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Abstract

This paper extends our previous works on image-based lo-
calisation for mobile robot. The image-based localisation
consists in matching the current view experienced by the
robot with the reference views stored in the visual mem-
ory of the robot. The original idea was to use the Fourier
components as signatures for the omnidirectional images
acquired by the robot. The extensions proposed in this pa-
per are: the possibility to have a localisation with differ-
ent accuracy while the robot navigates (called hierarchical
localisation) and the introduction of a Monte-Carlo local-
isation technique to increase the robustness of the system
in environments where the image-based localisation can be
mislead. Experiments demonstrated the feasibility of the hi-
erarchical localisation and the robustness of the implemen-
tation of our Monte-Carlo localisation.

1. Introduction

Localisation is a basic task for a robot that moves in an en-
vironment. Usually, the robot is provided with a geomet-
rical map of the environment and it will use some kind of
sensors to locate itself in this map. The sensors’ reading is
noisy, but with a good management of the uncertainty and
with reliable sensors like laser range scanner, good results
have been achieved [14] [3].

If the map of the environment is not available, building
the geometrical map of the environment can be time con-
suming. A different approach that does not use a map is
the image-based localisation[1, 5, 9, 11, 13, 7]. There is
experimental evidence that the image based localisation is
used by very simple animals like bees and ants [6] and it is
a every-day experience that is used by humans as well. For
instance, it happened to everyone to get lost in an unfamil-
iar place and to be able to recover its position recognising a

Figure 1: An omnidirectional image taken at a reference
location.

Figure 2: The panoramic cylinder created by the omnidirec-
tional image of Fig. 1.

viewpreviously experienced.
In the image based localisation approach, the agent is

provided with a set ofviewsof the environment taken at sev-
eral locations in the environment. These locations are called
reference locationsbecause the robot will refer to them to
locate itself in the environment. The corresponding images
are calledreference images. When the robot moves, it can
compare the current view with the reference images stored
in its visual memory. When the robot finds which one of
the reference images is more similar to the current view, it
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Figure 3: The power spectrum of the Fourier transform of
the image in Fig. 2. Note that only the first 30 components
are shown and components after the 15th have very small
values and so can be neglected in the calculation of the sim-
ilarity function.

can infer its position in the environment. In the image based
localisation, the problem of finding the position of the robot
in the environment is reduced to the problem of finding the
best match for the current image among the reference im-
ages. Most of the cited works on image-based localisation
just stop here. In this paper, we propose to extend the image
based localisation with two additional features: the hierar-
chical localisation and the statistical approach to the robot’s
localisation. Let us see the hierarchical localisation first.

When a robot navigates in a real world environment, it
does not need to know its position with the highest accuracy
at any time. The actual accuracy needed depends on the
environment’s structure and on the current action the robot
is performing. If the robot is crossing a wide open space, it
can tolerate a quite large uncertainty in its position. While
if the robot enters a door, the accuracy on the localisation
must be high. This is similar to the behaviour we experience
walking in a street of an unknown town using a map. When
we are following the high-street we do not need to know
our exact position on the map, but when we have to take
a detour or to enter a building we need to shrink down the
uncertainty in our position, maybe looking for additional
environmental clues. We called this processhierarchical
localisation. In the body of the paper we will see how it is
possible to calculate the robot’s localisation with different
accuracies using the Fourier components of the panoramic
image.

The image based localisation approach has a flaw. It does
not work in environments with periodical structures, i.e. in
case of a structure that repeats several times in the environ-
ment (for instance: a corridor with a set of doors equally
spaced with the same appearance). In this case, the appear-
ance of the world is the same in different places, so the cur-

0
2

4
6

8

0
2

4
6

8
10

12
14
0

1

2

3

4

5

6

7

Figure 4: The values of the similarity functions calculated at
every reference point for the current image. The empty cir-
cles on the XY plane represent the reference images. The
full circle represents the actual position of the current im-
age. The hight of the surface at every reference location
is proportional to the degree of similarity of the reference
image with the current image.

