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Abstract—One of the most challenging issue in mobile
robot navigation is the localization problem in densely popu-
lated environments. In this paper, we present a new approach
for vision-based localization able to solve this problem. The
omnidirectional camera is used as a range finder sensitive
to the distance of color transitions, whereas classical range
finders, like lasers or sonars, are sensitive to the distance of

some scans if along the ray a wrong chromatic transition
is detected: we called this techniquay discrimination

To take into account the new information given by this
sensor, we had to slightly modify MCL (Monte-Carlo
Localization) technique proposed in [13]. The experiments
presented in this paper aim to shown the robustness of

the nearest obstacles. The well-known Monte-Carlo localiza-
tion technique was adapted for this new type of range sensor.
The system runs in real time on a low-cost pc. In this paper
we present experiments, performed in a crowded RoboCup
Middle-size field, proving the robustness of the approach to

our system in a densely populated environment. They
were carried on in our training RoboCup Middle-Size
field of 8 x 4 meters. However the algorithm proposed is
very general and applicable also outside of the RoboCup

the occlusions of the vision sensor by moving obstacles (e.g domain. The only assumption made in this work is that
a geometric map of the environment, augmented with the
information on the color transition, is available.

other robots); occlusions that are very likely to occur in a
real environment. Although, the system was implemented for
the RoboCup environment, the system can be used in more
general environments.

I. INTRODUCTION

Localization is the fundamental problem of estimating
the pose of the robot inside the environment. In a dynami
multi-agent world a precise localization is necessary t{
effectively perform high level coordination behaviors or in-
formation sharing techniques: at the same time the prese
of other robots makes localizations harder to perform. |
fact, if the density of moving obstacles in the environmen
is high, occlusion of the robot's sensors is very frequen
A localization system for a densely populated environme
like the Middle-Size RoboCup field, must be proved robus
against occlusion. In this paper, we explicitly discuss th
robustness of our system against occlusion that was j
hinted in [7].

To manage the uncertainty on the localization Comlngiig. 1. A snapshot of the algorithm looking for chromatic transitions.
from the measurements we used the well-know Montegreen-white chromatic transitions are highlighted with red crosses, green-
Carlo localization technique, Usually two kinds of sensorgel_low transitions with blue crosses, black_pixels_ represent the_sample
have been used in the Monte-Carlo localization approaceicd (£a o 02 SX40 T & ot L GE e s s used for
range finder devices performing scan matching on a metrigw distance measures. If a not expected transition is detected (i.e. another

map of the environment [2], [13] or vision sensors eitherobot detected along some ray, look in the image at the dark shapes inside

to recognize landmarks matched within a map [3] [9] [5]the green field) the scan is stopped and a typical vafkE RAY is
! ' IIstored in the distances vector. In this paper we focus our attention in the

or to find the reference image most similar to the imagecalization problem in presence of sensor's occlusions caused by other
currently grabbed by the robot [14], [8], [6]. agents.

In this work, we use an omnidirectional vision system
as sensor to emulate and enhance the behavior of range-
finder devices. The most significant differences are: (i) a Il. A SELECTIVE RANGE FINDER USING
conventional range-finder device senses the obstacles in the OMNIDIRECTIONAL VISION
environment, while our sensor is sensitive to the chromatic As we said, we search the omnidirectional image for
transitions in the environment, and (ii) the sensor can rejechromatic transitions of interesive are interested igreen-




white, green-blueandgreen-yellowtransitions. These tran- I11. M ONTE-CARLO LOCALIZATION
sitions are related to the structure of the RoboCup fields, \1onte-carlo localization (MCL) has been successfully

where the play-ground is green, lines are white, and goa}lf,sed by many researchers [12], [2], [L3]. This is a proba-
and corfnehr posts arehblue or yelloyv: We rpgasure the digjjistic methods based on Batesian Filtering (Marked Lo-
tance of t mzarest ¢ ror;at!chtransmorlws of interesiong d_calization in robotics) [1], [4]. It calculates the probability
rays every 6 egr_eei an VY(;[ a sz_mp e step corresp%n 'BEnsity of robot position (theelief) and recursively prop-

