Toward Knowledge Propagation in an Omnidirectional
Distributed Vision System

Emanuele Menegattil Enrico Pagellof

Takashi Minatot Takayuki Nakamurat

Hiroshi Ishigurot

iIntelligent Autonomous Systems Laboratory
Department of Information Engineering (DEI)
Faculty of Engineering, The University of Padua
Via Gradenigo 6/a, I-35131 Padova, Italy

tDepartment of Computer & Communication Sciences
Wakayama University
930 Sakaedani, Wakayama 640-8510, Japan

Abstract

This paper explores a methodology of knowledge prop-
agation between the Omnidirectional Visual Agents
of a Distributed Vision System. The application we
chose in this work is to navigate a mobile robot in
a real-world environment using a network of uncal-
ibrated cameras. A practical application could be to
use an existing camera network intended for surveil-
lance for navigating a service Tobot in a large scale
environment composed of several separated rooms. In
this first work, we realised a Vision Agent that learns
how to control a mobile robot and propagates this
knowledge through the network. The Vision Agent
autonomously generates the set of examples used in
the learning stage. The knowledge is stored in a
neural network, called the learner. Once the Vi-
sion Agents has learnt how to control the robot, this
knowledge is transmitted to the other Vision Agents
in the network. The Vision Agents in the network
are heterogeneous, so the knowledge acquired by one
agent cannot be used directly by another agent and
a certain amount of re-learning is needed. The re-
learning process is guided by a second neural net,
called supervisor. We are more interested in the
knowledge propagation process than in the knowledge
acquisition, we did not focused in the implementa-
tion of the neural nets they were used only as a tool.
Preliminary results of the experiments are presented.

1 Introduction

There is an increasing evidence that service robots
in manned real world environments can take advan-
tages of network of smart sensors. In every day life,
we are familiar with networks of cameras spread in

Mol
Rol

bile
bot
N Al

Figure 1: A picture of the whole system showing two
Vision Agents and the robot used in the experiments.

the environment (e.g. multi-camera video surveil-
lance systems in banks or airports), but in most cases
these are just a set of dummy sensors. They collect
a huge amount of videotape data that human oper-
ators need to interpret. In the scientific community,
there is a strong will to integrate these sensors into
an intelligent system. Several researchers are work-
ing on autonomous system of surveillance [3] [10] or
on intelligent environments [1] [13], like intelligent
rooms. In the robotics community as well, the inter-
est of the researchers is shifting form a single agent
working in a cell-space to multiple agents working
in the real world. For these kind of applications a
single camera is not enough and multiple cameras
are needed to observe the scene. Again, the aim is
to provide an intelligent infrastructure able to sup-
port robots’ activities [6] [4]. The idea proposed in

this paper is that the existing networks of cameras
could be used to support the navigation of service
robots in the environment. The problem is that usu-
ally these cameras are not calibrated. To calibrate
by hand all the cameras of a network can be tedious
or even unfeasible. Researchers are tackling the is-
sue of multiple-camera calibration. An example is
the work of Olsen in which a set of tiles are used to
calibrate a large set of cameras observing multiple
connected rooms and corridors [11].

In this work we propose a different approach. In-
stead of having to calibrate all the camera of the
network and then to program a robot to navigate
in the environment using the information provided
by the cameras. We propose a network of uncal-
ibrated vision sensors able to autonomously learn
to control a mobile robot in a large scale environ-
ment. The cameras in the network can communicate
among them and with the mobile robot. To stress
the idea that the camera network is more than a sim-
ple bunch of sensors scattered in the environment, we
called it a Distributed Vision System (DVS). The
term DVS (Distributed Vision System) emphasises
that the camera network acts as a whole, as a sin-
gle “super-sensor”, able to navigate the robot. The
DVS is composed of several Vision Agent (VA). A
VA (Vision Agent) is a vision sensor able to acquire
images, to process them and to communicate with
other VAs over a network!. Every VA is embodied in
a different sensor and is situated at a different posi-
tion. In our first implementation, the DVS presented
in this paper looks like a set of uncalibrated omni-
directional cameras distributed in the environment,
see Fig. 1.

In a previous work, we showed how a Distributed
Vision System can navigate a robot in a toy-scale
real-world environment [4]. That work was quite
different from the current work. In that work the
learning phase required the intervention of a human
operator guiding the robot in the free space in the
toy town reproduction. By looking at the trajectory
of the robot when driven by the human operator, the
Distributed Vision System was able learn the correct
trajectory in the free space and then to send infor-
mation to the robot to autonomously playback the
taught trajectory. In this paper, we propose a to-
tally autonomous Distributed Vision System able to
learn how to control a mobile robot by autonomously
generating a set of examples and by propagating the
knowledge through the network. The robot is totally
dummy. It has no intelligence on board, it has only

n the taxonomy of Weiss, a Vision Agent can be defined
as a Smart Agent, because it is autonomous, it is able to learn
from experience and it can cooperate with other agents to
achieve a global goal [14].

