
Omnidirectional Image Based Localisation
using an XML-based Language for

Distributed Computing
Enzo Mumolo1, Emanuele Menegatti2, Enrico Pagello2,3

1 Smartlab, Department of Electrotechnics, Electronics and Computer Science,
The University of Trieste, Italy

2 Intelligent Autonomous Systems Laboratory (IAS-Lab)
Department of Information Engineering

The University of Padua, Italy
3 also with: Institute ISIB of CNR, Padua, Italy

Abstract.
In this paper we present a distributed computing system that enables a mobile robot

to exploit the computational resources available in the environment in which it moves.
Our application is image based localisation of a mobile robot using the properties of
the Fourier transform of omnidirectional images described in [12]. The image based
localisation task is quite demanding in terms of computational power and memory re-
quirements (i.e. the robot needs to store and to compare a large number of images);
therefore it is well suited to apply the ’Grid Computing’ paradigm. This work rep-
resents a preliminary effort toward the goal of building a computational GRID for
robotics applications. We developed an XML-based language, called XML-VM, that
enables to transfer among machines not only the data to be processed but also the
algorithm by which they have to be processed. Experimental results of off-line robot
localisation are reported.

Keywords: Mobile robot, localisation, omnidirectional images, XML, distributed com-
puting, virtual machine.

1 Introduction

The problem of robot localisation is one of the fundamental problems for autonomous mobile
robots. In the literature there are several approaches to mobile robot localisation, in this work
we used the image-based localisation approach. In the image-based localisation approach,
the robot is driven around to collect a set of images of the environment, called thereference
imagesat some distinguished positions, called thereference positions. The images are stored
in the visual memory of the robot. In the navigation phase, the robot infers its location by
comparing the current view of the environment, i.e. theinput image, with the reference
images stored in its memory. The reference image that is most similar to the input image
will give a topological localisation of the robot. In fact, the robot is closer to that reference
position than to any other reference position.

Figure 1: Left panel: omnidirectional camera. Right panel: the environment where the reference images were
acquired.

If the environment is large, the number of reference image that the robot needs to store
and to compare with the input image rapidly grows. People developed different approaches to
reduce the burden of this large collection of images: dimension reduction exploiting proper-
ties of eigen-images [11], heading constrain of the image sensor [13], etc. We chose to use an
omnidirectional camera to reduce the number of images necessary to represent the environ-
ment, see Fig.1. An omnidirectional image represents a complete view of the surroundings
of the environment in one shot, so there is no need to rotate the camera. Moreover, we do
not store the omnidirectional images of the reference images, but the much more compact
Fourier signatures (i.e. the Fourier transformations of each line of the images) associated
to every reference image. As demonstrated in [12], the Fourier signature is a complete and
compact representation of the omnidirectional image that compared to other data reduction
technique has the great advantage of being invariant to image rotations, so the orientation of
the robot does not need to be taken in consideration in the matching phase.

As described in previous works [14] [15], we developed an image-based Monte-Carlo
localisation system in which the likelihood of the robot position is given by the dissimilarity
between the input image and the reference images. The dissimilarity between the input image
Oi and the reference imageOj is calculated as theL1 norm

D(Oi, Oj) =
L−1∑
t=0

M−1∑

k=0

|Fit(k)− Fjt(k)| (1)

whereFit is the module of the Fourier transform of the t-th row of imageOi and k represents
frequency. It has to be noted. however, that image matching can be performed also using
computational simple space domain measurements without resorting to Fourier transform.
There are two main reasons which explains why the norm depicted in (1) is based on the
Fourier transform. First of all, the Fourier transform is computed only once, that is on the un-
known image, as the reference images are already Fourier transformed. Secondly, in this way
it is possible to use spectral distances, which could select image details which can improve
the matching results. While this latter consideration is left to future work, in this paper we
focussed on the distributed system.

The computations required by (1), in fact, can be very high if the number of reference im-
ages is high. For this reason we have designed a prototype of an XML-based language, called
XML-VM, for the distributed computation of (1). XML-VM is suitable for representing, in
a very general way, data structures and algorithms. It is important to note, in fact, that many
distributed robotic tasks are based on the distribution of both data and algorithms. For image
based localisation, for example, the data to distribute is an image in the FFT domain and the
algorithm is aL1 comparison. XML-VM provides a common set of rules for both data and
algorithms which is very important for operation in an heterogeneous environment.