.to 4.cent|meters |n.t. € world coor inate systgm, as SNOWhates this probability density using motion and perception
in Fig.1. The omnidirectional vision sensor is COMPOS€G,tormation. In our implementation, motion data come
by a camera pointed upward to a multi-part mirror Withg, the odometric sensors and perception data come from

a custom profile [11]. This gives our *range finder” 8the omnidirectional vision system. The belief about the

360 degrees field of view, much larger than the usugly, s nosition is updated every time the robot grabs a
field of view of conventional range finders. Moreover, the

file of th idirectional mi desi (J;ew image (i.e. a new observation of the world). The
custom profile of the omnidirectional mirror was designeq,gjief apout the robot position is represented with a set

to have good accuracy both for shqrt gnd Iong d'StanGSf discrete points in the configuration space of the robot.
measurements. In fact, conic omnidirectional mirrors fa"‘l’hese points are calledamples To update the belief

to obtain good accuracy for short distgnce measqremerg%r time, these samples are updated. To every sample is
(because the area close to the robot is mapped in a Vefyqq iated a weight indicating the probability that the robot

small image area), while hyperbolic mirrors fail to obtamiS occupying that position. The samples with the lowest

good accuracy for long distance measurements (becausev\(?éights are deleted and the samples with highest weights

the low radial resolution far away from the sensor). W'thsurvive and generate new samples.

our mirror, the area surrounding the robot is imaged in the To update the belief, the knowledge of two conditional

wide exter_na_l ring of '_[he mir_ror and the area far_ away frorTbensities, callednotion modebndsensor modek needed.
the robot is imaged in the inner part of the mirror whereThe motion modelp(l:|l;_1,a:_.) is a probabilistic rep-

the radial resolution is high, see Fig.1. The inner part of th?esentation of the robot's kinematics which describes a

;mrrortk:s usgdtto rt??a?ﬁre objects f?r'ther trljan 1maw osterior density over possible following robot’s poses.
rom the robot, while the outer part is used to measury,, implemented the MCL system on an holonomic robot,

objects closer than 1 m from the robot. We first scan fOf:alled Barney. The peculiarity of this robot is that it can

chromatic transitions of interest close to the robot's body,, . iy any direction without the need of a previous

|r} tEe puter nfmrror Eart, and thferr]] we scan the |n4ner Patttation. Updating the robot’s position according only to
of t efmag(:1 ron:)t ,e lgegter of the image up to 4 Meterg,e yinematics does not take into account errors given
away from the robot's body. by odometric inaccuracy and possible collisions of the

The system looks for the chromatic transitions of interesfyp ot with other obstacles. Therefore a random noise term
along 60 rays by mapping the color of the sampled pixelg; 4qded to the values given by the odometry. Noise is

into one of the class of the 8 RoboCup COFQDB_JS afurther qqelled with Gaussian zero centered random variables,
class that include all colors not included in the formerthey depend on both the amount of translation and of
classes (callecunknown coloy. At the setup stage, We rqoiation. In our implementation a good value for the error

perform a_color calibration depending on the |_IIum|nat|.onterm is a normal distribution with equal to 200 mm/meter

of the environment and the RGB color space is quantizeg yransiation and 30 deg/meter for rotation. These values
into a look-up table to obtain a real-time color quantizationg quite large to take into account the frequent slipping of

Once a chromatic transition of interest is detected, itghe three driving wheels of the holonomic platform. The

distance is stored in a vector. We have three differerdensor modetiescribes the probability for taking certain
vectors, one for every chromatic transition of interestsensor measurements at certain poses: it strongly depends
During the radial scan, we can distinguish three situationgn the particular sensor used and it is described in detail

1) a chromatic transition of interest is found; the realn the next section. The localization algorithm basically
distance of that point is stored in the correspondingonsists of three steps:
vector;

2) there are no transitions of interest, a characteristi
value calledINFINITY is stored in the vector (this . . .
means no transition can be founded along this ray

