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Abstract— This paper reports the new steps undertaken
in our work aimed to demonstrate the effectiveness of an
omnidirectional vision sensor when conjugated with the
Spatial Semantic Hierarchy. The Spatial Semantic Hier-
archy was proposed by Benjamin Kuipers as a method for
map building with robots. In our work, a robot builds a
topological map of an unknown environment, using the Spa-
tial Semantic Hierarchy and an omnidirectional vision sys-
tem as the only sensor. In the paper, we present the new
omnidirectional mirror and the new robot. The new mir-
ror was expressly designed for this application, the robot’s
chassis was designed to create a synergy with the omni-
directional vision sensor. A complete description of our
project is reported, underlying the strict link it is possible
to create between omnidirectional vision and the Spatial Se-
mantic Hierarchy. Experiments in simulated environments
and in real environments produced positive results.

I. Introduction

Since the beginning of mobile robotics the map
building problem was one of the most addressed by re-
searchers [4]. Several researchers used omnidirectional
vision for robot navigation and map building becuse
of its wide field of view. Omnidirectional sensors offer
in one shot a global view of the surroundings. So, the
robot does not need to look around using moving parts
(cameras or mirrors) or turning on the spot [22].
The global view offered by omnidirectional vision is

specifically suitable for highly dynamic environments
like the popular international RoboCup competitions
(www.robocup.org). Lima used an omnidirectional
sensor for the self-localization of the robot in the field
of play. In this application, the omnidirectional mirror
is designed to give a bird’s eye view of the pitch. This
permits the exploitation of the natural landmarks of
the soccer field (goals and field lines) for reliable self-
localization [11]. In another robot team, Asada used a
goal-keeper fitted with an omnidirectional vision sys-
tem with a learning capability. To reduce the learning
time, the omnidirectional sensor was fitted with an at-
tention control provided by an active zoom mechanism
that permits to select a restrict area of the omnidirec-
tional image [18]. In our team, “Artisti Veneti”, we use

omnidirectional vision sensors both on the goal-keeper
robot and on two of the attackers. In [13] is described
the approach we used to design the two different mirror
profiles of the goalie and of the attacker. The profiles
of the mirrors are designed on a task dependent basis.

Fig. 1. The omnidirectional vision sensor of the robot. Note
the multi-part mirror, whose profile is depicted in Figure 11

The main disadvantage of omnidirectional vision
with respect to perspective vision is the poor reso-
lution of the images. In the map building task the
low resolution of the omnidirectional images is not a
shortcoming, we are more interested in the position
of the objects in the environment, than in the details
of their surfaces. An example of a successful naviga-
tion with very low-resolution omnidirectional image is
reported in [2]. However, for particular applications,
there might be an interest to observe at higher reso-
lution certain areas around the robot. Within certain
limits, it is possible to design mirrors that maximize
the image resolution in the most interesting regions of
the scene. The robot we used in this work mount a
new mirror, whose profile was designed to increase the
image resolution near the base of the robot [13]. The
chassis of the robot was designed in order to avoid



occlusions of the floor around the base of the robot.
This was done to solve some of the problems encoun-
tered in the first part of this project, where we used a
robot, whose chassis was not optimized to be used in
conjunction with an omnidirectional vision sensor [16].
Most of the systems presented in literature use the

knowledge of the motion of the robot to interpret the
visual data. In this work, the movements of the robots
were extract from the visual data, without using the
information from the odometers or the knowledge of
previous commands sent to the motors, as it was done
in [23]. In other words, the robot had to “infer” its
movements from the vision sensor1.
The aim of this paper is to show that a catadioptric

omnidirectional sensor is a good sensor for the Spa-
tial Semantic Hierarchy (SSH) [8]. In Section II, we
summarise the basics of the SSH, focusing on the con-
cepts exploited by our vision system. In Section III,
we present the omnidirectional sensor used. The om-
nidirectional mirror is different from the one used in
our previous work [16]. In Section IV, we show the
strict link that is possible to create between the SSH
and the omnidirectional frame sequences. In Section
V, we state the assumptions made in our research. In
Section VI, we explain which features and events we
decided to extract from the omnidirectional sequences.
In Section VII, we present the simulated experiments
and the actual experiments we carried out to test our
system. In Section VIII we will sketch the directions in
which our research is evolving. Eventually, conclusions
are drawn in Section IX.