XML-VM uses the XML functionalities such as: self validation of document structure,
default values for attributes, hyperlinks, entry replacement and internal referencing. Its main
purpose is to distribute, among heterogeneous remote nodes, data and algorithms described
using a generic model.

The XML-VM documents contain information about data structure and algorithms that
must be executed on the remote node. The remote node can apply an XSLT or CSS transfor-
mation or it can directly interpret the document. In this work each remote note runs a Java
program for the interpretation of an XML-VM document.

This paper is structured as follows. Section 2 describes the experimental environment of
the system, while in Section 3 the architecture of the system is reported. In Section 4 we
summarise the XML-VM language, while in Section 5 we describe some information on the
parsing and interpretation of a XML-VM program. In Section 6 some experimental result are
shown. In Section 7 some final remarks are reported.

2 A distributed system for robot localisation

The image-based Monte-Carlo localisation system described in previous works [14] [15] was
implemented on a robot that incorporated all the necessary computational power, but for
some application, like service robotics, we might be interested in building very cheap robot
that can exploit the computational power existing in the environment: i.e. desktop computer,
powerful server , etc. This computational power comes for free exploiting the unused CPU
cycles of machines situated in the same environment of the robot or, if the system could
access the Internet, also of remote servers. This is the computing paradigm known as ”GRID
Computing” [1].

The computing environments for GRID computing are usually very heterogeneous from
an hardware and software point of views; thus the first problem to be faced is the necessity
of developing virtual machines to assure portability among the various platforms. One of the
currently most popular virtual machines is Java. In fact, the Java virtual machine has been
designed for running in different computing environments, from dedicated systems to gen-
eral purpose machines. However, the Java virtual machine does not behave particularly well
against attacks or intrusions. Moreover, the execution time of a Java process is not determin-
istic, mainly because of the memory management.

Generally speaking, there are two main approaches for building a distributed program-
ming system based on Java virtual machines [10]. One is to give the programmer an unique
environment in which the threads are distributed on the different nodes by the operating sys-
tem. This solution is quite complex to develop, since many problems arise concerning both
implementation and performance. Projects in this area include the IBM cluster VM for Java,
the Kaffe virtual machine and the JDSM [9].

Figure 2: On the left: the name resolver mechanism. On the right: the system structure

Other solutions are based on the development of communication mechanisms such as, for
example, message passing. A typical approach is RMI (Remote Method Invocation). Other
approaches are based on extensions of Java with parallel programming linguistic constructs.
An example of the latter approach is JavaParty, developed at the University of Karlsruhe [5].

In conclusion, it emerges a need for a system which allows a distribution of data and
algorithms among a large number of heterogeneous machines. Using XML as a framework
to describe both data and algorithms we can provide a common base which different platforms
can manage in different ways. One way can be to use transformation sheets, and another way
is to write an interpret. In this work an XML-VM interpret has been written in Java, and the
distribution mechanism is based on XML-RPC packages.

Remark1

The language XML-VM describes data and algorithms for distribution on remote nodes of
a distributed system; the node which receives the XML-VM document must interpret it to
execute the algorithm.

Remark2

XML-VM is a virtual machine for robotics applications since it provides a common set of
rules for description of data and algorithms. Its aim is to execute distributed algorithms on
heterogeneous platforms

Moreover, writing the interpret in C language, the problems related to non determinism
of the execution can be avoided.

3 System architecture

The distributed system described in this paper and described in Fig.2 is structured in a peer-
to-peer style, limiting the tasks of the robot of the system mainly to the activation of the
remote methods, the collection of the result and the measurements of the performances of the
system.

The robot does not know nearly anything about what is happening in the remote nodes,
where the computation effectively takes place. Each algorithm decides if and when to call

other remote nodes and the method to execute. On the robot a particular daemon is run-
ning, called ’name resolving daemon’, which knows what remote nodes are available. When
a generic node ’A’ needs to fork a procedure on a remote node, it calls the robot for de-
termining the address of an available remote node. At this point, node ’A’ contacts directly
the remote node for sending information on the distribution of the XML-VM code and its
remote execution; this procedure is executed each time a remote call is needed. The remote
node is therefore informed about what XML document it has to download and interpret, and
downloads the related code from the robot, which acts as a Web Server.