3) a not expected transition is found: FAKE RAY [ ] ‘
value is stored in the vector (this means somethin
is occluding the vision sensor). All rays wittAKE
RAYvalue are discarded in the matching proceasy (
discriminatior). @ (b)

1In RoboCup environment the ball is red, the lines are white, the goalEig. 2. The metric maps used for expected distances computation: in (a)
are blue and yellow, the robots are black, the robots’ marker are cyan arade represented the fix obstacles, in (b) are represented all the chromatic
magenta transitions of interest of the environment



« all particles are moved according to the motion mode
of the last kinematics measure;

« the weights of the particles are determined accordin]
to the observation model for the current sensor reag
ing;

o a re-sampling step is performed: high probability]
particles are multiplied, low probability ones are dis-

carded; \\\\\\\\

Finally, the process repeats from the beginning. For mor}

details please refer to [2], [13]. //////// O S—
A. Model of the new range finder

The sensor modep(o|l) describes the likelihood to
obtain a certain sensor readinggiven a robot poseé. As a
introduced in Sec. lll, the sensor model is used to compu .
the weights of the particles. For each parti¢gldocated in
the posd’, the associated weight is proportionalt@|!’)
(i.e. to the likelihood of obtaining the sensor reading
when the robot has pogé). To calculatep(o|l’), we need
to know the ‘expected scdno(l). The expected scan is
the scan an ideal noise-free sensor would measure in t
pose, if in the environment there are no obstacles. T
likelihood p(o|l) can be calculated as(o|l) = p(o|o(1)).
In other words, the probability(o|o(l)) models the noise
in the scan by the expected scan [2], [13].

When using a sonar or a laser, like in [2], [13], the|
expected scan is computed from a metric map of th
environment. The expected scan is obtained calculating t
reflections of the sonar or laser beams against the walls a8
the fix obstacles. If used in the current RoboCup Middle (b)
Size field this would lead to a very sparse informatiorn
because the only detectable features are the goals and
corner posts, as depicted in Fig. 2(a). Moreover, if you hav
several robots in the field they will likely occlude most
of the static obstacles and so the available features w
be even less. For this reason we proposed this new sen
that can detect all color transition existing in Fig. 2(b). Thid
enable us to detect much more fix features performing \\

D

more reliablé'scan matching”. The map in Fig. 2(b) shows B

thg chromatic characteristics of the enwronme_nt. _We u_s —';—;7///' S
this map to pre-compute the expected scan finding wit ®

a ray-tracing approach theearest chromatic transition of
interestfor every pose. Moreover, we use the informatio
about the fix obstacles extracted from the map of Fig. 2(a) ©
to improve the scanning process; for instance if we find a _
yellow pixel, this can be only a goal or a corner-post, i.eF19- 3. An examples of expected and measured scan for the green-white
. . . . ‘tolor transition. Given a pose, in (a) is represented the expected scan for

an object that is outside of the boundary of the field, S0 ikn ideal noise-free sensor in a free environment. In (b) is shown the frame
is not worth looking farther for a white line, thus we stopgrabbed by the robot in that pose, in (c) is represented the corresponding
; ; measured scan. In (c) the black line represents the measured distances

the scanning Process for this ray. . while the dotted red line represents the rays in which a not expected

From every image grabbed by the robot, we obtain thregansitions is detectedAKE RAY$ This can be caused by image noise
scans: one for every chromatic transition of interest (greerer other robots (represented with gray circles). Look for example in the

; _ _ nidirectional image (b) at the yellow goal: inside there is a robot (the
white, green-blue and green-yellow, see Sec. Il). Thanks féjc?alkeeper) and three rays of the scan detect it (c) (along these rays is

the ability to distinguish between different colors, we arejetected the black color that we are not searching for). For all these rays
able to filter out some rays when a "wrong” chromatic tran-a FAKE RAYSvalue is stored instead of the proper distance.

