabric, because of the noise they introduced. Like for the virtual environment,

the colours chosen for the surfaces are vivid and they stand out one against

the other to facilitate the recognition of the edge signatures.

As we said before, the vision software is slow. It does not permit to

work in real time in the experiments with the real robot. It takes about

1For a detailed description see the URL:
smart.informatik.uni-ulm.de/ROBOCUP/rules00/FIFA-laws00.html
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Figure 5.5: The experimental set-up. This is the corridor where the experi-
ments were conducted. The two box represent a door. On the right, behind
the wood box there is the turn of the corridor.

two seconds to process every single image. We had no time to rewrite the

software in order to optimise the code for the real time, therefore instead

of speeding-up the software we slowed down the robot. We made the robot

moving step by step. The single step is about 15 cm long. After each step

the robot stops, it takes a snapshot, it processes the image and when he has

finished, it takes another step.

When we described the omni-directional vision system we said that the

optical axis of the camera and the geometrical axis of the mirror are aligned.

On the real robot this calibration is not an issue. It can be done roughly

by hand and then we can find in the image where the tip of the mirror is

mapped. We need this information, because this is the point from where
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all the radial edges sprout and where we have to centre the polar reference

system. The performance of the Hough transform depends on the accuracy of

this estimation. In Figure 5.6 is represented how we found the real centre of

the image. We prolonged the radial edges present in the picture, the crossing

point of all the edges is the image centre. This estimations is simple and

accurate enough for our purposes.

Figure 5.6: The centre of a real image. In red the prolongations of the vertical
edges to find out where is mapped the vertex of the mirror.

5.4 The results

All the thresholds set in the previous chapter had to be reset when working

with the real images. The images are much noisier now. In Figure 5.7 an

example of the image process stages for a real image. The noise in the picture

propagates down to all stages of the image process. The edge detection

result is noisy, Figure 5.7 a). Several noise edgelets are detected, some edges
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(a) The unprocessed image as view
from the robot’s camera.

(b) The image after the Canny
edge detection.

(c) The edge image after the
Hough transform.

(d) The final result showing the
edge matching.

Figure 5.7: An example of the image process stages for a real image.
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are broken and noise spots are present. This makes it more difficult to

reliably detect the radial lines and the radial lines only. In fact, in the Hough

transform the pixels of the noise sums over the edge pixels and sometimes

the noisy pixels can trigger a false detection of a radial line. An example is

shown in Figure 5.8. The arrow shows a marker of a detected edge but the

edge does not exists in the picture. It is just the effect of several noisy pixels

accidentally having the same angular coordinate. This cannot be avoided

setting the threshold higher, because we would have to set it so high to

loose significant edges. These false edges do not last for more than two

frames and then they could be easily filtered out by the software in charge

of reconstructing the topology of the environment, if this is fitted with a

temporal memory.

The problem of the ephemeral edges exists also in the real image se-

quences. The noise of the images worsens the problem compared to the

simulated images. It happens more often, that an edge disappear and then

reappear after some frame. Again this could be solved by introducing a

temporal memory of the edges.

The undermining problem in the real image is the noise introduced by the

CCD sensor of the camera. This noise affects mostly the colour of the pixels.

The noise is so high that even if the robot is steady in the same position, the

edge signatures of the same edge in two consecutive frame are different. This

problem has been solved with two changes in the vision system software: the

tolerance within two colours are considered the same has been increased and

the windows over which the mean colour is calculated have been doubled.

See Figure 5.9. Doubling the size of the averaging window, we use more

pixels to calculate the mean colour and then the edge signature values are

more stable.

When the robot moves, the colours around the edges change slightly be-

cause of different shadows and different reflections on the surfaces of the
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Figure 5.8: An example of false edge produced by the noise in the image.
The arrow points the wrong marker.

