
Explicit Knowledge Distribution in an
Omnidirectional Distributed Vision System

E. Menegatti †, G. Cicirelli §, C. Simionato †, T. D’Orazio §, E. Pagello †, H. Ishiguro ‡

† Intelligent Autonomous Systems Laboratory
Department of Information Engineering (DEI)

University of Padua, Padova, Italy
§ Institute of Intelligent Systems for Automation

National Research Council, Bari, Italy
‡ Department of Adaptive Machine Systems

Osaka University, Suita, Osaka, 565-0871 Japan

Abstract— This paper presents an Omnidirectional Dis-
tributed Vision System that learns to navigate a robot in
an office-like environment without any knowledge about
the calibration of the cameras or the robot control law.
The system is composed of several omnidirectional Vision
Agents (implemented with an omnidirectional camera and a
computer). The first Vision Agent learns to control the robot
with SARSA(λ) reinforcement learning, using the LEM

strategy to speed-up learning. Once the first Vision Agent
learnt the correct policy, it transfers its knowledge to the
other Vision Agents. The other Vision Agents might have
different intrinsic and extrinsic camera parameters (that are
unknown), so a certain amount of re-learning is needed.
Reinforcement learning is well suited for this. In this paper, we
present the structure of the learning system and the discussion
about the optimal values for the learning parameters. During
the experimentation the learning phase of the first agent has
been carried out, then the knowledge propagation and the
re-learning stage of three different agents have been tested.
The experimental results demonstrate the feasibility of the
approach and the possibility to port the system on the actual
robot and cameras.

I. INTRODUCTION

Recently Reinforcement Learning (RL) [7] has been
receiving great attention by AI and robotics communities
[13], [8], [9], [10]. The main attractive of RL is the
possibility of a continuous and on-line learning without
the need of a teacher which indicates the best association
between situations and actions (policy). By using RL, the
learning agent acquires the control policy by directly in-
teracting with initially unknown environments and then by
discovering the best actions in each encountered situation,
simply by trying them. The only feedback to the agent,
coming from the environment, is the reward (credit or
blame) received for each situation/action pair. The final aim
of the RL agent is to learn an optimal policy maximizing
a value function that estimates the expected cumulative
reward in the long term. In this work we apply the RL
paradigm to an Omnidirectional Vision Agent which learns
to guide a robot from an initial position to a desired one
(target). Our aim is to build a network of un-calibrated
Vision Agents (VA), with overlapping fields of view, able

to autonomously learn to navigate a service robot in
unmodified human environments. Each VA will take the
control of the robot every time it enters its field of view.
Several projects explored the possibility to support the
human and robot activity in the environment with a network
of smart sensors [1], [2]. In [6] we proposed to use a
pre-existing network of surveillance cameras to navigate a
mobile robot, i.e. to implement an intelligent infrastructure
able to support robots’ activities in a way similar to the
ones proposed in [3], [4]. The difference between the work
in [6] and the one proposed in this work is the learning
procedure. In [6] neural networks were used to learn to
control the robot. However the experimental results showed
a poor generalization ability of the neural system due to
an overfitting of the training data. In the current work,
instead, the application of RL paradigm results to be very
appropriate to face the learning problem of each VA.

The aim of this paper is to prove that it is possible to
distribute (or ”to copy”) the knowledge acquired by one
VA, in navigating the robot, to another VA different from
the previous one and located at a different position in the
environment. Notice that each VA can have a different
setup of camera, therefore a re-learning phase is needed
to adapt the previous knowledge. During learning each VA
has to cope with hard problems such as obstacle avoidance
and path optimization. The experiments we present in
this paper prove the VA is able to learn how to control
a mobile robot starting from a zero knowledge about
the environment, without the knowledge about its camera
parameters and about the robot control law. The acquired
policy can be used by new VAs as starting knowledge in
order to minimize the learning time and to improve the
VAs’ performance.

