A Computational Framework for Distributed
Robotic Systems Based on XML

E. Mumolo', M. Mottica®, E. Menegatti®, E. Pagello®

! DEEI, Universita’ degli Studi di Trieste,
34127 Trieste, Italy, email: mumolo@univ.trieste.it
2 AI.B.S.Lab S.r.l., Via del Follatoio 12, Trieste, Italy
3 DEI, Universita’ degli Studi di Padova, Italy

Abstract

In this paper we present a distributed computing system designed to provide
computational resources to a mobile robot. The described system offers simple
programming and debugging, easy modification of the data types coming from
sensors, high computation power obtained by distributing the computation on
remote nodes, portability and low overhead, making it well suited for imple-
menting Al applications in the robotic domain. We developed an XML-based
language, called XML-VM, that enables to transfer among remote machines not
only the data to be processed, but also the algorithms by which they have to be
processed. All the code implementing the system is written in ANSI C++ for
efficiency and portability reasons.

We applied the system to the problem of image based localisation of a mobile
robot using the properties of the Fourier transform of omnidirectional images.
The image based localisation task is demanding in terms of computational power
and memory requirements; therefore it is well suited to the described system. Ex-
perimental results for off-line robot localisation are reported in terms of absolute
time and relative speed-up, confirming the high performances of the system.

Keywords: Mobile robot, localisation, omnidirectional images, XML, dis-
tributed computing, virtual machine.

1 Introduction

Autonomous behaviors are highly desirable in mobile robotic systems. To achieve
this goal, sophisticated algorithms and many different sensors are needed. It must
be considered, however, that processing of sensor data, for example processing of
images, requires a high computational power. A powerful CPU means high power
consumption, but for mobile robots the only available power is given by batteries
which must also supply the motors and actuators. To overcome this problem we
use the computational power existing in the environment i.e. desktop computers,
powerful servers , etc. This computational power comes for free exploiting the
unused CPU cycles of the heterogeneous computers available in the LAN where
the robot is also connected. [1].

Besides the computational needs, robot systems have also special demands
related to the complex interactions they have in real environments, and the
complex sensors and actuators that robots use. This means that the robot has
to handle different types of data and should be able to process these data with
real-time algorithms. XML is becoming a standard method for the transmission
of data through Internet as it is able to easily put structured data in an ACSII
file. XML is also able to cope with different operating systems and hardware
platforms.

Besides the task scheduling, the real-time operation is also greatly influenced
by the language used to realize the distributed system. For instance, in C++
the garbage collection - which can introduce random variations in the computa-
tional time - can be controlled, as opposed to languages with automatic garbage
collection like Java. Moreover, standard C++ cope with software portability.

The computing platforms used in the experiments may be heterogeneous,
so the first problem we faced was the development of a virtual machine to as-
sure portability among the various platforms. The first solution could have been
to use the popular Java virtual machine or to use Corba interfaces. However,
Java was rejected for the reason explained above and Corba interfaces are still
quite complex both from an implementation and an execution point of view.
We addressed the problem of portability using XML to describe both data and
algorithms.

This paper is structured as follows. Section 1.2 describes the architecture of
the system, while in Section 1.3 some issues related to distributed programming
issues are reported. In Section 1.4 we summarize the XML-VM language, while
in Section 1.5 we describe some information on the parsing and interpretation
of a XML-VM program. In Section 1.6 deals with the image localization task. In
Section 1.7 some experimental results are described while Section 1.8 deals with
final remarks and conclusions. In the Appendix it is summarized an XML-VL
code for image localization.

2 Design

The system used in this work is sketched in Fig.1. The mobile robot in the picture
moves in a laboratory environment. Among other sensors, an omnidirectional
camera for image acquisition and a microphone array for acoustic localization
are available.

Consider the robot localization task. It is performed by matching the om-
nidirectional image taken in the current position with some reference images
acquired in a previous phase. The robot then starts the matching phase by send-
ing to the gateway the unknown image. Since an image takes about 48KB, this
operation requires about 38 ms. The matching is then distributed on the PCs
connected in the local network.

