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Abstract— One of the most challenging issue in mobile
robot navigation is the localization problem in densely popu-
lated environments. In this paper, we present a new approach
for vision-based localization able to solve this problem. The
omnidirectional camera is used as a range finder sensitive
to the distance of color transitions, whereas classical range
finders, like lasers or sonars, are sensitive to the distance of
the nearest obstacles. The well-known Monte-Carlo localiza-
tion technique was adapted for this new type of range sensor.
The system runs in real time on a low-cost pc. In this paper
we present experiments, performed in a crowded RoboCup
Middle-size field, proving the robustness of the approach to
the occlusions of the vision sensor by moving obstacles (e.g
other robots); occlusions that are very likely to occur in a
real environment. Although, the system was implemented for
the RoboCup environment, the system can be used in more
general environments.

I. I NTRODUCTION

Localization is the fundamental problem of estimating
the pose of the robot inside the environment. In a dynamic
multi-agent world a precise localization is necessary to
effectively perform high level coordination behaviors or in-
formation sharing techniques: at the same time the presence
of other robots makes localizations harder to perform. In
fact, if the density of moving obstacles in the environment
is high, occlusion of the robot’s sensors is very frequent.
A localization system for a densely populated environment
like the Middle-Size RoboCup field, must be proved robust
against occlusion. In this paper, we explicitly discuss the
robustness of our system against occlusion that was just
hinted in [7].

To manage the uncertainty on the localization coming
from the measurements we used the well-know Monte-
Carlo localization technique. Usually two kinds of sensors
have been used in the Monte-Carlo localization approach:
range finder devices performing scan matching on a metric
map of the environment [2], [13] or vision sensors either
to recognize landmarks matched within a map [3], [9], [5]
or to find the reference image most similar to the image
currently grabbed by the robot [14], [8], [6].

In this work, we use an omnidirectional vision system
as sensor to emulate and enhance the behavior of range-
finder devices. The most significant differences are: (i) a
conventional range-finder device senses the obstacles in the
environment, while our sensor is sensitive to the chromatic
transitions in the environment, and (ii) the sensor can reject

some scans if along the ray a wrong chromatic transition
is detected: we called this techniqueray discrimination.
To take into account the new information given by this
sensor, we had to slightly modify MCL (Monte-Carlo
Localization) technique proposed in [13]. The experiments
presented in this paper aim to shown the robustness of
our system in a densely populated environment. They
were carried on in our training RoboCup Middle-Size
field of 8 × 4 meters. However the algorithm proposed is
very general and applicable also outside of the RoboCup
domain. The only assumption made in this work is that
a geometric map of the environment, augmented with the
information on the color transition, is available.

Fig. 1. A snapshot of the algorithm looking for chromatic transitions.
Green-white chromatic transitions are highlighted with red crosses, green-
yellow transitions with blue crosses, black pixels represent the sample
points used for the scan that is performed in a discrete set of distances.
Notice the crosses in the outer part of the mirror: this part is used for
low distance measures. If a not expected transition is detected (i.e. another
robot detected along some ray, look in the image at the dark shapes inside
the green field) the scan is stopped and a typical value (FAKE RAY) is
stored in the distances vector. In this paper we focus our attention in the
localization problem in presence of sensor’s occlusions caused by other
agents.

II. A SELECTIVE RANGE FINDER USING

OMNIDIRECTIONAL V ISION

As we said, we search the omnidirectional image for
chromatic transitions of interest: we are interested ingreen-