rent view will match not only to the corresponding refer-
ence image but also all the reference images that are similar
to the current one. This is a case ofperceptual aliasing, i.e.
the reading of the sensor is the same at different locations
and the use of the vision sensor alone is not able to dis-
criminate between the different places that looks the same.
This is similar to what happens to humans when they get
lost in a large building, because every place looks the same.
To understand where they are humans need additional clues
like asking directions or reading signboards. A robot could
use additional sensors able to discriminate between the two
points, e.g. GPS sensors or other non-vision sensors. But
what about if these additional sensors are not available? The
robot needs to manage situations, maybe transitory situa-
tions, in which it has evidence of being located at two dis-
tinct points at the same time. It needs a tool to manage
the uncertainty about its position. The solution we adopted
here is to use a Monte-Carlo Localisation process to man-
age this uncertainty [14]. This technique is able to manage
multi-modal distribution of probability. Therefore, also in
situations where the current image matches more than one
reference image, the robot can correctly estimate its posi-
tion.

In the next section we will outline the algorithm used to
assess the similarity of two images. In Section 3, the prob-
lem of the hierarchical localisation is introduced and the so-
lution we propose is detailed. In Section 4, we sketch our
implementation of the statistical approach to handling the
belief about the robot’s position and we present the sucess-
ful experiments performed in a real-world environment. In
the last section, conclusions are drawn.
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Image Memory Required (in bit) Memory Required
omnidirectional 640× 480× 24 7.3 Mbit
panoramic cylinder 512× 80× 24 980 Kbit
Fourier signature 80× 15× 2× 8 19 Kbit

Table 1: The different memory requirements illustrating the impressive memory saving introduced by the Fourier signature.

2 Image Matching

In the image based localisation approach, the main problem
is how to store and to compare the reference images, which
for a wide environment can be a large number.

In this paper we have fully developed a method we pro-
posed in a previous work [9]. The robot is equipped with
an omnidirectional camera [8, 12] and takes a set of omni-
directional images at the reference locations, then it com-
pares the current omnidirectional image with the reference
images. In order to store and match efficiently a large num-
ber of images, we transform each omnidirectional view into
a compact representation. From the omnidirectional image
we create apanoramic cylinder, i.e. a new image obtained
unwarping the original omnidirectional image, as depicted
in Fig. 2. The panoramic cylinder is expanded row by row
into Fourier series. The agent memorises each view by stor-
ing the Fourier coefficients of the low frequency compo-
nents of the panoramic cylinder, depicted in Fig. 2. We
called the set of the stored coefficientsFourier signature
of the omnidirectional image. This drastically reduces the
amount of memory required to store a view at a reference
location. With this approach also the matching of the cur-
rent view against the visual memory is computationally in-
expensive. For more details on this procedure, please refer
to [9].

Let us highlight the advantages of our approach with re-
spect to the work of others authors. The use of the omni-
directional camera with respect to the use of a perspective
camera reduces the number of images required to fully de-
scribe the environment. In fact, if a perspective camera is
used, the view of the environment from a certain location
changes with the direction of gaze. A solution can be to
constrain the movements of the robot in order to have the
perspective camera pointing always at the same direction
[5], but this strongly limits the motion of the robot. An al-
ternative approach can be to extract from the perspective
images some features that reduce the amount of required
memory while retaining a unambiguous description of the
image. A good example of this is reported in [15], where
936 images where store in less than 4MB. Nonetheless, col-
lecting such a big number of images is tedious and time
consuming.

Several authors, exploited omnidirectional cameras in

image based localisation. In order to reduce the amount
of memory required, they extracted a set of eigenimages
from the set of reference images and projected the images
into eigenspaces. The drawback of such systems is that they
need to preprocess the images they created from the omni-
directional image in order to obtain the rotational invariance
as in [1, 10, 7] or to constrain the heading of the sensor as
in [11].

On the contrary, our technique, which uses the Fourier
transform of the panoramic cylinder (i.e. theFourier Sig-
nature, is the natural representation for implementing aro-
tational invariance, as detailed in [9]. The reduction in
the memory requirement associating every omnidirectional
image to its Fourier signature is large as detailed in Ta-
ble 1. The similarity between two images is calculated as
theL1 norm of the Fourier signature of the corresponding
panoramic cylinders, see again [9]. The similarity linearly
decreases with the distance within a short range and after
a certain distance it will saturate, see Fig. 4. This happens
because when the two images are taken at points far apart
there is no correlation at all between the two images.