Figure 2: The knowledge propagation process: the
VA on the right send commands to the robot, the VA
on the left observing the robot evaluates the knowl-
edge received by the first VA.

a motor control board fitted with encoders. This
make it possible to send to the robot the position to
be reached and the motor control board takes care
of setting the correct instantaneous translational and
rotational speeds to reach the desired position from
the current position.

In Section 2, we will discuss in further detail the
task of the DVS. In Section 3, we will explain the
structure of an Omnidirectional Vision Agents. In
Section 4, the learning procedure is discussed and
experimental results are presented. Finally, future
work are hinted and conclusions are drawn.

2 Learning Process

As we said in the introduction the task of the DVS
is to learn to drive a mobile robot. This knowledge
is first acquired by a single VA and then is propa-
gated to other VAs in the network. The distributed
learning stages is composed of five steps:

1. a Vision Agent learns the mapping between its
image space and the robot’s motor space;

2. the Vision Agent transmits the learnt mapping
to a second Vision Agent;

3. the second Vision Agent checks if the received
mapping is valid, if not starts a re-learning phase
guided by the first Vision Agent;

4. the knowledge is propagated from the second
Vision Agent to the third Vision Agent, and so
on;

5. in the end, the sensor network is able to drive
the robot in a large environment;

Figure 3: A picture of the hardware resource of the
Vision Agent. On the top the omnidirectional mir-
ror (here a hyperbolic mirror), under the mirror the
camera and the tripod supporting the system.

The bridge to propagate the knowledge among the
Vision Agents is the robot. The first Vision Agents
controls a robot by sending to the robots a set of ran-
dom motion commands, see Fig. 2. Looking at the
motion of the robot, the system learns the mapping
between the position of the robot in the image space
and the robot’s motor space, see Fig. 5. As we said,
the acquired knowledge is then propagated to the
other Vision Agents on the network, Fig. 2. Because
the vision sensors are not previously calibrated, the
propagated knowledge cannot be immediately used
and a certain amount of re-learning can be needed.
In fact, if the vision sensors are not previously cali-
brated, the mapping between the image space and
the motor space might be different: the cameras
could be located at different heights or at different
distances from the mirrors, the poles supporting the
cameras could be not exactly vertical, etc. In addi-
tion, the Vision Agents could mount heterogeneous
vision sensors and so the mapping function have to be
relearned. Examples of heterogeneous vision sensors
can be omnidirectional vision sensors with mirrors
with different profiles customised for different tasks
(8] [7].

3 Omnidirectional Vision Agent

Every sensor in the network is composed of hard-
ware and software resources. In Fig. 3, the hardware
resources of the VA are depicted. The omnidirec-
tional cameras are catadioptric omnidirectional cam-
eras composed of a standard perspective camera and
a convex mirror [5]. The camera is pointed upward
to the mirror that is reflecting the light gathered by
the surroundings of the sensor, see Fig. 3 . Every
camera is connected to a PC that provides computa-

lVisjon Agent l

w T
¥

{ Eglarner } {gu'\[l)ervisor
v v

{ Communication Module}

~ OUT

>

Figure 4: The simplified scheme of a Vision Agents.
The drawing highlights the main blocks composing the
VA.

tional power for image processing and network com-
munication.

The Omnidirectional Vision Agents used in this work
are fitted with the following software resources:

e a vision system
e a neural network called learner
e a neural network called supervisor

e a communication network module

In the next section we will discuss in detail the single
modules of the Vision Agent.

3.1 Vision System

The vision system is the sensorial module of the Vi-
sion Agent. The Vision Agent gathers information
on the world using the vision system.

The task of the vision system is to calculate the po-
sition and the heading of the robot in the image.
To easily detect the position and the heading of the
robot, two coloured balls are fixed on the top of
the robot and the vision system looks for these two
coloured blobs. The midpoint between the centres
of gravity of the two balls gives the position of the
robot and the line passing by the centres of grav-
ity of the two balls gives the heading of the robot.
In order to avoid to search the whole image for the
coloured blobs, the vision system uses a background
subtraction algorithm to detect the broad region of
image in which is located the robot.

The background subtraction algorithm can be used
because we are assuming the Vision Agent is static
(i.e. its view of the environment does not change)

1 onAlr |E|
File Algaritims Controls Help —|

Grab || Filtro ‘con uso ¢l retl neurali di Emanuele l‘ ‘ Eceavi il nlava anal. ‘

Figure 5: A snapshot of the image processing that
detects the position and heading of the robot in the
image.