white, green-blueandgreen-yellowtransitions. These tran-
sitions are related to the structure of the RoboCup fields,
where the play-ground is green, lines are white, and goals
and corner posts are blue or yellow. We measure the dis-
tance of thenearest chromatic transitions of interestalong
rays every 6 degrees and with a sample step corresponding
to 4 centimeters in the world coordinate system, as shown
in Fig.1. The omnidirectional vision sensor is composed
by a camera pointed upward to a multi-part mirror with
a custom profile [11]. This gives our “range finder” a
360 degrees field of view, much larger than the usual
field of view of conventional range finders. Moreover, the
custom profile of the omnidirectional mirror was designed
to have good accuracy both for short and long distance
measurements. In fact, conic omnidirectional mirrors fail
to obtain good accuracy for short distance measurements
(because the area close to the robot is mapped in a very
small image area), while hyperbolic mirrors fail to obtain
good accuracy for long distance measurements (because of
the low radial resolution far away from the sensor). With
our mirror, the area surrounding the robot is imaged in the
wide external ring of the mirror and the area far away from
the robot is imaged in the inner part of the mirror where
the radial resolution is high, see Fig.1. The inner part of the
mirror is used to measure objects farther than 1 m away
from the robot, while the outer part is used to measure
objects closer than 1 m from the robot. We first scan for
chromatic transitions of interest close to the robot’s body,
in the outer mirror part, and then we scan the inner part
of the image from the center of the image up to 4 meters
away from the robot’s body.

The system looks for the chromatic transitions of interest
along 60 rays by mapping the color of the sampled pixels
into one of the class of the 8 RoboCup colors1 plus a further
class that include all colors not included in the former
classes (calledunknown color). At the setup stage, we
perform a color calibration depending on the illumination
of the environment and the RGB color space is quantized
into a look-up table to obtain a real-time color quantization.

Once a chromatic transition of interest is detected, its
distance is stored in a vector. We have three different
vectors, one for every chromatic transition of interest.
During the radial scan, we can distinguish three situations:

1) a chromatic transition of interest is found; the real
distance of that point is stored in the corresponding
vector;

2) there are no transitions of interest, a characteristic
value calledINFINITY is stored in the vector (this
means no transition can be founded along this ray);

3) a not expected transition is found: aFAKE RAY
value is stored in the vector (this means something
is occluding the vision sensor). All rays withFAKE
RAYvalue are discarded in the matching process (ray
discrimination).

1In RoboCup environment the ball is red, the lines are white, the goals
are blue and yellow, the robots are black, the robots’ marker are cyan and
magenta

III. M ONTE-CARLO LOCALIZATION

Monte-Carlo localization (MCL) has been successfully
used by many researchers [12], [2], [13]. This is a proba-
bilistic methods based on Batesian Filtering (Marked Lo-
calization in robotics) [1], [4]. It calculates the probability
density of robot position (thebelief) and recursively prop-
agates this probability density using motion and perception
information. In our implementation, motion data come
from the odometric sensors and perception data come from
the omnidirectional vision system. The belief about the
robot’s position is updated every time the robot grabs a
new image (i.e. a new observation of the world). The
belief about the robot position is represented with a set
of discrete points in the configuration space of the robot.
These points are calledsamples. To update the belief
over time, these samples are updated. To every sample is
associated a weight indicating the probability that the robot
is occupying that position. The samples with the lowest
weights are deleted and the samples with highest weights
survive and generate new samples.

To update the belief, the knowledge of two conditional
densities, calledmotion modelandsensor modelis needed.
The motion modelp(lt|lt−1, at−1) is a probabilistic rep-
resentation of the robot’s kinematics which describes a
posterior density over possible following robot’s poses.
We implemented the MCL system on an holonomic robot,
called Barney. The peculiarity of this robot is that it can
move in any direction without the need of a previous
rotation. Updating the robot’s position according only to
the kinematics does not take into account errors given
by odometric inaccuracy and possible collisions of the
robot with other obstacles. Therefore a random noise term
is added to the values given by the odometry. Noise is
modelled with Gaussian zero centered random variables,
they depend on both the amount of translation and of
rotation. In our implementation a good value for the error
term is a normal distribution withσ equal to 200 mm/meter
for translation and 30 deg/meter for rotation. These values
are quite large to take into account the frequent slipping of
the three driving wheels of the holonomic platform. The
sensor modeldescribes the probability for taking certain
sensor measurements at certain poses: it strongly depends
on the particular sensor used and it is described in detail
in the next section. The localization algorithm basically
consists of three steps:

(a) (b)

Fig. 2. The metric maps used for expected distances computation: in (a)
are represented the fix obstacles, in (b) are represented all the chromatic
transitions of interest of the environment



• all particles are moved according to the motion model
of the last kinematics measure;

• the weights of the particles are determined according
to the observation model for the current sensor read-
ing;

• a re-sampling step is performed: high probability
particles are multiplied, low probability ones are dis-
carded;

Finally, the process repeats from the beginning. For more
details please refer to [2], [13].