As mentioned above, in our approach the camera of
each VA is un-calibrated and the robot does not have any
sensor or processing power on board. The cameras are
omnidirectional cameras. These type of cameras allow to
obtain a complete view of the environment on the contrary
of normal pinhole cameras which have a limited field of
view.

Fig. 1. A picture of the whole system showing two Vision Agents and
the robot used in the experiments.

Fig. 2. Sample image taken by the omnidirectional camera.

The robot is just a “dummy” mobile platform which
motors are driven by the Vision Agents. The use of un-
calibrated cameras is attractive if pre-existing network of
surveillance sensors, usually not calibrated, must be used.
To calibrate by hand all these cameras can be tedious or
even unfeasible, if the number of cameras is large or if
the cameras are distributed over a large space. Several
researchers are exploring the issue of multiple-camera
network calibration, but here we take a different approach:
instead of computing the calibration parameters of the
camera and using this knowledge to control the robot with
a given control law, our system learns at the same time the
camera calibration and the control law of the robot.

The system is composed of three omnidirectional cam-
eras with hyperbolic mirrors with a maximum resolution of
640×480 modified to play in RoboCup as a goalkeeper. In
this work the omnidirectional camera on board of the robot
is removed and the robot is controlled via IEEE802.11
wireless LAN by the Omnidirectional Distributed Vision
System. A picture of the whole system showing two VAs
is represented in Fig. 1. A zoomed snapshot of the image
captured by one VA is shown in Fig. 2.

SARSA(λ) with Replacing Eligibility Traces has been
used as RL method. The choice of SARSA(λ) has been
done since it is an on-policy method, i.e. the policy is
updated by using the approximate values for the current
policy. The LEM [9] technique has also been applied at
the aim of speeding up learning. An optimization analysis
of the parameters, used in the applied RL method, has
been also carried out at the aim of studying their relevant
influence on both the learning time and the success rate. In
this first stage of the work, the experimentation has been
done in simulation in order to investigate how SARSA(λ)
method applies to the VA. Moreover, experimentation on

the adaptability of the learned knowledge to different VAs
has been carried out. The experimental results proved the
efficiency and the robustness of the learning system.

The rest of the paper is organized as follows. Next
section details how the system has been simulated. Section
3 gives a brief overview of SARSA(λ) method. Section
4 defines the state and action spaces. Section 5 and 6
describe the LEM strategy and the study of the principal
parameters involved in the implementation of SARSA(λ),
respectively. Section 7 reports the experimental results ob-
tained by computer simulations. Finally some conclusions
end the paper.

II. SIMULATING THE VA

The VA has the task of navigating a mobile robot in
its own field of view, choosing the optimal path from the
starting position to the target one; choosing the proper
velocities to reach the target position fast; avoiding the
robot exits from the field of view; avoiding the robot
collides with the tripods that support the cameras (obstacle
avoidance problem); adapting the learned knowledge in
case of new situations in the environment. The VA has
to carry out all its task without any calibration of the
omnidirectional sensor and without any knowledge about
the robot control law, but learning by itself the best policy
to guide safely the robot (i.e. the best commands to give
to the robot for each encountered situation). Since RL
paradigm has been considered for learning this policy the
necessity of simulating the VA came out. Then we have
built a simulator to reproduce all the peculiarities of the
VA. The simulator is able to simulate an omnidirectional
vision system with different heights of the camera over the
floor. The correspondence between the pixel radial distance
of a point from the center of the image and the radial
distance of the point from the camera in the real world
has been experimentally evaluated. Knowing the starting
position of the robot the simulator receives as input the
pair of velocities (linear, jog) and gives as output the new
position of the robot on the image.

III. SARSA(λ)

In RL problems the learning agent attempts to acquire,
by a trial-and-error strategy, the policy which maximizes
the expected cumulative reward in the long term. Formally
a policy π is a mapping from each state s and action a

to the probability of taking action a when the agent is in
state s (π : S×A→ [0, 1], where S is the state space and
A is the action space). SARSA(λ) is an on-policy control
method since it evaluates the policy that is used to make
decisions [7]. It differs from an off-policy method which,
instead, estimates a policy whereas it uses another policy
for the control. The policy π is evaluated estimating the
action value function Q : S×A→ R which represents the
expected return when the agent performs a given action in
a given state.