Figure 6: The structure of the neural network used
for the learner network.

and the robot is the only moving object in the filed
of view of the camera.

The final output of the vision system is the heading
and the position of the robot calculated both in the
polar coordinates centred in the image centre and the
Cartesian coordinates in the usual frame of reference
for the images.

3.2 Neural Networks

The output of the vision system is passed to the
two neural networks. In the learning stage the two
neural nets are trained using the robot positions
and the robot speeds of the autonomously generated
training examples. In the running stage, the task
of the learner network is to calculate the instanta-
neous translational and rotational speeds necessary
to reach the target position. The task of the supervi-
sor network is to check if the commands sent to the
robot have been successfully executed.

In this first implementation of our system we used

a very simple structure? for the neural networks.
These are three layer networks with an input layer,
an hidden layer and an output layer, see Fig. 6. The
units of the networks are sigmoid units and the net-
works are trained with the back-propagation algo-
rithm [9].

Learner Network. As depicted in Fig. 6, the net-
work has five input units, four hidden units and two
output units. The input units take the three param-
eters of the initial position and heading of the robot
and the two parameters of the final position of the
robot, respectively named:

input — {(zs,ys, hs), (xr,yr)} (1)
output — {(Speed, Jog)}

Note that in the first part of this work we are not
considering the final heading of the robot, i.e. the
robot has only to reach the final position, but the
final heading is not important.

The outputs of the network are the values of linear
speed and angular speed to be set on the motors of
the robot, respectively.

These values are the instant speeds necessary to
move the robot from the starting position to the final
position. These values are sent at every cycle of the
Vision Agent to the Agent on the robot through the
network module.

Supervisor Network. The supervisor network
takes as input the starting position of the robot and
the speeds set on the motors and predicts the final
position of the robot. The topology of the Supervi-
sor Network is the same of the Learner Network, but
inputs and outputs are respectively:

input — {(zs,ys, hs), (Speed, Jog)} @)
output — {(zp,yp)}

If the final position reached by the robot, as reported
from the vision system, is not compatible with the
predicted position an exception is raised. This ex-
ception means that the learnt control of the robot is
no longer valid and a re-learning is needed. As we
said, in our experiment this mean that the knowl-
edge received from another Vision Agents cannot be
used and a certain amount of re-learning is needed.

3.3 Communication Network Module

The network subsystem used here is a part of the
ADE library, a software suite written in C++ and

2As we said, we are not interested in the learning process
itself, but in the propagation of the acquired knowledge from
one Vision Agent to another Vision Agent.

Robat Positions

o a0 160 240 220 400 4a0 S60 &40

Figure 7: The positions of the robot for the training
data in the omnidirectional image of Fig.5. FEvery
point is both an initial point and a final point.

used by our RoboCup? team: Artisti Veneti*. ADE
provides basic C++ classes implementing thread
scheduling, message passing and seamless network
communication [2].

The protocol used for data transmission is the con-
nectionless User Datagram Protocol (UDP) over IP.
This protocol allows fast network responses even in
case of a temporary failure (as it is often the case in
noisy wireless networks). Packet loss for our appli-
cation is not an issue since packets are self-contained
and repeatedly sent.

In this application, we send two types of messages:
the motor commands to the robot and the messages
between the Vision Agents.

4 Training the Neural Networks

The first problem in training a neural net is to have a
rich set of unbiased training examples. In the learn-
ing phase, the Vision Agent generates a set of ran-
dom commands for the motors of the robot. The
Vision Agent stores in a file the initial pose of the
robot, its final pose and the command that moved
the robot from the starting position to the finish po-
sition. These data are used to train the two networks.
In the first experiments we performed the motion of
the robot was constrained in a portion of the field of
view of the Omnidirectional VA. Fig. 7 shows the po-
sition of the robot for each training example. As you
can see, the robot moved in the left field of view of
the camera, approximately. Every motion had ran-
dom speed and jog in order to present to the network
a set of examples of velocity and jog values not bi-
ased by the choices of the user. The linear speed was
randomly chosen between -400 mm/s and 400 mm/s.

3RoboCup: the Robotics Soccer Championship, URL
www.robocup.org

4 Artisti Veneti is the RoboCup team of the University of
Padua for the Middle-Size League [12]

Speed Training Error

rrrrrrrrrrrrrrrr

Figure 8: A plot of the learning error on the speed
output versus the number of iterations.

Jog Training Error

Figure 9: A plot of the learning error on the jog
output versus the number of iterations.

The angular speed was randomly chosen between -1
rad/s and 1 rad/s. The value of linear speed and
angular speed where sent to the robot and the mo-
tor where activated with these speeds for 1 second.
We collected sets of about 200-300 examples and we
used about 160-260 examples as training examples
and the rest as validation examples. The training
errors for a set of examples is reported in Fig. 8 and
in Fig. 9. The two figures respectively refer to the
error in the linear speed determination (called speed)
and in the angular speed (called jog).