A. Model of the new range finder

The sensor modelp(o|l) describes the likelihood to
obtain a certain sensor readingo given a robot posel. As
introduced in Sec. III, the sensor model is used to compute
the weights of the particles. For each particlej, located in
the poselj , the associated weight is proportional top(o|lj)
(i.e. to the likelihood of obtaining the sensor readingo
when the robot has poselj). To calculatep(o|lj), we need
to know the ”expected scan” o(l). The expected scan is
the scan an ideal noise-free sensor would measure in that
pose, if in the environment there are no obstacles. The
likelihood p(o|l) can be calculated asp(o|l) = p(o|o(l)).
In other words, the probabilityp(o|o(l)) models the noise
in the scan by the expected scan [2], [13].

When using a sonar or a laser, like in [2], [13], the
expected scan is computed from a metric map of the
environment. The expected scan is obtained calculating the
reflections of the sonar or laser beams against the walls and
the fix obstacles. If used in the current RoboCup Middle-
Size field this would lead to a very sparse information
because the only detectable features are the goals and the
corner posts, as depicted in Fig. 2(a). Moreover, if you have
several robots in the field they will likely occlude most
of the static obstacles and so the available features will
be even less. For this reason we proposed this new sensor
that can detect all color transition existing in Fig. 2(b). This
enable us to detect much more fix features performing a
more reliable”scan matching”. The map in Fig. 2(b) shows
the chromatic characteristics of the environment. We use
this map to pre-compute the expected scan finding with
a ray-tracing approach thenearest chromatic transition of
interestfor every pose. Moreover, we use the information
about the fix obstacles extracted from the map of Fig. 2(a)
to improve the scanning process; for instance if we find a
yellow pixel, this can be only a goal or a corner-post, i.e.
an object that is outside of the boundary of the field, so it
is not worth looking farther for a white line, thus we stop
the scanning process for this ray.

From every image grabbed by the robot, we obtain three
scans: one for every chromatic transition of interest (green-
white, green-blue and green-yellow, see Sec. II). Thanks to
the ability to distinguish between different colors, we are
able to filter out some rays when a ”wrong” chromatic tran-
sition is detected (i.e. a chromatic transitions that we aren’t
looking for, see Sec. II). This is the case, for example, when
another robot partially occlude the omnidirectional sensor:
black pixels are detected along the occluded rays and a

(a)

(b)

(c)

Fig. 3. An examples of expected and measured scan for the green-white
color transition. Given a pose, in (a) is represented the expected scan for
an ideal noise-free sensor in a free environment. In (b) is shown the frame
grabbed by the robot in that pose, in (c) is represented the corresponding
measured scan. In (c) the black line represents the measured distances
while the dotted red line represents the rays in which a not expected
transitions is detected (FAKE RAYS). This can be caused by image noise
or other robots (represented with gray circles). Look for example in the
omnidirectional image (b) at the yellow goal: inside there is a robot (the
goalkeeper) and three rays of the scan detect it (c) (along these rays is
detected the black color that we are not searching for). For all these rays
a FAKE RAYSvalue is stored instead of the proper distance.

green-black transition is found, but we aren’t looking for
any transitions with black color. So, we can discard these



rays that could negatively affect the sensor reading (ray
discrimination). This process is not possible with classical
range finder sensors and one needs to apply quite complex
algorithms to filter out in the range scan the moving
obstacles from the reference obstacles.