Figure 5.9: The averaging windows used in the real experiments. Notice that
the averaging windows are doubled.
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objects. To cope with this change we had to relax further the colour toler-

ance. Remember that the colour of every pixels of the image and the edge

signature are represented as a RGB triplet. The new criterion we used is:

two edge signatures are considered the same when at least two elements of

their triplets are equal within a certain interval. This is enough to cope with

the noise present when the robot moves in straight lines, but does not work

when the robot turns.

Analysing the images taken from the robot when it rotates, we discovered

that the robot failed to recognise the edges because the colours on the sides

of the edges in different images are actually different. Consider that the view

of the scene does not change and even the shadows and the reflections on

the objects’ surfaces are the same, this should not happen, and the image

should be exactly the same, only rotated by the angle the robot rotated.

If the explanation of this change of the colours is not in the scene, it must

be in the vision system. The software of the vision system cannot be held

responsible for that: it works fine in the simulation. The only candidate is

the hardware of the vision system. Remember the camera sees the world

through the Perspex cylinder that support the mirror. The explanation of

the change of colours can be found in the changes of the light reflection

on the Perspex cylinder. These reflections change because the robot’s body

does not have a cylindrical symmetry. As you can see in Figure 1.3 not only

the body is rectangular but also the cover on the top of the mirror has a

rectangular shape. The purpose of this cover is to avoid that the camera is

blinded by the lights on the ceiling, but it also shadows the Perspex cylinder

preventing most of the reflection on it. Because the cover is rectangular, it

shields better some region of the Perspex cylinder than others. When the

robot rotates it sees the same points in the world through regions of the

cylinders with different shadowing from the cover and so different reflections

occur at the cylinder surface. The final effect is that the colours appear to
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change. This effect is made even worst by the reflections occurring on the

top cover of the robot body. See Figure 5.10 for an example in which these

reflections are particularly strong. Notice the bright spot that seems to move

on the left part of the robots body.

The explanation provided for the failure of the tracking algorithm in the

rotations is consistent with the fact that this effect does not occur when the

robot moves along a straight line. In fact, in this case the change in the

reflection is not so sharp. See Picture 5.11 and notice how, in the case of a

translation, the area shielded from the cover does not change much while in

the case of rotation the shielding change totally.

5.5 The conclusion

The tracking of the edges on the image sequence acquired by the real robot

works fine when the robot translates. It does not work when the robot

rotates on the spot. Because of this failure it was not possible to build an

autonomous behaviour for the robot. Remember that the only source of

information for the robot is the vision system. If the vision system is not

able to match the edges after a rotation, the robot does not know how much

it has turned. This causes the impossibility to take a controlled change of

direction or to check the heading of the robot. The check of the heading

direction is necessary in an autonomous behaviour, because when the robot

starts moving, it jerks and twists. Because of this, after some steps, the

heading direction is changed. Therefore, without the edge tracking process

on rotation, the robot cannot recover from cumulative errors in the heading

direction and is not possible to build an autonomous behaviour.
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(1) (2)

(3) (4)

Figure 5.10: A close up of a sequence showing an example of strong reflection
on the body of the robot. Notice the bright spot on the left of the robot’s
body that appears to move from one frame to the next.
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Light Source

Robot

Translation

Robot

Light Source

Rotation

Figure 5.11: Difference in shielding between the translation and the rotation
of the robot.
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Figure 5.12: (Top) The camera view of a real image sequence for a translation of the robot. (Bottom) The tracking
of the edges in this sequence.
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Figure 5.13: (Top) The camera view of a simulated image sequence for a rotation of the robot. (Bottom) The
tracking of the edges in this sequence.



Chapter 6

Conclusions

This project achieved the first step in the implementation of the Spatial

Semantic Hierarchy: we realized the sensory level with an omni-directional

vision system. This is the first step towards the construction of an agent able

to draw a topological map of the environment it travels through. Experiments

were performed both in simulation and with a real robot. In this project, we

focused on tracking of edges and no attempts were made to infer topological

information from the data collected.

In Chapter 2, we showed that an omni-directional vision system is a good

sensor for the SSH. We pointed out which of the features present in a omni-

directional image can be used to detect the transitions of state needed by the

control level of the SSH. We showed the existence of a strict link between

the views of the SSH and the image taken by an omni-directional viewer.