II. Spatial Semantic Hierarchy

The Spatial Semantic Hierarchy (SSH) is a model
of the knowledge of large-scale spaces of humans, in-
tended to serve as a “method for robot exploration and
map building” [6]. The SSH is made up of several lay-
ers [7]. Each layer can be implemented independently,
even if they strongly interact. The layers are:
• The Sensory Level is the interface with the agent’s
sensory system.
• The Control Level describes the world in terms of
continuous actions called “control laws”. A control
law is a function which relates the sensory input with
the motor output and it is retained until a transition
of state is detected with a function called a distinc-
tiveness measure.
• The Causal Level abstracts, from the continuous
world, a discrete model of the environment composed
of views , actions and the causal relations between
them. A view is defined as the sensor’s reading at a
distinct place. A distinct place is a place where a

1On the possibility to estimate the egomotion with omnidirec-
tional vision sensor, see the work of Svoboda [19]
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Fig. 2. A rough sketch of the mirror profile where the curvatures
of the different sections are exaggerated for sake of clearness.

transition of state is detected. An action is defined as
the application of a sequence of control laws. It is con-
venient to classify actions into two categories: travels
and turns. “A turn is an action that leaves the agent
at the same place. A travel takes the agent from one
place to another” [17].
• The Topological Level represents an environment
with geographical features in the world, such as places,
paths and regions connected or contained one in the
other.
• The Metrical Level augments the topological rep-
resentation of the environment by including metrical
properties. This may be useful, but is seldom essential.
So far, the SSH has only been implemented either

on simulated robots or on real robots with very simple
sensors (such as sonars). As far as we know, no at-
tempt to use an omnidirectional vision sensor has been
made. In the following, we will present the omnidirec-
tional sensor used and we will show why an omnidirec-
tional sensor is a good sensor for building a topological
map within the Spatial Semantic Hierarchy frame.

III. Omnidirectional Sensor

The mobile robot used in this work is fitted with
an omnidirectional sensor composed of a perspective
camera pointed upwards at the vertex of a multi-part
omnidirectional mirror. The robot is depicted in Fig-
ure 10 and it is one of the players of the Artisti Veneti
RoboCup team.
The optical axis of the camera and the geometrical

axis of the mirror are aligned. The mirror is supported
by a transparent Perspex cylinder. The shape of the
mirror is designed in order to maximise the resolution
in the regions of interest. This shape permits better
exploitation of the information it is possible to gather
from the environment with respect to the mirror we
used in [16]. In addition, the new mirror is smaller
and lighter than the old one, compare the two mirror
profiles presented in Figure 11 and in Figure 14, noting
the different scales in the plots.
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Fig. 3. The conical projection showing how a vertical line is
mapped in a radial line in the image plane (adapted from Yagi).

The mirror used is a multi-part mirror, where each
segment is designed to view a specific region of space.
The design of this mirror was inspired by the work of
Marchese and Sorrenti [10]. To understand the mirror
profile consider the rough sketch in Figure 2. The in-
ner part of the mirror (Part A in Figure 2) is designed
to view objects from 60 cm around the robot up to
six meters, without displaying the body of the robot.
This part produces the main part of the image. As
it is evident from Figure 6b) and Figure 12, the area
close to the center of the image is strongly deformed,
because of the derivative’s discontinuity at the vertex
of the mirror. This is not a disadvantage. In fact, with
this choice, the central part of the image is not wasted
displaying the body of the robot and can be used to
discriminate between vertical edges and accidentally
apparent radial edges [12]. The middle ring (Part B)
permits to view very distant objects and can be used
for better planning of the exploration movements, us-
ing the ideas about the catastrophe theory exposed in
[21]. The external ring (Part C) displays at higher res-
olution (compared to the resolutions attainable in the
other two sections) the area closer to the robot. This
will be useful for the design of more complex reactive
control laws like corridor following and wall following.
The actual mirror profile is displayed in Figure 11. The
height of the mirror tip from the floor, i.e. 48 cm. The
pin hole of the camera is at 32 cm over the floor.
Consider Figure 3 to understand how an omnidirec-

tional sensor maps the scene into the image plane2.
The vertical edges in the scene are mapped in the im-
age plane as radial lines originating from the point
corresponding to the tip of the mirror. The azimuth
of a radial line in the image corresponds to the azimuth
of the vertical edge in the scene, as viewed from the
optical axis of the camera. The horizontal lines are
mapped to curved lines, the shape of which depends