sition is detected (i.e. a chromatic transitions that we aren’t

looking for, see Sec. Il). This is the case, for example, when

another robot partially occlude the omnidirectional sensoigreen-black transition is found, but we aren’t looking for
black pixels are detected along the occluded rays andamy transitions with black color. So, we can discard these




rays that could negatively affect the sensor readiray (

discriminatior). This process is not possible with classical Brolte=roi1(o;)

range finder sensors and one needs to apply quite complex ploill) = Ce(— =1 )
algorithms to filter out in the range scan the moving 1 —os—ghap)? / ' @)
obstacles from the reference obstacles. (g%e 20 + (40 (0; — 00)

In Fig. 3 a comparison between an expected scan (a) where(., (4, (s are the mixture coefficients, witt,. +
and a real sensor scan (c) for the green-white transition i + (4 = 1. We computed a different mixture for every
presented. In the middle (b) is the image grabbed by thdifferent chromatic transition.
robot. What makes the difference between the expected
scans and the real scans is the presence of occlusion in
the field of play and the presence of noise in the image. If 150 Expcted distance
occlusion is present, a non-expected transition is detected, 160
and the ray is labelled @d8AKE_RAY (the red dotted lines 140
in 3 (c)). Due to the image noise, it might happen that a
color transition is not detected or is detected at a wrong
distance. 80
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1) Sensor noiseThe probabilityp(o|o(l)) models the
noise in the measured scan conditioned on the expected

20

0

scan. For every frame grabbed by the sensor we obtain O 0 0 T 00 e 0 e
three scans, one for each chromatic transitions of interest, (@)

so we have to calculate three probability values. Since 0.12

every scan is composed by a set of distances, one for each 011

ray, we first model the probability that a single ray correctly 01 Expected distance

0.09

detects the chromatic transition and then we take into
account all rays. Eventually, we need to combine the three
probability values given by the three chromatic transitions

of interest. To compute the probability to obtain for a single

ray a distance; given the posé (p(o;|l) = p(o;|o(1))), 0.04
we collected a large number of omnidirectional images 003
(about 2.000) in different known poses in the field. Then,

0.08
0.07
0.06
0.05

probability p(oll)

0.02
0.01

we measured the distance of the chromatic transitions 0
of interest. As an example, the probability density of O T e e 0 e
the measured distangg(o;|!) for the green-white color (b)

transition is plotted in Fig. 4(a). We described this density o _
with the mixture of three probability density of Eq. 1. The Fig. 4. 'In (a) the c_hstnbutlon of measured dlstanpes for an expected

. ) known distance. Notice the peak at the expected distance, the measures
numerical values of the parameters in Eq. 1 are calculat@fdfore the expected one due to the image noise and the high number of
with a modified EM algorithm [10]. The resulting mixture, max distance measures that represents that no chromatic transition has

whi o ; ; ; been detected. In (b) the densjtyo|l) that represent our sensor model
for the green white transition, is pIOtted in Fig. 4(b)' Thecomputed using EM-algorithm. The plotted curve is the result of three

three terms in Eq. 1 are respectively: an Erlang probabilit¥ontributions: (i) an Erlang variable with indexwhich depending on the

density, a Gaussian probability density and a |arge discreteometry of the mirror (low noise in the close-distance mirror part), (ii)a

density. The Erlang variable models wrong readings ilgu_autssiein distribution‘centered at the expected dis_tan‘ce and (iii) a discrete
. . istribution representing the measurements resulting id & INITY

the scan caused by image noise and non-perfect colgfye.

segmentation. The index depends on the profile of the

omnidirectional mirror used in the sensor. Our mirror (Sec. 2) Sensor occlusion and ray discrimination technique:

II) maps the area around the robot in the outer image rin@nce thep(o;|l) is computed, it's possible to compute the

where we have good accuracy and almost no noise, whilgrobability of the whole scan given a pos€2). To cope

in the inner part a certain amount of noise is present. Wavith unexpected measures due to occlusion of the scans

set the value of,, the Erlang variable, equal to the indexby the moving objects in the environment (i.e. the other

of the first pixel scanned in the inner part of the imagerobots and the ball), we filtered out all rays which distance

So, the Erlang density will have a peak at the distance; equal theFAKE RAYvalue  in the formulas, see Sec.