In Chapter 3, we built a vision system able to extract these features from

the images. In Chapter 4 we showed that the software runs properly in a

virtual environment and finally, in Chapter 5, we tested the same software on

a real robot discovering that what worked in the simulations does not work

in the real world. This confirms what Ronald Arkin said, which might seem

self-evident but is often forgotten:
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To conduct robotics research, robots are needed

—Ronald Arkin ’Behaviour-Based Robotics’

Unfortunately, we had very little time to work on the real robot, as this

was available only at the University of Padua and, by the time the software

was ready, the robot had to be taken apart to be brought to the Robocup

2000 Competition in Australia.

6.1 Future work

There is still much work to do on this project. The vision system should be

improved: the sensory level should be made less sensitive to the noise, be it

colour noise or noise in the edge detection.

It has to be investigated how to solve The problem of the ephemeral edges

and of the false edges has to be investigated further to find an appropriate so-

lution. We have suggested two solutions. The first is to have a vision system

software with a degree of temporal memory, able to filter out a detected edge

that does not correspond to a vertical edge in the scene. The second is to

leave this filtering process to the software which reconstructs the topology of

the environment from the raw data coming from the vision system software.

It is not self-evident which of the two approaches would be best. The first

would further increase the complexity of the vision software introducing a

basic understanding of the environment not provided for the sensory system

by the SSH. The second would allow noisy data to reach the topological level

with the possibility of misinterpretations.

The problem of how to reliably detect the colour of the edges has not

been fully solved. A solution might be to find a better metric to define the

similarity of two colours within the RGB colour space. A better solution is

probably to change the colour space. In fact, we discovered that the RGB

space is not perceptually uniform. As such, the proximity of colours in RGB
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colour space does not indicate colour similarity. It would probably be a good

idea to transfer the image to the HSI colour space. In this space, colour pixels

are defined as triplets representing hue (H), saturation (S) and intensity (I).

This colour space has the advantage of being approximately perceptually

uniform. Therefore, colour similarity implies proximity in this colour space

[Smith 97].

Considering the great variance in the edge signatures, these would be

better calculated over a wider surface than the averaging windows we used.

It would be nice to use some colour segmentation technique for retrieving the

whole surface between two consecutive vertical edges. This would have the

double beneficial effect of maximising the surface over which to calculate the

average colour and of assuring that we are sensing only pixels of the correct

surface.

After the sensory level has been strengthened, all the other levels of the

SSH have to be implemented. The distinctiveness measure needed by the

control level has to be formalised profiting from the hints given in Chapter

2. The control laws have to be formulated and implemented. Finally, the

topological level has to be built.

Finally, a real time algorithm should be produced at least for the vision

system. In this way the robot could quickly collect the data and these could

be analysed off-line to reconstruct the topology of the environment. The

actual code is not real time, but there is space for huge improvements, a

factor of twenty is not unrealistic.
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Appendix A

The different realizations of

omni-directional vision

There are three basic classes of sensors that can see in all directions. They

take advantage of different techniques:

• use of multiple images;

• use of special lens;

• use of convex mirrors;

A.1 Use of Multiple Images

This technique produces panoramic images by stitching multiple images to-

gether. The images can be taken in a sequence by panning a camera around

the vertical axis passing through the focal point of the camera. This ap-

proach requires very fine calibration and synchronisation of the movements

of the camera, but it provides high definition panoramic images. If the cam-

era does not rotate about its vertical axis but around a vertical axis at a

certain distance from its focal point, it is possible to obtain rough range
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panoramic images by matching the views of an object from different posi-

tions [Browitt 97] [Ishiguro et al. 92]. See Picture A.1 . This technique is

very slow. Some researchers use multiple cameras looking in different direc-

tions that shot at the same time. They merge the pictures from the different

cameras to produce a panoramic cylinder [Ishiguro et al. 92].