At each time step, SARSA(λ) updates all action values

Q(s, a) according to the following rule:

Q(s, a) ← Q(s, a)+ α(r + γQ(s′, a′)−Q(s, a))e(s, a)
(1)

where γ is the discount factor, α is the learning rate
parameter, a′ is the action the robot takes in the next state
s′ and e(s, a) is the eligibility trace of action a in state s.
In this work we use replacing eligibility traces [12] which
are updated for all (s, a) as follows:

et(s, a) =

{

1 if s = st and a = at

γλet−1(s, a) otherwise

An eligibility trace is a temporary record of the occurrence
of an event, such as the visiting of state or the taking of
an action. By using eligibility traces the learning system is
able to give out credit or blame to the explored state-action
pairs in a more efficient way.

In our experimentation, during the learning phase, the
choice among the actions, in each state, is carried out
according to the ε-greedy policy [7]. It chooses most of
the time the actions with the maximal estimated action
value, whereas the actions with a lower action value are
chosen with probability ε. The probability is higher at the
beginning of learning whereas it is decreased slowly as
learning goes on. This enables a major exploration at the
beginning and more exploitation of the acquired knowledge
during the advanced learning phase.

Finally the reward function has been defined in the
following way: the VA is penalized when it guides the
robot outside the field of view of the camera (r = −60).
On the contrary it receives a positive reward if the robot
reaches successfully the target position (r = 10). At the
other state transitions the reward is evaluated proportionally
both to the selected linear velocity and to the angle between
the robot heading and the target position. Then the reward
is evaluated according to the fact that longer the distance
between robot and target position, higher the linear velocity
must be. Lower velocities, instead, are preferred as the
robot approaches the target position. Similarly the reward
is evaluated considering the angle between the robot and
the target position.

IV. STATE DEFINITION

The only source of information the VA has about the
environment is the 640 × 480 image captured from the
camera. Figure 3 shows the visible space in an image
captured by an omnidirectional vision system. In this image
the robot position can be associated to any of about 180600
pixels inside the circular ring with external diameter of
480pixel and internal diameter of 20pixel. The internal
black circle contains the self-reflection of the camera. In
order to construct a reasonable state space for the VA,
we have analyzed its particular task and then defined a
state space considering the information really needed by
the VA to carry out its task. Then we have identified the
following items: the distance between the robot and the
target position; the distance between the robot and the
camera; the distance between the target position and the

Fig. 3. The five regions of the image space.

TABLE I
DEFINITION OF THE CLASSES FOR THE DISTANCE d BETWEEN THE

ROBOT AND THE TARGET POSITION

Classes Distance d(pixel)

D0 d ≤ 4
D4 4 < d ≤ 8
D8 8 < d ≤ 12
D12 12 < d ≤ 30
D30 30 < d ≤ 60
D60 60 < d ≤ 120
D120 120 < d ≤ 240
D240 240 < d ≤ 480

camera; the orientation of the robot with respect to the
target position; the orientation of the robot with respect to
the camera.

The distance d between the robot and the target position
has been classified into 8 different classes considering a
partition of the range interval of d as shown in table I.

Considering the distance between the robot and the
camera, the circular ring of the image, described before,
has been divided into five concentric regions as shown in
fig. 3. The black circle (with 20pixel radius) in the center
of the image represents the reflexed image of the camera.
The black area around the ring is out of the field of view of
the camera. Z1 region has a distance of 30pixel from the
black circle. Z1 and Z5 are alarm regions because of their
closeness to the black areas. If the robot is detected in those
regions, the VA has to pay more attention to the movement
of the robot. Z5 is 15pixel thick. The remaining regions
Z2, Z3 and Z4 (with 110pixel, 145pixel and 320pixel

radius respectively) have been defined considering that
a camera with hyperbolic mirror is used and then the
resolution of a pixel changes as points approach the center
of the image.