In Fig. 3 a comparison between an expected scan (a)
and a real sensor scan (c) for the green-white transition is
presented. In the middle (b) is the image grabbed by the
robot. What makes the difference between the expected
scans and the real scans is the presence of occlusion in
the field of play and the presence of noise in the image. If
occlusion is present, a non-expected transition is detected,
and the ray is labelled asFAKE RAY(the red dotted lines
in 3 (c)). Due to the image noise, it might happen that a
color transition is not detected or is detected at a wrong
distance.

1) Sensor noise:The probabilityp(o|o(l)) models the
noise in the measured scan conditioned on the expected
scan. For every frame grabbed by the sensor we obtain
three scans, one for each chromatic transitions of interest,
so we have to calculate three probability values. Since
every scan is composed by a set of distances, one for each
ray, we first model the probability that a single ray correctly
detects the chromatic transition and then we take into
account all rays. Eventually, we need to combine the three
probability values given by the three chromatic transitions
of interest. To compute the probability to obtain for a single
ray a distanceoi given the posel (p(oi|l) = p(oi|o(l))),
we collected a large number of omnidirectional images
(about 2.000) in different known poses in the field. Then,
we measured the distance of the chromatic transitions
of interest. As an example, the probability density of
the measured distancep(oi|l) for the green-white color
transition is plotted in Fig. 4(a). We described this density
with the mixture of three probability density of Eq. 1. The
numerical values of the parameters in Eq. 1 are calculated
with a modified EM algorithm [10]. The resulting mixture,
for the green-white transition, is plotted in Fig. 4(b). The
three terms in Eq. 1 are respectively: an Erlang probability
density, a Gaussian probability density and a large discrete
density. The Erlang variable models wrong readings in
the scan caused by image noise and non-perfect color
segmentation. The indexn depends on the profile of the
omnidirectional mirror used in the sensor. Our mirror (Sec.
II) maps the area around the robot in the outer image ring
where we have good accuracy and almost no noise, while
in the inner part a certain amount of noise is present. We
set the value ofn, the Erlang variable, equal to the index
of the first pixel scanned in the inner part of the image.
So, the Erlang density will have a peak at the distance
corresponding to the transition between the two mirror
parts. The Gaussian distribution models the density around
the maximum likelihood region, i.e. the region around the
true value of the expected distance. The discrete density
represents the probability of obtaining anINFINITY value
for the distance, as described in Sec. II.

p(oi|l) = ζe(
βnon−1

i e−βoi1(oi)
(n− 1)!

)+

ζg
1√
2πσ

e
−(oi−g(l,αi))

2

2σ2 + ζdδ(oi −∞)
(1)

whereζe, ζg, ζd are the mixture coefficients, withζe +
ζg + ζd = 1. We computed a different mixture for every
different chromatic transition.

(a)

(b)

Fig. 4. In (a) the distribution of measured distances for an expected
known distance. Notice the peak at the expected distance, the measures
before the expected one due to the image noise and the high number of
max distance measures that represents that no chromatic transition has
been detected. In (b) the densityp(o|l) that represent our sensor model
computed using EM-algorithm. The plotted curve is the result of three
contributions: (i) an Erlang variable with indexn which depending on the
geometry of the mirror (low noise in the close-distance mirror part), (ii)a
Gaussian distribution centered at the expected distance and (iii) a discrete
distribution representing the measurements resulting in theINFINITY
value.