The gateway computer is called Root node in Fig.1. Every other computer
is a computational node and it is configured as root or leaf in a logical tree
structure, as in Fig.1. Each node has a reference to its higher level node and a

=

Fig. 1. System architecture

reference to a local table where a number of IP addresses is stored. The node
configuration is defined in a configuration file read by every computational node
during its initialization. During this phase, if a node is a leaf, it immediately
notify itself to its higher level node, which stores the IP address of the leaf into
its local table. If a node must distribute a computation task, it seeks its local
table to get the IP address of the first available leaf. If the same node must
distribute another computation task, then a second IP is identified in the table
and so forth. If the local table of a node is empty, the node sends a request to its
higher level node which returns the address of a node it takes from its local table.
The address is temporarily stored in the local table of the node which made the
request. When the remote task terminates, it is removed from the local table
and becomes available in the local table of the higher level node. This recursive
mechanism can proceed up to the gateway.

3 Distributed programming issues

Generally speaking, there are two main approaches for building a distributed
programming system based on Java virtual machines [10]. One is to give the
programmer an unique environment in which the threads are distributed on
the different nodes by the operating system. This solution is quite complex to

develop, since many problems arise concerning both implementation and per-
formance. Projects in this area include the IBM cluster VM for Java, the Kaffe
virtual machine and the JDSM [9].

Other solutions are based on the development of communication mechanisms
such as, for example, message passing. A typical approach is RMI (Remote
Method Invocation). Other approaches are based on extensions of Java with
parallel programming linguistic constructs. An example of the latter approach
is JavaParty, developed at the University of Karlsruhe [5].

Orocos [11] focuses on object oriented components and patterns. CORBA
inspired the distributed communications and is used in some work. Miro [12]
is an object oriented layered client/server robot middleware system based on
ACE [13] and the associated realtime CORBA ORB, TAO. MCA2 [14] focuses
on reusable modules all with the same standardized interface.

Our solution, instead, is not based on Java nor Corba. Using XML as a
framework to describe both data and algorithms we can provide a common base
which different platforms can manage in different ways. One way may be to use
transformation sheets, and another way may be to write an interpret using an
appropriate programming language.

4 The XML Virtual Machine (XML-VM)

XML is a meta-markup language which allows to define a set of semantic tags
which aims at describing a complex data structure by dividing it into sections.
New tags can be created and defined by means of a Document Type Definition
(DTD) document, which is the language vocabulary and syntax definition. The
DTD allows to examine if an XML document is well-formed and to validate it.
Since the structure of XML documents is described with a DTD, it is possible
to translate the documents in different formats.

We implemented the communication between different machines using XML-
RPC. A node acting as a client, which makes the RPC call, sends a request to
a node acting as a server, including in the call the parameters needed for its
execution. The server receives the request, identifies the procedure, execute it
with the reported arguments, collects the response from the remote procedure
and sends back to the client the answer. XML-RPC requests and responses are
ASCII messages, transmitted through http.

The architecture of XML-VM is reported in fig.2

Data in XML-VM is stored in three sets of memory, which simulate a virtual
disk, a local registry and a static registry, respectively. Control of execution flow
is performed by means of IF-THEN-ELSE, WHILE and FOR. constructs. Matrix
and vector management tags include:

<LOADIMAGE filename target node/> loads an image into the virtual disk.

<COMPAREIMAGE first second target/> compares two images

<COMPAREARCHIVE archive test distance target/> compares the test image with
all the images contained in an archive, yielding the name and the value of
the minimum distance.

Viiud Skaiic Daia

Disk Registers Variables Movemenis
Disibuled | | Malixand

Fow Tme Vecior

Fig. 2. Architecture of XML-VM

The distributed computing management tags implement the fork/join mech-
anism. The linguistic framework Fork/Join has been introduced by M.Conway
[3] and J.Dennis [4]. Starting from the initial definition, many programming lan-
guages used the Fork/Join concept in several ways. The Fork/Join operations
has been largely studied from a queueing point of view [2, ?,?]. Fork generates
a concurrent thread of execution, while the Join waits for termination; in this
way it is possible to build concurrent processes. In our system, the fork tag has
the following syntax:

<FORK id clone results>
...data and algorithms to be executed in
the remote node, expressed in XML-VM...
</FORK>

and corresponds to the following actions: first, an available node is sought in the
local table, then the code and data are sent to the remote node with XML-RPC.
The Join tag has the following syntax: <JOIN id/> and the termination corre-
sponds to the following operation: waits for the termination of the remote node
and returns the results to the calling environment with a XML-RPC response.