Considering the distance between the target position
and the camera the ring has been divided only into three
regions: ZT1 = Z1 + Z2, ZT2 = Z3 and ZT3 = Z4 + Z5

and each of them is classified free or notfree depending
on the relative position of the robot with respect to the
target position. In particular each region is considered free

if the camera does not represent an obstacle for the robot
to reach the target position by a straight trajectory. On the

a) b)

Fig. 4. The angular sectors which define the relative orientation between
a) the robot and the camera and between b) the robot and the target
position.

contrary it is notfree if the the camera is between the
robot and the target position.

Finally the relative orientation between the robot and
the camera and the one between the robot and the target
position have been considered. Fig. 4a) shows the angular
sectors (SC) defined for the camera: Left, Right, Front

and Rear. They indicates if the camera is on the left side
of the robot, on its right side, in front of it or behind it. For
the target position the angular sectors have been augmented
in order to optimize the robot behavior. These sectors (ST)
are: Left, Front-Left, Front, Front-Right, Right,
Right-Rear, Rear and Rear-Left as shown in fig. 4b).

Concluding the state of the VA has been defined con-
sidering all the elements described above. In particular
the state is represented by the 5-tuple (d, Zi, ZTj , SC , ST)
where i = 1, ..., 5, j = 1, 2, 3. The total number of states is
7680, some are terminal states, many are impossible states.
At the end the number of effective states does not exceed
2500.

V. ACTION DEFINITION

Finally the actions have been defined as pairs of lin-
ear and angular velocity (linear, jog) as the robot can
receive command in terms of these two velocity values.
Each velocity has been divided into sub-actions: 3 for
the linear velocity (stop, slow, fast) and 5 for the
jog one (stop, slow-left, slow-right, fast-left, fast-
right). The (stop, stop) action has not been considered
as the prime task of the VA is to move the robot in its
environment. During the learning phase it may happen
that performing one action does not correspond to a state
transition (State-Action Deviation Problem). To deal with
this problem we have adopted the solution proposed in [9].
Each aforesaid action is considered as a micro-action. The
robot continues to perform one micro-action until a state
transition happens. A sequence of micro-actions, named
macro-action, is considered by the VA as the effective
action. In other words the execution of a macro-action
produces a state transition then the action value function
can be correctly updated.

VI. LEM STRATEGY

In order to improve the learning rate and to speed up
learning several strategies have been applied and experi-
mented. In [13], [14] a splitting of the whole task into

Fig. 5. Learning time versus ∆t parameter. Each plotted point refers to
the average number of episodes evaluated on 25 simulations.

different parts or behaviors is used. In [15] the learning
agent receives advice for figuring out what part of the
action space deserves attention for each situation. Asada
[9] introduced a new technique known as LEM strategy.
The learning schedule is constructed such that the agent can
learn in easy situations (or missions) at the early stages and
in more difficult ones as learning goes on. The difficulty
related to the application of LEM is the assumption about
the knowledge of the order of the states to the target one,
but the completeness of knowledge is not needed. In our
problem due to the definition of states the agent roughly
knows the order of state transitions then a partition of the
state space can be applied. We have categorized the state
space into sub-sets Sk (missions) by considering first the
region where the robot can be, then the orientation of the
robot with respect to the target and the orientation of the
robot with respect to the camera. So the number of missions
obtained is 1120.

Asada proved that in order to shift initial situations into
more difficult ones, which means shifting from sub-set
Sk−1 to Sk, the following relation should be satisfied for
each k = 1, 2, 3, . . .:

∆Qt(Sk, a) = (2)

=
∑

s∈Sk

|max
a∈A

Qt(s, a)−max
a∈A

Qt−∆t(s, a)| < ε

where ∆t is a time interval which indicates the number
of episodes attempted for the Sk mission and should be
greater than |Sk|, whereas ε > 0 is equal to:

ε = α
(1− γ)

γ

∑

s∈Sk

max
a∈A

Q(s, a) (3)

It is straightforward to prove that the same relations hold
also in our case where a different RL algorithm and a
different reward function are used. By our knowledge no
additional information, instead, can be found in literature
about the ∆t parameter. We think that it needs particular
attention since it is related to the learning time. We have
analyzed in greater detail how that parameter affects both
the learning time and the agent performance.