2In this figure a conical mirror is represented, but the proper-
ties which are illustrated apply to any kind of omnidirectional
mirror.
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Fig. 4. The “exploring around the block” problem. The prob-
lem of recognizing the same place under different state labels.

strongly on the geometry of the mirror. Note that the
omnidirectional mirrors have a rotational invariance.
If the sensor rotates through a certain angle about the
vertical, the relative position of the objects in the im-
age does not change. The image is only rotated and all
the objects appear to have experienced an azimuthal
shift equal to the angle of rotation.

IV. Omnidirectional vision suits the SSH.

In the introduction we reported the reasons for
the success of omnidirectional vision sensor in the
map building task. When working within the SSH
frame, other benefits of omnidirectional vision come
into view.
The omnidirectional images can be strictly corre-

lated with the views3 introduced in the causal level
of the SSH. A view is the sensor reading at a distinct
place, the omnidirectional image is a global reading of
the surrounding at a certain place. Associating views
with omnidirectional images simplifies the data inter-
pretation. Consider the following example. The robot
stands in a distinct place. It takes an omnidirectional
picture. It turns on the spot and then it takes a new
picture. The new omnidirectional image will be the
old one rotated by the same angle the robot rotated.
The two pictures can be considered the same view, be-
cause of the rotational invariance. So, the robot will
experience the same view before and after the action
it took. This permits the robot to recognize that the
action it took, was a turn, i.e. an action that leaves
the agent at the same place. With a perspective cam-
era the robot would have a totally different view after
a turn on the spot. It would be really difficult to infer
it is at the same place.
The rotational invariance and the link between

views and actions permit a straightforward solution
to the problem of exploring around the block, i.e. the
problem of recognising the same place under differ-
ent state labels, see Figure 4. Here the robot is mov-
ing around the block following the arrows. When it

3In the following, the bold font is used to indicate we are using
the SSH meaning of the words.



Fig. 5. The virtual environment. The robot is the dark-gray
square with the white sphere on the top, positioned in the left
most part of the corridor.

reaches Place 5 from Place 4, it is very difficult to rec-
ognize it as the previously visited Place1, unless it is
equipped with an omnidirectional camera and it makes
use of the rotational invariance. Using the SSH termi-
nology, it is easy to spot whether the current view is
the same which has been experienced before and there-
fore to consider this view not as a different place but
as the same place reached from a different direction.
The distinctiveness measure of the SSH permits to

abstract distinct places from the continuous world.
This is a function of the surrounding of the robot. An
omnidirectional sensor permits the creation of a more
effective distinctiveness measure that takes in to ac-
count all the feature of the world around the robot. As
we will see in the Section VI, it is possible to identify
in the omnidirectional frame sequence a set of events
strictly related to the topological structure of the en-
vironment. These events correspond to the disconti-
nuities of the distinctiveness measure [21]. The occur-
rence of such a discontinuity determines the transitions
of state in the SSH.

V. Assumptions

In this work, we make use of some assumptions:
• The robot is moving in an indoor environment. This is a
man-made environment like a building;
• The robot can either turn on the spot, or move in a straight
line. It cannot make more complex movements;
• The robot does not have direct access to the information
about its movements;
• The lighting in the environment does not change during the
motion of the robot;
• The objects present in the scene are static: they do not change
their positions;
• The floor is almost flat and horizontal;
• The walls and the objects present in the scene have vertical
edges and surfaces;
• The axes of the camera and the mirror are vertical;

VI. Features and Events Selection

We built a simulator to generate omnidirectional im-
ages of a virtual environment. The aim of the simula-
tor was to permit us to carry out extensive preliminary
tests to extract clues about the features and the events
that could be extracted from the omnidirectional im-
age sequence. These features and events will be used
to design the distinctiveness measure that abstracts

distinct places from the continuous world. In this first
part of the research, simulated images were preferred
over real images because the simulations provide an en-
vironment which was easily controllable, repeatable re-
configurable. Eventually, the vision system was tested
both on simulated and real image sequences. The om-
nidirectional images were created using POV-Ray, a
free software package for creating three-dimensional
graphics (www.pov-ray.org). The virtual environment
is designed to present typical views of a man-made en-
vironment to the robot (i.e. corridors, doors, corners,
objects, etc.), Figure 5.