In the next section we will introduce the concept of the
hierarchical memory-based localisation and how this can be
easily calculated from the signature associated to the omni-
directional images. The hierarchical memory-based locali-
sation is one of the advantages of our method based on the
Fourier signature, with respect to other method of omnidi-
rectional image based localisation.

3 Hierarchical Memory-based Local-
isation

As we introduced in Section 1, a robot needs to have a dif-
ferent accuracy in the estimation of its position in the envi-
ronment depending on the structure of the environment. We
called this processhierarchical localisation.

This idea of the need of different accuracy depending on
the navigation task of the robot, was spotted also by other
authors, like Santos-Victor [7]. In that work, the robot uses
two different image-based navigation strategies:topologi-
cal navigation andvisual-path followingnavigation switch-
ing between one and the other depending on the kind of
motion required to the robot. The drawback of this solu-

3



Figure 5: An example of hierarchical localisation. The number of Fourier components used to calculate the similarity function
increases from left to right. The empty circles represent the reference images. The full circle represents the actual position
of the current image and the grey area represents the calculated possible locations of the robot.

tion is that it requires the design of two different navigation
behaviours. Moreover, the visual-path following technique
requires handmade design and an accurate control system.

On the contrary, we satisfied the need of different lo-
calisation accuracies within the frame of image-based lo-
calisation. The approach proposed in this section exploit
the technique described in Section 2, and actually improves
this technique, reducing its computational cost. In fact, the
L1 norm used to calculate the similarity between the two
function (Eq. 1) is stopped fork << m when a broad lo-
calisation of the robot is enough.

Sim(Oi, Oj) =
l−1∑
y=0

m−1∑
k=0

|Fiy(k)− Fjy(k)| (1)

To understand the hierarchical localisation process, we
need to spend some more words on the properties of the
Fourier transform of an image and in particular on the
Fourier signature associated with the panoramic cylinder.

When we calculate the Fourier transform of a brightness
signal, like one row of the panoramic cylinder, we are ac-
tually decomposing this signal into its component on a set
of basis functions. These basis functions are related to the
spatial brightness variations. The first basis function, the
one with zero frequency, is the constant brightness signal
(no variation) and the coefficient associated to it is giving
the level of brightness. The basis functions of higher fre-
quency are associated to variations of brightness of higher
frequency, i.e. to brightness pattern of higher and higher
spatial frequency. When we are calculating the similarity
function for two images, using Eq. 1, we are summing up all
the contribution from the different frequency components.

When confronting two images, we can see the average
brightness of the images changes very slowly when increas-

ing the distance between the two images, while the distri-
bution and the presence of brightness patterns (representing
the objects in the environment) changes much faster. There-
fore, we can expect that the low frequency components of
the Fourier transform of the two images are more similar in
a larger interval of distances than the higher frequency com-
ponents. This means that if in the calculation of the similar-
ity function we stop the calculation of the sum in Eq. 1 at
the first Fourier components our current image will match
not only the closest reference image, but also a larger num-
ber of reference images distributed in the surroundings of
the current position.

As a result, we can have a hierarchical localisation just
by choosing the number of Fourier components to compare
with the similarity function. In other words, if the robot
needs only a broad localisation it does not need to calculate
the inner sum in Eq. 1 for every value ofk, it can just stop
at the very first values. The result is to match the current
view not only with the closest view but also with other ref-
erence views close to it. When a more precise localisation is
needed, as in a situation in which the robot has to manoeu-
vre in a cluttered environment, the sum can be extended to
higher values ofk in order to have a more strict matching
against only one reference image.