Figures 5 and 6 show the results obtained after running a
number of simulations for different values of ∆t, averaging

Fig. 6. Percentage of success versus ∆t parameter. Each plotted point
refers to the average success rate evaluated on 25 simulations.

the result every 25 simulations and with α = 0.5, γ = 0.95,
λ = 0.02 (see next section). Each simulation consists
of the completion of a learning phase which starts from
a zero knowledge and executes all the 1120 missions
defined above. Figure 5 plots the number of episodes
versus ∆t. As we expected, time grows as ∆t increases,
but observing the plot we can infer that the relation is
practically linear. Figure 6 shows a plot of the success rate
(i.e. the percentage of successful episodes) versus ∆t. Such
a percentage has been evaluated performing 200 test trials
after each simulation. Notice that the success rate initially
grows but it stabilizes for ∆t values higher than 12. This
values satisfy the relation ∆t > |Sk| since in the partition
that we have applied to the state space maxk |Sk| ' 6,
disregarding the unreachable states. In the experimentation
we have chosen the value ∆t = 14, because it guarantees
a more stable success rate with respect to the value 12.

Fig. 7. Learning episodes versus the α parameter for γ = 0.95 and
different values of λ.

VII. PARAMETER OPTIMIZATION

The simulated system has been very useful not only to
learn and to test the policy of the VA in a virtual environ-
ment, but also to study how to choose the best values for
the parameters (α, γ, λ) involved in SARSA(λ) method.
There’s not a standard way to define those parameters
to guarantee the convergence of learning. Usually they
are heuristically defined and are closely connected with
the particular application. In our work we have deeply

Fig. 8. Percentage of success versus the α parameter for γ = 0.95 and
different values of λ.

studied those parameters since they influence the learning
time, the success rate and the shifting parameter in the
LEM strategy (see previous section). The study has been
carried out considering triplet of different values for α, γ

and λ, performing 20 simulations for each combination of
values and averaging the results. For the evaluation of the
success rate 200 test trials have been executed after each
simulation.

Fig. 9. Learning episodes versus the α parameter for λ = 0.1 and
different values of γ.

Fig. 10. Percentage of success versus the α parameter for λ = 0.1 and
different values of γ.

Figures 7 and 8 show the results obtained varying α and
λ and with a fixed value for γ (=0.95). As can be seen the
optimal value for α is close to 0.5 to have both the mini-
mum number of learning episodes and the high percentage
of success. As it is expected by applying SARSA(λ) the
percentage of success grows as λ increases, but also the
learning time does the same.

Finally figures 9 and 10 show the results obtained
varying α and γ, whereas λ has been fixed to 0.1. As
the discount rate γ decreases the number of episodes and
also the success rate decrease. This is closely connected to
the shifting parameter (see relation (3)) of LEM which is
influenced by the discount rate in a deeper way than the
learning rate parameter α (see fig. 9).

Concluding, after an analysis of the results, we have
chosen the optimal values for α, γ and λ as a trade off
between learning time and success rate. The values used in
the experimentations are the following: α = 0.5, γ = 0.95,
λ = 0.02.

VIII. EXPERIMENTAL RESULTS

The experimentation has been carried out into two
stages: first the VA learns to guide the robot toward the
target, then the learned policy is applied to different VAs
in order to analyze its adaptability to changes of the
environment. The first VA simulates an omnidirectional
camera that is 1.8m high above the floor.

A number of simulations have been performed to learn
the optimal policy. Each simulation performs a learning
phase by using the LEM strategy, as described in section
VI, and starting from a zero knowledge. During the simula-
tions the VA carries out a number of episodes to complete
all the missions of LEM . The average number of episodes
performed is 16400. At the end of each simulation the
learned knowledge has been tested running 200 additional
trial episodes to examine the performance of the VA.