5 Parsing and interpretation

A SAX parser treats an XML document in a linear fashion, working through
the document from the beginning to end. In any case, the available SAX parsers
deal with data streams because usually XML describes data structures which are
parsed as they are downloaded from the net. In the case of the system described
in this paper, however, a large part of the the XML documents are files already
stored in the system. For this reason, a specific DOM parser has been developed
in C++; the parser can process only the tags designed in XML-VM. Moreover,
the parser is highly efficient from a computational point of view. From the XML
document, the parser generates the execution tree which represents in a tree
structure the sequence of instructions which compute the algorithm. Consider
for example the algorithm reported in Fig.3 in XML-VM code.The tags and their

attributes are examined by the parser. The tags are associated to a numeric ID
to accelerate the execution phase, and the tag’s attributes are stored in a hash
table for a fast access.

<?xml version=1.0"7>

<xmivm> ‘ Main ‘
<start>
<for begin=0 end=4 step=1>
<print text=hello world/> For
</for>

</start>
</xmivm> Print
rn

(a) (b)

Fig. 3. (a) An algorithm expressed in XML-VM. (b)Execution tree of the algorithm.

From the code reported in Fig.3a the execution tree reported in Fig.?7b is
generated. The execution tree is finally analyzed by the interpreter, which calls
the appropriate method to execute the tag. Some tags are associated to sub-tree
of commands; for example the ‘FOR’ tag is associated to a list of commands to
execute at each iteration and the ‘IF’ tag is associated to two lists of commands,
one for each logical value of the condition.

At this point, we can summarize the tasks performed by a remote node.

— wait for an XML-RPC request

— get the XML-VM code from the request

— parse the XML-VM code and generate the execution tree

— start executing by visiting the execution tree and calling the method asso-
ciated with the identifier assigned to the tag

— make a XML-RPC response

— wait for a new request

6 Omnidirectional image based localisation

The problem of robot localisation is one of the fundamental problems for au-
tonomous mobile robots. In the literature there are several approaches to mobile
robot localisation, in this work we used the image-based localisation approach.
In the image-based localisation approach, the robot is driven around to collect a
set of images of the environment, called the reference images at some distin-
guished positions, called the reference positions. The images are stored in the
visual memory of the robot. In the navigation phase, the robot infers its location
by comparing the current view of the environment, i.e. the input image, with
the reference images stored in its memory. The reference image that is most

similar to the input image will give a topological localisation of the robot. In
fact, the robot is closer to that reference position than to any other reference
position.

If the environment is large, the number of reference image that the robot
needs to store and to compare with the input image rapidly grows. We choose
an omnidirectional camera to reduce the number of images necessary to repre-
sent the environment. Moreover, we do not store the omnidirectional images of
the reference images, but the much more compact Fourier signatures (i.e. the
Fourier transformations of each line of the images) associated to every reference
image. As demonstrated in [15], the Fourier signature is a complete and compact
representation of the omnidirectional image that, compared to other data reduc-
tion technique, has the great advantage of being invariant to image rotations, so
the orientation of the robot does not need to be taken in consideration in the
matching phase.

As described in previous works [17] [18], we developed an image-based Monte-
Carlo localisation system in which the likelihood of the robot position is given
by the dissimilarity between the input image and the reference images. The
dissimilarity between the input image O; and the reference image O; is calculated
as the L1 norm

L—1M-1
D(0;,05) = > |Fulk) = Fu(k)| (1)

t=0 k=0
where Fj; is the module of the Fourier transform of the t-th row of image O;
and k represent frequency. However, although the amount of data is reduced, the
computations required by (1) can be very high if the number of reference images
is high. Since the system presented in this paper offers a considerable computa-

tion power at a low price, we used instead the following distance measure:

L-1
D(0s,05) =Y (Fir = Ej)W; ' (Fy — Fju)" (2)

t=0
where & = [Fz (O)PWZ (1) .. ~Fit(M_ 1)] and & = [FJ (O)F] (1) .. .th(M -
1)] represent respectively the unknown and reference images in the frequency do-
main. Moreover, in eq.(2), W™ is a positive-definite matrix that allows different
weighting for individual reference images depending on their utility in identifiy-
ing the correct location. The common Euclidean distance sets W (and W~1) to
be the identity matrix I, whereas the general Mahalanobis distance sets W to be
the autocovariance matrix corresponding to the rows of the reference images. We
computed the autocovariance matrix associated to each reference image using a

set of images generated by interpolation between couples of reference images.