Clearly, node ’A’ must join the conclusion of the remote call by waiting for the return of
results. This procedure is implemented through the use of the linguistic framework Fork/Join1

Our experimental results were obtained with a cluster of 16 computers made available to
this work from the Parallel Programming Lab of the University of Karlsruhe, Germany. Each
machine is equipped with Pentium III bi-processors at 800 MHz, with 512 Mbyte of memory
and running a Linux Operating System; the machines which make up the cluster shares a
disk.

In addition to the cluster described above, a machine located in the Trieste Lab has been
used to represent the robot. The machine used a Pentium II processor at 400 MHz and runs
a Windows 2000 Operating System. The configuration of the system is described in Fig.2,
right panel.

4 The language XML-VM

In this Section we will summarise the main characteristics of the XML-VM language. First
of all, it is worth noting that two sets of memory are generated, declared in Java as Array
of Object, which simulate registry and a virtual disk available to the virtual machine. The
registry is constituted by 32 cells, while the virtual disk is constituted by 10000 blocks of
data.

All the data related operations take place on the registers. There are no variables, and
every operation must be performed specifying the involving register’s cells. The storage of
data on the virtual disk is performed exclusively through the STORE instruction. Instead,
the LOAD instruction is the only instruction that allows to copy the content of the cells of
the virtual disk into the registers. Ten different data types are implemented in the language;
nine of them follow the Java data types: int, long, short, byte, float, double, boolean, char
and string, while the tenth data type, defined in XML-VM as ”index”, represents a pointer to
another data cell in the virtual disk or in a register. The index data type can be used by the
load, store and procedure call operations; moreover, this type is fundamental for parameter
passing to the remote methods. The syntax of the language exploits the use of tags attributes
as integrating parts of the instructions.

The tags are divided into arithmetic, data movement and calling tasks. Other tags are
devoted to specialised functions, as highlighted below. There is a number of FFT tags, such
as<fft> and<fftmod>. For example:

• <FFT type=”–” from=”r1” to=”r2”/>

This tag refers to a data structure described in the ‘type’ attribute. The actual data are con-
tained in the virtual disc starting from the location expressed in ‘r1’ and the computed spectra

1The linguistic framework Fork/Join has been introduced by M.Conway [3] and J.Dennis [4]

is stored in the virtual disc starting from the location indicated in ‘r2’.

• <STOREIMAGE type=”—” index=”x” from=”y”/>

This tag, when interpreted, performs the following operations: the image referring to the
data structure indicated in the ‘type’ attribute is writtensynchronously (in the sense that
processes on the remote node wait for the writing completion) on the remote disk. The name
of the remote file is pointed by to the ”x” cell and the pointer to the data to be written is stored
in the ”y” cell. On the remote side, a daemon server manages this type of requests.

5 Parsing and interpretation

One of the most complete and used XML parser is the Apache Xerces XML Parser. Xerces
supports SAX 1.0 and 2.0; SAX stands for Simple Api for XML. Once we completed the first
version of XML-VM virtual machine, embedding the XML-RPC protocol for communication
between remote nodes, we noticed a decrease of performance due to the slowness of the XML
parser. In order to overcome this overhead we decided to use the same parser chosen by the
developers of Apache XML-RPC, that is MINML.

The parser performs a complete analysis of the XML-VM document, expanding all the
tags, attributes, values and calls the appropriate methods coded in Java. The high performance
obtained with MinML is mainly due to the fact that the parser does not process the Data
Type Definition (DTD). The interpreter of XML-VM language has been written in Java for
portability reasons; the interpreter executes the action associated to the XML tags as they are
analysed by the parser.

6 Experimental results

The goal of the experimental analysis is to study the performance of the Grid computing sys-
tem presented in this paper. In general, the efficiency of a distributed application is related to
various factors, including: the network speed, the load of the remote nodes, the homogeneity
of the machines which participate to the Grid, the degree of parallelism of the algorithm, the
protocol used for method distribution.