During the testing phase the VA chooses the actions
by using a greedy policy and learning is turned off.
The average success rate obtained after the testing phase
is 95%. Among the different policies obtained after the
learning phase we have chosen the best one, i.e. the one
with the higher success rate (98.5% in 16100 learning
episodes). Figures 11, 12 and 13 show some representative
sample paths obtained by using that policy.

Fig. 11. Sample paths obtained after the learning phase: the robot
successfully avoids the obstacle (black circle).

Even though an empty environment has been considered,
the camera itself represents an obstacle. Fig. 11 shows that
the agent has acquired the capability to avoid the obstacle.
The path is drawn with the long vectors which represent the
direction of movement, the short vectors, instead, indicate
the robot orientation. Observing the figure, it’s evident that
the VA chooses high velocities at the beginning of the path
and lower ones as it approaches the target position. Fig. 12
shows a sample path which underlines this ability. The VA

Fig. 12. Sample paths obtained after the learning phase: the robot uses
different velocities.

chooses low velocities when the robot moves in proximity
of both the obstacle and the target.

Fig. 13 displays the ability of the VA, to keep the robot
inside its field of view. In particular the VA moves the
robot carefully in the most external region (Z5) choosing
low velocities, then it increases the velocities as the robot
moves away from Z5 and finally it becomes careful again
close to the target.

Fig. 13. Sample paths: the VA keeps the robot inside its field of view.

All the presented examples prove that the VA has learned
to move the robot by using the proper velocities not only as
function of the distance from the target, but also as function
of the distance from the camera (calibration ability). In the
inner regions the VA has learned to use low velocities even
if the target is far from the robot.

Notice that little image distances near the camera corre-
spond to little distances in the real environment, but little
image distances far from the camera correspond to large
distances in the real world.

In the second part of the experimentation our aim was
to prove the distribution of the learnt knowledge to new
VAs. In particular two new VAs have been considered in
the Distributed Vision System. These VAs have a different
camera setup: one has the camera at the height of 2.0m
above the floor and the second one at 2.4m. Our aim was
to demonstrate that the new VAs can exploit the policy
acquired by the initial VA in order to reduce learning time
and, more important, to improve their performance. In such
a way the same knowledge can be spread over other VAs so
that they will be operational from the beginning and they
will need only a little amount of re-learning to perform
optimally.

The previous learnt knowledge has been used as starting
policy for the new VAs, and new learning missions have
been defined based on the LEM technique. Partitioning
the state space only considering the distance between the

robot and the target, we obtain seven missions each one
with a cardinality not over 960 states. Several re-learning
simulations have been carried out considering different
values for the ∆t parameter. Recalling that ∆t > |Sk|,
∆t has been varied in the range [1800, 2200], obtaining
a range of [14000,15400] for the number of learning
episodes. Testing the policies on 200 test episodes, after
each simulation, both VAs have revealed high success rates
(> 91%). As expected higher ∆t higher the success rate is.
In the next referenced figures the paths executed by using
the policies with the highest success rates (97.5% for the
first VA and 97% for the second one) will be displayed.
Both new VAs are still able to guide the robot toward the
target, but a clear improvement of the policy has emerged
after the re-learning phase.

a) b)

Fig. 14. Sample path a) before the re-learning phase and b) for the VA
with 2.0m high camera after the re-learning phase.

a) b)

Fig. 15. Sample path a) before the re-learning phase and b) for the VA
with 2.4m high camera after the re-learning phase.