Figure A.1: The panning camera (left) and the range technique
(right).(Courtesy of Prof. Y. Yagi at Osaka University)

A.2 Use of Special Lens

Cameras with the use of fish-eye lens can acquire almost a hemispherical

view. The drawback is that the resolution of the images is good at the centre

but very low at the periphery. This means that the resolution is very good

looking at the ceiling but poor at the horizon. This is not good for robot

navigation, where the objects to locate lie on the floor and they appear at

the horizon or below. Greguss proposed an optical lens called Panoramic

Annular Lens (PAL) composed of three reflective and two refractive planes

[Greguss 96]. See Figure A.2 and Figure A.3. This does not need alignment

and can be easily miniaturised.
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Figure A.2: The optical relation of PAL. (Courtesy of Prof. Y. Yagi at Osaka
University)

Figure A.3: A prototype of PAL (left) and an example input image (right).
(Courtesy of Prof. Y. Yagi at Osaka University)

A.3 Use of Convex Mirror

This is the technique most widely used in robotics to obtain omni-directional

images. The sensor is composed by a perspective camera pointed upward to

the vertex of a convex mirror. The optical axis of the camera and the geo-

metrical axis of the mirror are aligned. This system is usually fixed on top

of a mobile robot like in Figure 1.3. Different shapes of the mirror have
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been used. The most common are conical mirrors, hemispherical mirrors,

hyperboloidal mirrors and paraboloidal mirrors; see Figure A.4. Every shape

presents different properties that one has to take in account when choosing

the mirror for a particular task. For instance, if the task requires the recon-

struction of distortion free prospective images, it is mandatory to use a mirror

with a sole focal point1 [Svoboda et al. 98]. This assures the existence of a

geometrical transformation from the omni-directional image to a perspective

image. Let’s consider more in detail the properties of the different mirrors:

• conical mirrors have good resolution in the peripheral, but they pro-

duce a singularity at the cone tip. They do not have a focal point.

• hemispherical mirrors they have good resolution in the centre area

but poor resolution at the peripheral region. They do not have a focal

point. On the other hand, these mirrors present the widest view angle

among convex mirrors.

• hyperboloidal mirrors have good resolution both in the centre and in

periphery. The view angle is wide almost as that of the hemispherical

mirror, but the most important advantage is the presence of a focal

point. This permits the reconstruction of distortion free images. As it

is depicted in Figure A.5, from the image of a hyperboloidal mirror it

is possible to reconstruct a panoramic cylinder or a perspective images

at the desired angles.

• paraboloidal mirrors have the same resolution as hyperboloidal mir-

rors even if with smaller angle of view. They present a focal point when

used with a orthographic projection camera.

For a more detailed survey on the different types of omni-directional sen-

sor, see the survey paper of Yagi [Yagi 99].

1The focal point is the point where the prolongations of the reflected rays intersect.
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Figure A.4: The different mirror profiles. (Courtesy of Prof. Y. Yagi at
Osaka University)

These typologies can be mixed to exploit the benefits of the different

classes. For instance, Bonarini used a mirror composed by a sphere intersect-

ing a reverse cone in order to avoid the excessive distortion introduced by the

cone tip and have the good resolution of the hemispherical mirror in the cen-

tre of the image [Bonarini et al. 99]. Another example is the mirror of March-

ese, he proposed a multi-part mirror for the specific task of the Robocup

competitions (www.robocup.org). In this mirror, each part is devoted to the
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Figure A.5: Hyperboloidal projection and examples of transformed images.
(Courtesy of Prof. Y. Yagi at Osaka University)

observation of a different area of the play ground [Marchese & Sorrenti ].

As we see, the mirrors can be designed with arbitrary shape tailored

for the application. To produce these mirrors out of glass would be very

expensive and for some particular shape would be impossible. Fortunately,

they can be realized from a cylinder of stainless steel shaped with a numeric

control lathe. The surface of these mirror is smooth enough and reflective

enough for the purposes of omni-directional vision.