In Fig. 5 is depicted a graphical representation of the hi-
erarchical localisation achieved with our system. The empty
circles represent the reference images. The full circle repre-
sents the actual position of the current image. The possible
position of the robot, as calculated by the system, is repre-
sented by the grey area. The number of Fourier components
used to calculate the similarity function increases from left
to right, consequently the grey area showing the possible lo-
calisation of the robot is shrinking. In this test the reference
images were taken on a 25 cm grid in a office environment
cluttered with many pieces of furniture, as you can see from
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Figure 6: Several examples of hierarchical localisation at different places in the environment. The layout of the room in
which experiments were performed is shown and the boxes represent the objects in the environment. Lighter boxes represent
lower objects, darker boxes represent taller objects.

pictures in Fig. 1 and Fig. 2.
In Fig. 6, we present the hierarchical localisation ob-

tained at different locations in the same environment. In the
figure is sketched also a rough map of the test environment.
In wich the objects present in the environment are schetched
as boxes of different colour. Lighter boxes represent lower
objects (like desks or chairs), darker boxes represent taller
objects (like filers or shelves ). At the moment of writing,
we are investigating the relation between the shape of the
localisation areas and the disposition of the objects in the
environment.

In summary, our method provide a direct way of calcu-
lating the hierarchical localisation for the robot by compar-
ing the frequency spectrum of the current image with the
frequency spectrum of the set of reference images. Broad
localisation is provided at minimal computational cost, just
comparing very few frequency components. When higher
accuracy in the localisation is needed, the system will use a
little extra computational power.

4 Monte-Carlo Localisation

As we stated in the introduction, the image-based localisa-
tion approach is mislead in situation in which the apparence
of the environment is the same from two different loca-
tions. In this paper we overcame this problem by exploiting
a well-known probabilistic approach in order to estimate the
correct position of the robot. This general method, known
asBayesian filtering(also known asMarkov localisationin
robotics) [2, 15], updates recursively the belief about robot
position. The belief about the robot position is updated ev-
ery time the robot makes a new measurement (i.e. it grabs
a new image). As the state space is continuous, we used
Monte-Carlo Method to represent the belief with a set of
weighted samples.

The approach we used is very similar to the one proposed
by Burgard in [15]. Every time the robot moves, it grabs a
new image. The grabbed image is compared with the ref-
erence images in the memory of the robot and a similarity
value is calculated for every reference image. These sim-
ilarity values are used to assign a weight to samples used
in the Monte-Carlo localisation process. The pose of the
robot is estimated with a standard Monte-Carlo approach.
For more details please refer to [2, 15, 4].

There are three main differences with respect to Bur-
gard’s work. The first is that we used an omnidirectional
vision sensor, so that at every position in the environment
is associated one and only one image (with a drastical re-
duction of the number of required images). The second is
that we do not associate anyvisibility regionto the reference
images in the memory database: this is possible because we
used an omnidirectional sensor that supplies a 360◦ view
of the environment; this also means that we rely only on
the similarity computation to distinguish various localisa-
tion hypothesis with a gain in minor complexity of the al-
gorithm. The third difference is that we implemented the
MCL system on an holonomic robot, called Barney. The
peculiarity of this robot is that it can move in any direc-
tion without the need of a previous rotation. This prop-
erty suits perfectly an omnidirectional camera that has no
need to change robot’s heading before grabbing an image.
In general this reduces odometric error.

4.1 Experiments

We tested the system in the unmodified small real-world of
Fig. 1 and Fig. 2, that is described in Section 3. The tests
were performed on the system in off-line mode using a sim-
ulator completely parameterisable. The inputs of the simu-
lator are the series of thereference omnidirectional images
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(1) (2) (3) (4) (5) (6)

Figure 7: An example of Monte-Carlo localisation. These are some snapshot of our system while performing a Global
Localisation (1,2,3) and then Position Tracking (4,5,6).

and the sequences of thecurrent imagespresented one by
one every time the robot takes a new step. The aim of the
experiments is to demonstrate the system is able to reliably
localise the robot and to recover from localisation errors.

We carried out several experiments of Global Localisa-
tion, Position Tracking and Kidnaped Robot, introducing
different amount of noice on the odometers’ data. The sys-
tem is able to successfully localise the robot in any situation.
The test environment is rather small (about5m×2m) and it
has the simple shape of a rectangle. This environment was
chosen just as first testbed to test the system. At the time
of writing we are experimenting in a much more complex
environment.

In Fig. 7 we present an example of Monte-Carlo local-
isation based on the similarity between the current image
and the reference images. There the small red dots are the
samples generated by the Monte-Carlo filter, the grid dots
are the reference locations, the blue line is the actual path
of the robot and the black curve is the extimated path of the
robot. The estimated position of the robot is calculated as
the average position of the samples and is marked with a
black square.