7 Experimental results

The experimental environment were formed by a mobile robot and a number of
computers connected by TCP /IP. The robot is connected through a wireless link

operating at 10Mbps to a gateway which gives access to a local network oper-
ating at 100 Mbps. In the local network, three Athlon based desktop computers
running at 2 GHz and three Pentium 4 based desktop computers running at 2.4
GHz are connected. The Athlon computers run the Gentoo operating system and
the Pentium computers run Red Hat Linux. During the experiments, the desk-
top computers were employed in text editing and word processing tasks. Finally,
the mobile robot is equipped with a Pentium MMX running at 200 MHz.

The goal of the experimental analysis is to study the performance of the
distributed computing system presented in this paper. In general, the efficiency
of a distributed application is related to various factors, including: the network
speed, the load of the remote nodes, the homogeneity of the used computers, the
degree of parallelism of the algorithm, the protocol used for method distribution.

The computing time depends on the number of machines used in parallel for
the elaboration of the algorithm. What it is expected is an hyperbolic behavior,
since the T(n) function should be of the type 1/n, where n is the number of
machines.

The experimental measurements are related to the comparison of the un-
known image with 512 reference images using the Mahalanobis distance. Con-
sidering only the signal processing computational complexity, this means slightly
more than 12 million of floating point multiply and add operations. Of course the
numerical operations are only a part of the whole operations. The infrastructure
introduce an overhead in terms of parsing, interpretation and communication of
data and code which can be evaluated only with experimental measurements.

The algorithm equally distribute the distance computation among the avail-
able node: 512 comparison per node if the stystem uses one node, 256 compar-
isons per node using 2 nodes and 128 comparisons per node if four nodes are
avaible for distribution.

To this goal, three types of experiments have been made. The first is related
to the computational time obtained with a similar system but realized completely
in Java as described in [?]. This experiment aims at measuring computational
efficiency and the overhead of the system. The second test have been made with
a similar system architecture but realized in RMI, which is a popular method
for making distributed computations in Java. RMI uses serialization of data and
code. The third experiments are performed with the system described in this
paper and realized completely in C++.

In Fig.1.4a the absolute computation times required by the system described
in [16] are reported for a number of remote nodes from 1 to 4. As shown in
Fig.1.4a the time required by the XML-VM virtual machine written in Java with
1 node is 10.44 seconds, and drops to 4.6 seconds with 4 remote nodes, which
means a speed-up of more than two times. It is worth noting that the theoretical
speed-up for four remote nodes is four. In Fig.1.4a with triangular bullets the
performances obtained with RMI are shown. Using RMI, the absolute time is
quite lower, since it goes from about 5 seconds for one node to about 4 seconds
for 4 nodes. It is important to note that RMI uses the new I/O class, which is
available in the Java Enterprise 1.4 package since November 2003. However, the

speed-up of RMI is much lower than that obtained with the previous structure.
Finally, Fig.1.5a and 1.5b show the result obtained with the system described in
this paper. In Fig.1.5a we can see that the absolute time with one node is much
lower than all the other measurements made earlier, being about 1.7 seconds.
Moreover, the system presents important decrements for increasing number of
nodes. With four nodes, in fact, the absolute time is about 650 milliseconds.

computation time (5]

(a)Results in Java (squares) and RMI
(triangles)

25
number of nodes

Fig.4. (a) . (b)

Computation time [s]

(b)Speed-up in Java (squares) and RMI

(triangles)

Fig. 5. (a)Result with C++ (b) Speed-up with C++. The continuous line in the diag-

onal depicts theoretical performances

8 Conclusions and Acknowledgements

In this paper we dealt with the problem of designing and developing an efficient
architecture based on XML for realizing a distributed image-based localization
for mobile robots. By means of XML we realized an efficient framework for dis-
tributed programming; the distribution of data and algorithms is done by means
of HTTP protocols and the code execution is performed with an interpreter writ-
ten in C++.

From the experimental evaluation, it has been shown that the system de-
scribed in this paper is able to distribute the comparison of an unknown image
with 520 reference images using a Mahalanobis distance, in 0,658 seconds when
taking advantage of distributed computation on four remote nodes. The same
task performed with RMI under the same experimental conditions, requires 3.88
seconds. Thus, the proposed system performs six times faster on the same com-
putational task. If XML-VM is realized in Java, then the same computation is
performed more than seven times faster.

Moreover, the system is simple and easy to debug.

Many problems regarding robotics application using the framework described
in this paper are still open. For example, the distribution of the workload, which
is related to the choice of the nodes where the tasks are distributed, has not
been considered yet. Another open aspect is the fault tolerance of the system.

The system described in this paper is currently being integrated in real mobile
robotic system. Other activities under study concern the use of the system for
other applications in the robotic field.