5 Conclusions

In this paper, we presented a new idea in the cre-
ation of an intelligent network of sensor. We pro-
posed a Distributed Vision System that will be able
to navigate a mobile robot in a large space. The
DVS is composed of several Vision Agents that are
able to autonomously learn how to control the robot.
This knowledge is acquired locally and is distributed
through the network from a Vision Agent to the rest
of the Vision Agents using as a bridge the mobile

robot for this knowledge propagation process. In this
paper we focused on the single Vision Agent struc-
ture and on the procedure to learn the mapping be-
tween the image space and the motor space of the
robot. We used a neural network to learn the map-
ping function. The first experiments show that some-
times the neural network overfits the training data
with a lack of generalisation. This results in an er-
ror in the validation set that is increasing with the
number of iterations in the learning process. At the
time of writing we are considering to increase the
complexity of the rather basic layout of the network
used in this work.

6 Acknowledgements

This research has been partially supported by: the
Italian Ministry for the Education and Research
(MURST), the Italian National Council of Research
(CNR), by the Parallel Computing Project of the
Italian Energy Agency (ENEA), by the University
of Padua and by the University of Wakayama.

In particular we wish to thanks the students of the
University of Padua: Arrigo Zanette, Luca Burrelli
and Enrico Ros that helped in the realisation of the
experiments.

References

[1] R. A. Brooks. The intelligent room project.
In Proceedings of the Second International Cog-
nitive Technology Conference (CT’97), Aizu,
Japan, August 1997.

[2] L. Burrelli, S. Carpin, F. Garelli, E. Menegatti,
and E. Pagello. Ade: a software suite for multi-
threading and networking. Technical report, In-
telligent Autonomous Systems Laboratory, De-

partment of Information Engineering, Univer-
sity of Padova, ITALY, 2002.

[3] R. Collins, A. Lipton, and T. Kanade. A system
for video surveillance and monitoring. Technical
report, Robotics Institute at Carnagie Mellon
University, 2000.

[4] H. Ishiguro. Distributed vision system: A
perceptual information infrastructure for robot
navigation. In Proceedings of the Int. Joint
Conf. on Artificial Intelligence (IJCAI97),
pages 3643, 1997.

[5] H. Ishiguro. Development of low-cost compact
omnidirectional vision sensors. In R. Benosman
and S. Kang, editors, Panoramic Vision, chap-
ter 3, pages pp. 23-38. Springer, 2001.

[6] H. Ishiguro and M. Trivedi. Integrating a per-
ceptual information infrastructure with robotic

avatars: A framework for tele-existence. In Pro-
ceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS-
99), October 1999.

[7] E. Menegatti, F. Nori, and E. Pagello. Design
of omnidirectional mirrors for mobile robotics
based on robot’s task. In Submitted to an Inter-
national Journal, 2002.

[8] E. Menegatti, F. Nori, E. Pagello, C. Pelliz-
zari, and D. Spagnoli. Designing an omnidirec-
tional vision system for a goalkeeper robot. In
A. Birk, S. Coradeschi, and S. Tadokoro, edi-
tors, RoboCup-2001: Robot Soccer World Cup
V., pages pp. 78-87. Springer, 2002.

[9] T. Mitchell. Machine Learning. McGraw-Hill,
1997.

[10] A. Nakazawa, H. Kato, S. Hiura, and
S. Inokuchi. Tracking multiple people using dis-
tributed vision systems. In Proceedings of the
IEEFE International Conference on Robotics and
Automation (ICRA2002), pages pp. 2974-2981,
May 2002.

[11] B.D. Olsen. Calibrating a camera network using
a domino grid. Pattern Recognition, 34(5), May
2001.

[12] E. Pagello, M. Bert, M. Barbon, E. Menegatti,
C. Moroni, C. Pellizzari, D. Spagnoli, and
S. Zaffalon. Artisti veneti 2002: evolving an
heterogeneous robot team for the middle-size
league. In G. A. Kaminka, P. U. Lima, and
R. Rojas, editors, RoboCup-2002: Robot Soccer
World Cup VI., L. N. on A. 1. Springer, 2002.

[13] H. Takeda, N. Kobayashi, Y. Matsubara, and
T. Nishida. A knowledge-level approach for
building human-machine cooperative environ-
ment. In A. Drogoul, M. Tambe, and T. Fukuda,
editors, Collective Robotics, volume 1456 of Lec-
ture Notes in Artificial Intelligence, pages pages
147-161. Springer, 1998.

[14] G. Weiss. Multiagent Systems. MIT Press, 1999.