Global Localisation

Our system is able to localise the robot without any prior in-
formation on the robot’s position after processing about 5-6
images. The correct localisation is achieved even if we use a
very low number of samples. Experimentally, we observed
that the minimal number of samples to obtain a reliable lo-
calisation is about the same number of the reference images.
In few iterations the error on the position decreases below
the grid size. Some screen shots of the experiments are pre-
sented in Fig. 7 (1)(2)(3). Note that in (3) the real position
of the robot is locked.

Position Tracking

In Fig. 7 (4)(5)(6), the position tracking experiment is pre-
sented. The system is able to keep track of robot’s posi-
tion also when the robot takes long steps (about 200 cm) in
dead-reckoning mode (i.e. it travels for a while whithout
tacking any picture) with large odometric errors. In this
condition the system is able to correct the misleading in-
duced by odometry.

Kidnaped Robot

We tested our system on the kidnapped robot problem, i.e.
after the robot acquired its position, it is lifted and moved
to a different location, see Fig. 8 and Fig. 9.

The main difficulty faced by Monte-Carlo localisation
methods in the kidnapped robot problem is that when the
robot has a good localisation, the samples are generated
only in a tight cloud close to the estimated position of the
robot. Once the robot is moved in a new position with-
out perceiving this motion (kidnapping), it will continue to
generate the samples around the position it thinks is still
occupying, without generating any sample around the new
unknown position. If the robot does not have any samples
around the new position it will never recover from the lo-
calisation error.

The standard approach replaces a certain number of sam-
ples with others randomly drawn in the entire environment
[15]. The result obtained with our system implementing this
technique are depicted in Fig. 8. This technique is robust,
but in general requires many steps to re-localize the robot.
Instead, we exploited thetopological localisationand the
hierarchical localisationgave by our image-based localisa-
tion approach. At each step a number of samples (10% of
samples) are replaced with new samples drawn around the
topological localisations (i.e. the reference locations of the
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(1) (2) (3) (4) (5)

Figure 8: The kidnaped robot problem with the standard solution of generating a certain number of samples (about 50) in
random positions in the whole environment. Note the robot needs many steps in order to recover from the kidnapping.

(1) (2) (3) (4) (5)

Figure 9: The kidnaped robot problem with the proposedkidnaped strategythat uses thetopological localisationand the
hierarchical localisation. Note how the robot recovers the correct position after 3-4 steps.

most similar reference images), see Fig. 9. Thiskidnapping
strategyassures to concentrate the searching for the new
robot position only around probable locations. We notice
that this approach is possible, because we use an omnidi-
rectional sensor that provide, in a single observation, a more
accurate topological localisation than a prospective sensor.

The proposedkidnapped strategycan be applied also to
the standard Global Localisation with a significative speed-
up (almost twice faster) of the convergence of the estimated
position to the real position.

At the time of writing we are testing our system in more
challenging environments: the first is a long indoor corri-
dor with a loop where we face many false hypothesis; the
second is a large outdoor environment where we are inves-
tigating the different nature of brigthness variations and its
consequences in localisation process.

5 Conclusions

In this paper, we presented the two additional step we took
toward a robust image-based localisation system that can
operate in every type of environment. We presented our ap-
proach to the problem of lowering the computational and
memory requirements posed by the image-based localisa-
tion. This solution uses the Fourier trasforms of the om-
nidirectional images grabbed by the robot. We discussed
the advantages of this solution with respect to the solutions
devised by other authours. We focused on the possibility
offered by this representation to implement a hierarchical
localisation of the robot. To overcome the limitation of the
image-based localisation systems, i.e. the lack of robustness
in case of perceptual aliasing, we introduced a Monte-Carlo
localisation technique. We showed that this system is able
to track the position of the robot while moving and it is
able to estimate the position of the robot without any prior
knowledge on the real position. At the moment of writ-
ing, we are testing robustness of our system in more com-
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plex and large environments. We are experimenting within
a large outdoor environment and within an indoor environ-
ment with high perceptual aliasing due to a long corridor
with loop and several identical doors and junctions.
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