(a) (b)

Fig. 6. (a) The perspective view of the virtual environment.
The robot is the dark-gray square with the white sphere on
top of it. (b) How the same scene is seen from the simulated
omnidirectional sensor. Note that, because of the mirror profile,
there is a strong distortion at the image center and that the body
of the robot does not appear in the image.

Selected features are extracted from each omnidi-
rectional image. When the robot moves the selected
features appear to move in the sequence of omnidi-
rectional images. The movement of the features origi-
nates the topological events we use within the SSH.
These events happen at single points in the space,
therefore they can be used to identify distinct points
in the space. This is the key that permit us to extract
from the continuous world a set of distinct places.
The features we extract from the pictures are the

vertical edges present in the environment [24]. The
vertical edges are features strictly binded to the ob-
jects present in the world and therefore easily recogniz-
able by humans. Several authors selected non-intuitive
features, instead, like brightness patterns or other im-
age features only loosely related to the objects [20] [5].
We believe that for an application like patrolling or re-
mote surveillance the human readability is a must, so
we selected features closely related to the objects in the
environment, as in [9]. Vertical edges present a double
advantage: in a man-made environment like an office
or a building, they are diffusely present 4 and they are

4Examples of vertical edges are doors, the sides of a cabinet,



easy to extract from the image. In fact, as mentioned
in Paragraph III, the vertical edges are mapped into
radial lines by the omnidirectional mirror. Therefore,
they can be straightforwardly extracted with the use
of a Hough transform [3] simplified by a opportune
choice of the reference frame.
When the robot moves in the environment the verti-

cal edges appear to move in the image. The movements
of the vertical edges in the frame sequence generates
the topological events. While the robot wanders sev-
eral events happen: new objects come into view, other
objects disappear from the image, the robot enters a
door or a corridor, etc. Objects come into view either
because the robot approaches an object that was too
far away to be in the field of view or because the object
is no longer occluded by another one. Objects enter in
the field of view of the vision sensor more than six
meters apart. This is a big distance from the sensor.
Because we are interested in what happens in the sur-
rounding of the robot, we will focus only on the process
of occlusion of the object’s edges by other objects.

(a) (b)

Fig. 7. (a) Event 3: the robot enters a corridor (on the left):
the two edges are 180 apart (b) Event 4: the robot sees two
pairs of edges at 180.

During a translation following events can happen:
1. a new edge exits from occlusion;
2. an edge disappears occluded by another object;
3. two vertical edges are 180 apart in the vision sensor;
4. there are two pairs of vertical edges 180 apart.
Event 3 is particularly meaningful. In fact, it occurs

when the robot enters a door or a corridor, i.e. a
natural topological division of the space, see Figure 7.
Each topological event causes a transition of state in
our system, i.e. once one of these events occur a new
place is abducted from the continuous space. The
result is a segmentation of the space, see Figure 9.
During a rotation there is no relative displacement

from the robot and the objects. No edge appears or
disappears. In other words, the image does not change,
it is only rotated around its center. An invariance
for rotation must be introduced in the distinctiveness
measure.

the legs of a chair, etc.

= Translation

= Rotation on the spot

Fig. 8. The path of the robot through the virtual environment.

= Translation

= Rotation on the spot

Fig. 9. The segmented path

VII. Experiments

We performed experiments in the simulated environment and
in the real world. In these experiments, we tested the software
for extracting the features and the events from the image se-
quences.

In the simulated experiments, the robot traveled through the
virtual environment along the path shown in Figure 8. The path
is composed of two rotations and three translations. The vision
system software is able to track the edges all along the path and
to detect the topological events. The edges present in the picture
are extracted with a Canny edge detector [1]. The tracking of
the edges is done using the colour information present in the
image. The vision software is able to recognize the turns and
to retrieve the angle by which the robot turned. The output
of the vision system is a division of the virtual environment
into distinct places, in Figure 9 some of the segmenting lines
encountered along the path are drawn. A new place is created
every time a topological event is detected and the corresponding
view is stored. In the end, we obtain a topological map of places
(associated to views) connected by actions: travels or turns.