corresponding to the transition between the two mirrotl). The detection of occluding obstacles along the rays of

parts. The Gaussian distribution models the density arouradscan is very frequent in the densely crowded environment

the maximum likelihood region, i.e. the region around thdike the Middle-Size RoboCup field. In conventional range

true value of the expected distance. The discrete densifinders there isn’t any ray discrimination system, so all

represents the probability of obtaining B4FINITY value measured distances contribute to sensor model computa-

for the distance, as described in Sec. II. tion: if a large number of distances are affected by the



presence of other agents around the robot, localizatid
process might fail. Our ray discrimination technique allo
us to compute sensor model only with a subset of reliabl¥
distances: this enable to obtain a more reliable localizatia
without using other techniques, edistance filter44], that
can affect negatively the computational performance of th
system.

- -

pll) =TI »ldy="TI prleidst.i) (@)
{iloi#¢} {iloi#¢}

Returning to Monte Carlo Localization, we are now able
to compute the weightv/) associated to each particles
j. Since we get three scans for every frame, using (
we obtain three weights for each particle. To obtain 3
single weight value, after a normalization step, we simpl
compute the product of the three weights

C (d)

()

(@ Fig. 6. For the same position, the probability distributions for different
amount of sensor’s occlusion: in (b) for 0% of occlusion, in (d) for 25%
/f : and in (f) for 50%. In (a),(c),(d) the images grabbed in these 3 situations

A respectively. Notice that in a more densely crowded environment (f) the
high likelihood region is wider than an empty one (b), but most of
the probability is still condensed around the right position. Occlusion
is obtained with black stripes that simulate the presence of other robots
closed to the sensor.

(©) (d)

Fig. 5. Probability distributiong(o|l) for all possible positions of
the robot in the field given the scans of a single image. Darker pointThe weights with higher values are clustered only around
corresponds to high likelihood. The arrow represents the actual robota 5ctyal position of the robot. The Fig. 6 shows the
pose. In (a) is represented the probability given the scan for green- . T ) Co .
white transitions, in (b) for green-blue transitions, in (c) for green-yellowProbability distributions for the same pose with different
transitions, in (d) the three probability densities are combined. amount of sensor’s occlusion: with high rate of occlusion
_ _ S o _ the uncertainty increases, but most of the probability is still

In Fig. 5, we give a pictorial visualization of the weights condensed around the right position. Occlusion is obtained
calculated by the three different scans of the three chrqovering the sensor with black strips. Every strip cover
matic transition of interest. The real pose of the robot ig2 59 of the sensor and well simulate the presence of one
marked by the arrow. Higher weight values are depicted aghot close to the sensor. In real situations is extremely hard
darker points, lower weight values are depicted as lighteg have more than two robot close to the sensor, while other

points. In Fig. 5 (a), are represented the weight contriblphots are usually quite far and occlude a small fraction of
tions calculated from the scan looking for the green-whitg@he sensor.

transition. One can notice that, due to the symmetry of the

white lines in the field two symmetric positions resulted to In order to improve the performance of the system, the
have high likelihood. In Fig. 5 (b), are depicted the weightdistances (see Sec. Il) in the environment are discretized in
contributions calculated from the scan looking for thea grid of 5x5 cm cells, in a way similar to [4]. The expected
green-blue transition. One can notice that all positions fadistances for all poses and the probabilitig®;|g(l, 7))
away from the blue goal have a high likelihood, because nfor all g(I,7) can be pre-computed and stored in six (two
green-blue transition was found in the image scan. In Figor eachchromatic transition) look-up tables. Each look-up
5 (c), are represented the weight contributions calculate@bles takes about 13Mb. In this way the probabiity; |1)
from the scan looking for the green-yellow transition. Onecan be quickly computed with two look-up operations, this
can notice there is an approximate symmetry around thenables our system to work in real-time at 10 Hz on a PC-
yellow goal. All these contributions are combined togethed 04 Pentium Il 700 MHz fitted with 128 Mb of RAM

to calculate the overall weights represented in Fig. 5 (dusing 1000 particles.