Figure 14 shows two paths, that start from the same
initial position and reach the same target position, before
the re-learning phase (fig.14a)) (camera height = 1.8m)
and after the re-learning phase (fig.14b)) (camera height
= 2.0m) respectively. Improved paths have also been
obtained by considering the other VA with the camera
at the height of 2.4m above the floor. Figure 15 shows
a sample path for this case. The presented results reveal
that the knowledge distribution allows the new VAs to
acquire improved control policies. In fact, for the sake
of completeness, we have also done another experiment
where each VA learnt its own policy starting from a zero
knowledge. Apart from the learning time and the success
rate, that are comparable with the ones of the previous
experiments, what has emerged is that with knowledge
distribution each VA exhibits a more optimal behavior.

IX. CONCLUSIONS
This work presents a Omnidirectional Distributed Vision

Systems having the task of navigating a mobile robot

in its environment. It consists of a number of VAs that
autonomously learns to guide the robot from a starting
position to a target one. We have applied the RL method
of SARSA(λ) to learn the control policy. In particular
one VA has learnt an initial policy to control the robot,
then the same policy has been transferred to other different
VAs at the aim of testing the possibility of knowledge
distribution. Analyzing the results we have observed that
the VAs are able to adapt easily the initial policy to their
own peculiarities.

The experimentation has proved that the distribution of
knowledge from one VA to other different VAs is possible
and that it is advantageous not only for learning time
saving, but also for the improvements that the VAs exhibit
after the re-learning phase. In fact the VA is immediately
operational, because of the starting knowledge, and it learns
more and improves with experience since it is allowed to
explore again the environment.

Next step of this work will be to continue the experimen-
tation in a real environment exploiting the policy learned
in simulation and allowing the real agent to continue its
learning in the real situations.

REFERENCES

[1] R. Collins, A. Lipton, and T. Kanade, “A system for video surveil-
lance and monitoring,” Robotics Institute at Carnagie Mellon, Tech.
Rep., 2000.

[2] H. Takeda, N. Kobayashi, Y. Matsubara, and T. Nishida, “A
knowledge-level approach for building human-machine cooperative
environment,” Collective Robotics, vol. 1456, pp. 147–161, 1998.

[3] H. Ishiguro, “Distributed vision system: a perceptual information
infrastructure for robot navigation,” in Proc. of the Int. Joint Conf.
on Artificial Intelligence (IJCAI’97), 1997, pp. 36–43.

[4] H. Ishiguro and M. Trivedi, “Integrating a perceptual information
infrastructure with robotic avatars: a framework for tele-existence,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS’99), October 1999.

[5] B. D. Olsen, “Calibrating a camera network using a domino grid,”
Pattern Recognition, vol. 34, no. 5, 2001.

[6] E. Menegatti, E. Pagello, T. Minato, T. Nakamura, and H. Ishiguro,
“Toward knowledge propagation in an omnidirectional distributed
vision system,” in Proc. of the 1st Int. Workshop on Advances in
Service Robotics (ASER2003), March 2003.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: an intro-
duction. A Bradford Book, 1998.

[8] M. Asada, “A case study on behavior learning for vision-based
mobile robot,” in IROS Workshop on Towards Real Autonomy, 1996,
pp. 3–16.

[9] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Purposive
behavior acquisition for a real robot by vision-based reinforcement
learning,” Machine Learning, vol. 23, pp. 279–303, 1996.

[10] G. Cicirelli, T. D’Orazio, and A. Distante, “Learning a door-reaching
behavior using visual information,” in IASTED-Int. Conference on
Control and Applications, Cancun, Mexico, May 2000.

[11] C. Gomez, Ed., Engineering and scientific Computing with Scilab,
1999.

[12] S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing
eligibility traces,” Machine Learning, vol. 22, pp. 123–158, 1996.

[13] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artificial Intelligence,
vol. 55, no. 2-3, pp. 311–365, 1992.

[14] G. Cicirelli, T. D’Orazio, L. Capozzo, and A. Distante, “Learning
elementary behaviors with khepera robot,” in Proc. of first Interna-
tional Khepera Workshop, Paderborn, Germany, 1999, pp. 109–118.

[15] J. d. R. Millan, “Rapid, safe, and incremental learning of navigation
strategies,” Sys. Man and Cybernetics, vol. 26, no. 3, 1996.