2) Sensor occlusion and ray discrimination technique:
Once thep(oi|l) is computed, it’s possible to compute the
probability of the whole scan given a posel (2). To cope
with unexpected measures due to occlusion of the scans
by the moving objects in the environment (i.e. the other
robots and the ball), we filtered out all rays which distance
oi equal theFAKE RAYvalue (φ in the formulas, see Sec.
II). The detection of occluding obstacles along the rays of
a scan is very frequent in the densely crowded environment
like the Middle-Size RoboCup field. In conventional range
finders there isn’t any ray discrimination system, so all
measured distances contribute to sensor model computa-
tion: if a large number of distances are affected by the



presence of other agents around the robot, localization
process might fail. Our ray discrimination technique allow
us to compute sensor model only with a subset of reliable
distances: this enable to obtain a more reliable localization
without using other techniques, e.g.distance filters[4], that
can affect negatively the computational performance of the
system.

p(o|l) =
∏

{i|oi 6=φ}

p(oi|l) =
∏

{i|oi 6=φ}

p(oi|g(l, i)) (2)

Returning to Monte Carlo Localization, we are now able
to compute the weightw(j) associated to each particles
j. Since we get three scans for every frame, using (2)
we obtain three weights for each particle. To obtain a
single weight value, after a normalization step, we simply
compute the product of the three weights

(a) (b)

(c) (d)

Fig. 5. Probability distributionsp(o|l) for all possible positionsl of
the robot in the field given the scans of a single image. Darker points
corresponds to high likelihood. The arrow represents the actual robot’s
pose. In (a) is represented the probability given the scan for green-
white transitions, in (b) for green-blue transitions, in (c) for green-yellow
transitions, in (d) the three probability densities are combined.

In Fig. 5, we give a pictorial visualization of the weights
calculated by the three different scans of the three chro-
matic transition of interest. The real pose of the robot is
marked by the arrow. Higher weight values are depicted as
darker points, lower weight values are depicted as lighter
points. In Fig. 5 (a), are represented the weight contribu-
tions calculated from the scan looking for the green-white
transition. One can notice that, due to the symmetry of the
white lines in the field two symmetric positions resulted to
have high likelihood. In Fig. 5 (b), are depicted the weight
contributions calculated from the scan looking for the
green-blue transition. One can notice that all positions far
away from the blue goal have a high likelihood, because no
green-blue transition was found in the image scan. In Fig.
5 (c), are represented the weight contributions calculated
from the scan looking for the green-yellow transition. One
can notice there is an approximate symmetry around the
yellow goal. All these contributions are combined together
to calculate the overall weights represented in Fig. 5 (d).

(a) (b)

(c) (d)

(e) (f)

Fig. 6. For the same position, the probability distributions for different
amount of sensor’s occlusion: in (b) for 0% of occlusion, in (d) for 25%
and in (f) for 50%. In (a),(c),(d) the images grabbed in these 3 situations
respectively. Notice that in a more densely crowded environment (f) the
high likelihood region is wider than an empty one (b), but most of
the probability is still condensed around the right position. Occlusion
is obtained with black stripes that simulate the presence of other robots
closed to the sensor.

The weights with higher values are clustered only around
the actual position of the robot. The Fig. 6 shows the
probability distributions for the same pose with different
amount of sensor’s occlusion: with high rate of occlusion
the uncertainty increases, but most of the probability is still
condensed around the right position. Occlusion is obtained
covering the sensor with black strips. Every strip cover
12.5% of the sensor and well simulate the presence of one
robot close to the sensor. In real situations is extremely hard
to have more than two robot close to the sensor, while other
robots are usually quite far and occlude a small fraction of
the sensor.

In order to improve the performance of the system, the
distances (see Sec. II) in the environment are discretized in
a grid of 5x5 cm cells, in a way similar to [4]. The expected
distances for all poses and the probabilitiesp(oi|g(l, i))
for all g(l, i) can be pre-computed and stored in six (two
for eachchromatic transition) look-up tables. Each look-up
tables takes about 13Mb. In this way the probabilityp(oi|l)
can be quickly computed with two look-up operations, this
enables our system to work in real-time at 10 Hz on a PC-
104 Pentium III 700 MHz fitted with 128 Mb of RAM
using 1000 particles.