The XML document interpreted on the robot is highlighted below.

<?xml version=’1.0’?>
<xmlvm>
<start>
<!-- Initialization tags -->
<structure name="ppm">

<array name="pixel" description"ppm pixel">
<format>

<integer width="3"/>
</format>
<axis name="x" axisid="pixel">

<axisvalues count="3" start="1" step="1" />
</axis>

</array>

<array name="img" description="ppm picture">
<format>

<integer width="5"/>
</format>
<axis name="x" axisid="ximg">

<axispoints element="pixel"/>
<axisvalues count="512" start="1" step="1" />

</axis>
<axis name="y" axisid="yimg">

<axispoints element="pixel"/>
<axisvalues count="512" start="1" step="1" />

</axis>
<!-- other data structure definitions follow -->
</structure>

<loadimage type="img" file="acq_image" index="10" to="5" />
<load register="r1" index="5"/>
<fftmod type="fftimg" from="r1" to "r2"/>
<storeimage type="fftimg" index="11" from="r2"/>
<fork id="N01" file="http://140.105.50.110:80/Texel.xml"

name=Texel" to "m8[m7]" />
. . .
<fork id="N16" file="http://140.105.50.110:80/Texel.xml"

name=Texel" to "m8[m7]" />
. . .
<join topointed="m5[m4]"/>
<!-- next tags extract from the output cells the best images
<!-- with their related distances -->
<!-- other tags sort the images with increasing distances -->

</xmlvm>

The role of the Fork tag is to start a section of the algorithm, in parallel to other sections,
on a remote node whose address is chosen by the name resolver. In this case the ‘fork’ tag is
used to distribute on the remote node identified to the ‘id’ attribute the XMLVM document
called ‘Texel.xml’. Texel.xml contain a description of the data structure and a description of
the algorithm to compare the unknown image with the reference images.

The acquired image is first represented as Fourier signatures with the ‘fftmod’ tag and
then is transmitted to the remote cluster where it will appear as a shared file. The writing is
synchronous, so that the image comparisons which are performed thereafter can be started
when the image is stable. The FORK tags distribute the comparison tasks on the remote
nodes. The cluster nodes access, through the shared disk, all the reference images previously
acquired and the unknown image, all of them are given as Fourier signatures. The method
”Texel.xml” performs a small number of comparisons, from 3 to 9. Since sixteen remote
methods are distributed, this corresponds to 48 to 144 image comparisons.

The computing time is dependent on the number of machines used in parallel for the
elaboration of the algorithm. What it is expected is an hyperbolic behaviour, since the T(n)
function should be of the type 1/n, where n is the number of machines.

In Fig.3, left panel, the computation time with 3, 6 and 9 image per remote method
”Texel.xml” is indicated with points, triangles and squares respectively. As it can be observed,

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

Number of nodes

E
xe

cu
tio

n
tim

e
[s

]

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of nodes

S
pe

ed
−

up

Figure 3: (Left) Absolute time versus number of nodes for the comparison of 48, 96 and 144 images. (Right)
Speedups versus the number of remote nodes. The curves represented with dots, triangles and squares are related
to 48, 96 and 144 total comparisons respectively.

the experimental measurements of Fig.3 confirm the expected theoretical results: the absolute
time versus the number of machines follows a hyperbolic curve. With 16 nodes, the compar-
ison absolute time is approximately 2, 2.5 and 4 seconds for 48, 96 and 144 comparisons
respectively. In Fig.3, right panel, the speedups related to the XML system are shown.

Again, with dots, triangles and squares the results pertaining to 48, 96 and 144 total com-
parisons respectively are represented. The last picture gives rise to several comments. First
of all the results for a different number of comparisons, mainly for 96 and 144 images, are
very irregular. Second, it appears that in same case, for example with four nodes, the speedup
is greater than the ideal curve. The irregularity of the results are due to the different loading
factor of all the nodes but also for another reason, that is for caching. In fact, in the first run
the first machine have to load all the required reference images from the disk, thus requiring
a high number of disk I/O. If the number of nodes increases, some images are already loaded
in the system and therefore the computation time is reduced, leading to a speed-up greater
than the ideal one, which is based on the first run, which comprises all the I/O requests. As
a second remark, slower machines in the GRID quickly lead to a performance decrement of
the whole system down to the speed of the slower machines.