In the experiments with the real robot, we encountered an
implementation problem. Despite the vision system software
working properly in the simulations, the tracking of the vertical
edges worked properly when the robot translated but it was
not reliable when the robot turned on the spot. See Figure 12,
for a picture acquired by the vision system of the real robot.
This problem prevented the production of topological maps of
paths containing turns. We discovered that the problem was
caused by reflections on the Perspex cylinder. At the moment
of writing, we solved the problem and we are carrying on new
experiments with the real system.

As stated before, we are using a new robot mounting a new
omnidirectional mirror we designed for this application. The
chassis of the new robot has been shaped in order to avoid un-
necessary occlusions in the omnidirectional images. The tripod
supporting the camera has a pyramidal shape and the robot
base is rounded avoiding corners resulting in a chassis with cir-
cular symmetry. Differently from the chassis of the old robot
this one was designed thinking of mounting an omnidirectional
vision sensor on top of it. In Figures 10 and 13, you can see re-
spectively the new robot, called Nelson, and the old one, called
Caboto. The new robot has a rounded chassis in order to avoid
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Fig. 10. The new robot (Nelson) with its omnidirectional sen-
sor.
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Fig. 11. The actual mirror profile of the new omnidirectional
mirror designed for this application.

Fig. 12. An omnidirectional picture acquired by Nelson while
it moves in the test environment.
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Fig. 13. The old robot (Caboto) with its omnidirectional sensor.
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Fig. 14. The actual mirror profile of the old omnidirectional
mirror.

Fig. 15. An omnidirectional picture acquired by Caboto while
it moves in the test environment.



to display the corners of the chassis in the image. Figure 11
shows the actual profile of the new multi-part mirror, while Fig-
ure 14 presents the actual profile of the old mirror that Prof.
Bonarini lent us. The two profiles generate quite different om-
nidirectional images. In Figure 12 and 15 are presented two
snapshots of the same scene acquired with the new and the old
mirror.

VIII. Future work

Up to now, the middle part of the mirror is not used. In
the future, we will implement an algorithm that will guide the
exploration of an unknown environment using the ideas from
catastrophe theory exposed in [21]. This should assure the robot
to explore all interesting location not previously visited. Also
the outer mirror’s ring is not fully exploited. It will be useful
for the future design of more complex reactive control laws like
corridor following and wall following. Up to now, we are using
this high resolution area of the image just to detect with a good
precision the baseline of the walls and objects in the world.

In addition, we are porting the techniques developed in this
project to a multi-robot project. In that project, a team of
robots perform a parallel exploration and mapping of an un-
known environment, merging their local maps, built within the
SSH frame, in a global map using techniques of distributed vi-
sion [15] [14].

IX. Conclusions and Acknowledgments

In this paper, we reported the steps taken to overcome the
limitations raised in the first part of this project [16]. The body
of the robot has been reshaped in order to avoid occlusions and
to obtain an omnidirectional image offering a more complete in-
formation on the surroundings. The omnidirectional mirror has
been changed with a multi-part mirror composed of three parts
at different resolution each of them devoted to the observation
of a particular region around the robot. In the paper, we did
not discuss only these practical issues but we gave a detailed
description of the project and we showed that a catadioptric
omnidirectional vision sensor is a good sensor for building a
topological map using the Spatial Semantic Hierarchy.

We wish to thank: Prof. Benjamin Kuipers of the Univer-
sity of Texas at Austin, U.S.A. for his comments and advices
on this work, Prof. Bob Fisher of the University of Edinburgh,
U.K. for his advice and support, Dr. John Hallam of the Uni-
versity of Edinburgh, U.K. for his supervision to this project,
Prof. Andrea Bonarini of the Politecnico of Milan, Italy for
lending us the mirror shown in Figure 13 and the student of the
Artisti Veneti RoboCup team who built the new robot. This re-
search has been partially supported by: the EC TMR Network
SMART2, the Italian Ministry for the Education and Research
(MURST), the Italian National Council of Research (CNR) and
by the Parallel Computing Project of the Italian Energy Agency
(ENEA).
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