(a)

(b)

(c)

(d)

Fig. 7. A sequence of global localization: the gray circle represents
actual robot pose, the red line represents ground-truth path, the black
line represents the estimated path of the robot, the black points represent
the particles. In (a) particles are uniformly distributed (no knowledge
is available on robot position), in (b), after moving 4 meters away and
grabbing 5 frames and getting 5 odometric readings, the particles are
condensed around two possible poses (due to environment symmetry).
In (c), after 6 meters, 7 frames and 7 odometric readings, uncertainty is
solved and particles are condensed around the actual pose of the robot. In
(d) after 18 steps: the position of the robot is well tracked. The particles
scattered in the environment are the 10% of the total number of particles
uniformly distributed to solve the kidnapping problem.

IV. EXPERIMENTS

We evaluated our approach on an holonomic custom-
built robotic platform, in a 8x4 m RoboCup soccer field.
The robot was equipped with the omnidirectional sensor
described in Sec. II. In order to shown the robustness
of our approach in densely crowded environments, we
tested the system on six different paths (like the one
shown Fig. 7). For each path we collected five sequences
of omnidirectional images respectively with 0%, 12.5%,
25%, 37.5%, and 50% occlusion. In addition to the image
we recorded for every position the ground truth pose
of the robot and the odometric readings between two
consecutive positions. An example of frames grabbed in
the same position, but with different amount of occlusion
is shown in Fig. 6(a),(c),(e). In order to take into account
the odometric errors, robot movements were performed
by remote control. We tested our algorithms for the three
fundamental localization problems: global localization (the
robot must be localized without any a priori knowledge
on the actual position of the robot, i.e. Fig. 7 (a)(b)),
position tracking (a well localized robot must maintain the
localization, i.e. Fig. 7 (c)(d)) and kidnapped robot (a well-
localized robot is moved to some other pose without any
odometric information).
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Fig. 8. The plots compares the global localization errors for a fixed path
with different amount of sensor’s occlusion.

In Fig. 8 is shown the average error for a global local-
ization experiment along the same reference path for three
different amounts of sensor occlusion. Obviously without
occlusion, localization is quickly and accurate, but also in a
densely crowded environment (sensor always covered for
a rate of 50%) the robot is able to localize itself and to
maintain localization with good accuracy. We obtained very
good results also in the kidnapped robot problem. Recovery
from a localisation failure is obtained thanks to a small
amount of samples (10% of the total number of samples)
uniformly distributed in the environment. A few steps after
a kidnapped robot episode most of the samples are again
concentrated around the correct position and the situation
is the same of global localization (due to lack of space we
did not reported these experiment in this paper).
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Fig. 9. Statistical evaluation of our system in the position tracking
problem for all our reference paths. Accuracy (average error end maxi-
mum error) is represented for different amount of sensor’s occlusion (0%,
12.5%, 25%, 37.5%, 50%).

Finally, we tested our approach in the conventional
situation of position tracking, for different amount of oc-
clusions: in Fig. 9 is shown the average and the maximum
error over all reference paths. Notice that both remain small
also in a densely and constantly crowded environment.

V. CONCLUSIONS

In this paper we propose a new vision-based Monte
Carlo localization system particularly suitable for densely
crowded environments. The omnidirectional vision sensor
is used to emulate the behavior of range-finder devices and,
thanks to the ability to distinguish different color transi-
tions it can detect and reject data caused by other robots
occluding the sensor. We tested our system in the Middle-
Size RoboCup domain with different amount of sensor’s
occlusion to simulate the presence of other agents around
the robot: experiments demonstrated that our approach is
able to localize the robot with a maximum error of less than
30 cm even in the very unlikely situation of a continued
occlusion of 50% of the omnidirectional camera. Even if
our system was developed for the RoboCup competition,
it can be used to localize the robot in any environments
simply building the right metric and chromatic maps that
depicts respectively the fix obstacles and the chromatic
transitions of interest of the environment. These maps can
be as simple as drawings stored in image files, representing
the plan of the environment augmented with the informa-
tion on the color transitions. From these maps, the system
will automatically recalculate all look-up tables used in
the localization process. At the moment of writing we are
testing our system in a indoor office environment without
any artificial landmark or modification of the environment.
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