7 Conclusions and Acknowledgements

In this paper we dealt with the problem of designing and developing an efficient architecture
based on XML for realising a distributed image-based localisation for mobile robots based
on the Grid approach. By means of XML it is possible to realise an efficient Grid system;
the distribution of data and algorithms is done by means of HTTP protocols and the code
execution is performed with an interpreter written in JAVA. The scalability of the system is
realised using a name resolving daemon.

Many problems of the GRID for robotics application are still open. For example, the
distribution of the workload, which is related to the choice of the nodes where the tasks are
distributed, has not been considered. Another open aspect is the fault tolerance of the system.
Ongoing activities are the development of portable C++ libraries for XML-RPC, parsing and
XML-VM interpretation.

8 Acknowledgements

The authors wish to thank: Dr. Bernhard Haumacher of the Parallel Programming Lab of the
University of Karlsruhe for making available to us the cluster of machines used for imple-
menting the system. We wish to thank also Prof. Hiroshi Ishiguro of Osaka University (Japan)
for the support to the first part of this work.

This research has been partially supported by: the Italian Ministry for the Education,
the University, and Research (MIUR), the Italian National Council of Research (CNR), The
University of Padua, and the University of Trieste.

References

[1] C. E. Catlett, J. Toole, ”Testbeds: From Research to Infrastructure”, in ”The Grid: Blueprint for a New
Computing Infrastructure,” Ian Foster and Carl Kesselman, ed., Morgan Kaufmann, August 1998.

[2] Ray Jinzhu Chen, ”A Hybrid Solution of Fork/Join Synchronization in Parallel Queues”, IEEE Transactions
on Parallel and Distributed Systems 12(8), August 2001

[3] M Conway, ”Multiprocessing system design”, Proc. Of the AFIPS Fall Computer Conf., 1963

[4] J.G.Dennis, E.C.Van Horn, ”Programming semantics for multiprogramming computations”, Communica-
tions of ACM, March 1966

[5] http://www.ipd.uka.de/JavaParty/features.html

[6] Doug Lea, ”A Java Fork/Join Framework”, ACM Java Grande 2000 Conference, June 3-5 2000

[7] Y.C.Liu, H.G.Peros, ”A Decomposition Procedure for the Analysis of a Closed Fork/Join Queuing System”,
IEEE Transactions on Computers, vol.40, n.3, march 1991

[8] R.Nelson, A.N.Tantawi, ”Approximate analysis of Fork/Join Synchronization in Parallel Queues”, IEEE
Transactions on Computers, vol37, n.6, June 1988

[9] Y.Sohda, H.Nakada, S.Matsuoka, ”Implementation of a Portable Ssoftware DSM in Java”, ACM Java-
Grande Int. Conference, June 2001

[10] M.Surdeanu, D.Moldovan, ”Design and Performance Analysis of a Distributed Java Virtual Machine”,
IEEE Transactions on Parallel and Distributed Systems, Vol.13, N.6, June 2002

[11] H. Aihara, N. Iwasa, N. Yokoya, and H. Takemura. Memory-based self-localisation using omnidirectional
images. In A. K. Jain, S. Venkatesh, and B. C. Lovell, editors,Proc. of the 14th International Conference
on Pattern Recognition, volume vol. I, pages 1799–1803, 1998.

[12] H. Ishiguro and S. Tsuji. Image-based memory of environment. InProceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS-96), pages 634–639, 1996.

[13] B. Kröse, N. Vlassis, R. Bunschoten, and Y. Motomura. A probabilistic model for appareance-based robot
localization.Image and Vision Computing, vol. 19(6):pp. 381–391, April 2001.

[14] E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro. Hierarchical image-based localisation for mobile
robots with monte-carlo localisation. InProc. of European Conference on Mobile Robots (ECMR’03), page
13–20, September 2003.

[15] E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro. Image-based localisation monte-carlo localisation
without a map. InAI*IA 2003: Advances in Artificial Intelligence : 8th Congress of the Italian Association
for Artificial Intelligence, Proceedings, page 423–435, September 2003.