The authors wish to thank Prof. Hiroshi Ishiguro of Osaka University (Japan)
for his advices and his support, and AIBSLab for making available to us the
computers used in the experiments.

Appendix

The XML document interpreted on the Root node dor the distributed distance
computation is highlighted below.

<?xml version=’1.0’7> <xmlvm> <start> ...registers and virtual
disk initialization... <loadimage filename="unknown.ppm"
target=’8’ mode=’FF’/> <for from=’0’ to ’4’ step=’2’ target=’1’>
<load register=’31’ index=’30’>
<fork id=’1’ done=’6’ result=’16r5’>
<load register=’7’ index=’6’/>
<comparearchive archive=’sl1’ ind_img=’7’ start=’r20 end=’r21’
targetval=’11’ targetname=’12’
typec=’1"/>
<store from=’11’ to=’r5’/>
<store from=’12’ to=’r6’/>
</fork>
...registers and static variables updating </for> <load

register=’5’ index=’2’/> <load register=’6’ index=’2’/> <inc
index=’6’ /> <for from=’0’ to ’4’ step=’1’ target=’1’>

<join id=’1’>

<load register=’11’ index=’r5’>

<load register=’12’ index=’r6’>

<if first=’11’ second=’19’ type=’<’>
<move source=’11’ target=’19’>
<move source=’12’ target=’20’>

<else>
<if first=’1’ type=’int’ value=’0’ typec=’==’>
<move source=’12’ target=’20’>
<move source=’12’ target=’20’>
</if>
</if>
...registers and static variables updating </for> </start>
</xmlvm>
References
1. C. E. Catlett, J. Toole, " Testbeds: From Research to Infrastructure”, in ” The Grid:

9.

Blueprint for a New Computing Infrastructure,” Ian Foster and Carl Kesselman,
ed., Morgan Kaufmann, August 1998.

Ray Jinzhu Chen, ”A Hybrid Solution of Fork/Join Synchronization in Parallel
Queues”, IEEE Transactions on Parallel and Distributed Systems 12 (8), August
2001

M Conway, ”Multiprocessing system design”, Proc. Of the AFIPS Fall Computer
Conf., 1963

J.G.Dennis, E.C.Van Horn, ”Programming semantics for multiprogramming com-
putations”, Communications of ACM, March 1966
http://www.ipd.uka.de/JavaParty /features.html

Doug Lea, ”A Java Fork/Join Framework”, ACM Java Grande 2000 Conference,
June 3-5 2000

Y.C.Liu, H.G.Peros, ”A Decomposition Procedure for the Analysis of a Closed
Fork/Join Queuing System”, IEEE Transactions on Computers, vol.40, n.3, march
1991

R.Nelson, A.N.Tantawi, ” Approximate analysis of Fork/Join Synchronization in
Parallel Queues”, IEEE Transactions on Computers, vol37, n.6, June 1988
Y.Sohda, H.Nakada, S.Matsuoka, ”Implementation of a Portable Software DSM in
Java”, ACM JavaGrande Int. Conference, June 2001

10. M.Surdeanu, D.Moldovan, ” Design and Performance Analysis of a Distributed Java

Virtual Machine”, IEEE Transactions on Parallel and Distributed Systems, Vol.13,
N.6, June 2002

11. http://www.orocos.org
12. H.utz, S.Sablatnog, S.Enderle, G.Kraetzschmar, ”Miro-middleware for mobile

robot applications”, IEEE Trans. Robot. Automat., vol.18, n.4, pp.493- 497,
Aug.2002

13. D.Schmidt, ” Adaptive communication environment”,

http://www.cs.wustl.edu/schmidt/ACE.html

14. http://mca2.df.net

15. H. Ishiguro and S. Tsuji, ”"Image-based memory of environment”, Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-96),
pages 634639, 1996.

16. E. Mumolo, E. Menegatti, E. Pagello, ”Omnidirectional Image Based Localisation
using an XML Virtual Machine for Distributed Computing”, Proc. of 8th Interna-
tional Conference on Intelligent Autonomous Systems (IAS-8), 2004

17. E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro, ” Hierarchical image-based
localisation for mobile robots with monte-carlo localisation”, in Proc. of European
Conference on Mobile Robots (ECMR’03), pages 13-20, September 2003.

18. E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro, ”Image-based monte-carlo
localisation with omnidirectional images”, in Robotics and Autonomous Systems,
Elsevier, 2004.