IV. EXPERIMENTS

We evaluated our approach on an holonomic custom-
built robotic platform, in a 8x4 m RoboCup soccer field.
The robot was equipped with the omnidirectional sensor
described in Sec. Il. In order to shown the robustness
of our approach in densely crowded environments, we
tested the system on six different paths (like the one
shown Fig. 7). For each path we collected five sequences
of omnidirectional images respectively with 0%, 12.5%,
Do m oniaals e e 25%, 37.5%, and 50% occlusion. In addition to the image

(a) we recorded for every position the ground truth pose
of the robot and the odometric readings between two
consecutive positions. An example of frames grabbed in
the same position, but with different amount of occlusion
is shown in Fig. 6(a),(c),(e). In order to take into account
the odometric errors, robot movements were performed
by remote control. We tested our algorithms for the three
fundamental localization problems: global localization (the
robot must be localized without any a priori knowledge
on the actual position of the robot, i.e. Fig. 7 (a)(b)),
position tracking (a well localized robot must maintain the
localization, i.e. Fig. 7 (c)(d)) and kidnapped robot (a well-
(0) localized robot is moved to some other pose without any
‘ ‘ odometric information).

2000

1800

1600
1400

1200
1000
800

600

(C),

400
200

[ 3
Average localization error [mm]

0

0 2.5 5 7.5 10 125 15 175
Step

Fig. 8. The plots compares the global localization errors for a fixed path
with different amount of sensor’s occlusion.

In Fig. 8 is shown the average error for a global local-
ization experiment along the same reference path for three
(d) different amounts of sensor occlusion. Obviously without
occlusion, localization is quickly and accurate, but also in a
Fig. 7| bA sequencs of glcibal localization: the %ray f]ircle hrepr:esg?t@lensely crowded environment (sensor always covered for
actual robot pose, the red line represents ground-truth path, the bla o ; PR
line represents the estimated path of the robot, the black points represe%lr:trate _Of 50 /0) the rOPOt is able to localize Itse!f and to
the particles. In (a) particles are uniformly distributed (no knowledgeMaintain localization with good accuracy. We obtained very
is available on robot position), in (b), after moving 4 meters away andyood results also in the kidnapped robot problem. Recovery
grabbing 5 frames and getting 5 odometric readlngs, the particles al om a localisation failure is obtained thanks to a small
condensed around two possible poses (due to environment symmetry).
In (c), after 6 meters, 7 frames and 7 odometric readings, uncertainty @mount of samples (10% of the total number of samples)
solved and particles are condensed around the actual pose of the robot.umformly distributed in the environment. A few steps after
(d) after 18 steps: the position of the robot is well tracked. The particle ; ; ;
scattered in the environment are the 10% of the total number of particle%sl kldnapped robot eplsode most of t_h_e samples ar_e ag_am
uniformly distributed to solve the kidnapping problem. concentrated around the correct position and the situation
is the same of global localization (due to lack of space we

did not reported these experiment in this paper).
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Fig. 9. Statistical evaluation of our system in the position tracking

problem for all our reference paths. Accuracy (average error end maxi{6
mum error) is represented for different amount of sensor’s occlusion (0%,
12.5%, 25%, 37.5%, 50%).

(7]

Finally, we tested our approach in the conventional
situation of position tracking, for different amount of oc- (8]
clusions: in Fig. 9 is shown the average and the maximum
error over all reference paths. Notice that both remain small
also in a densely and constantly crowded environment. [9]

V. CONCLUSIONS

In this paper we propose a new vision-based Monté&!
Carlo localization system particularly suitable for densely
crowded environments. The omnidirectional vision sensadni]
is used to emulate the behavior of range-finder devices and,
thanks to the ability to distinguish different color transi-
tions it can detect and reject data caused by other robais]
occluding the sensor. We tested our system in the Middle-
Size RoboCup domain with different amount of sensor’s
occlusion to simulate the presence of other agents around
the robot: experiments demonstrated that our approach ]
able to localize the robot with a maximum error of less than
30 cm even in the very unlikely situation of a continued[14]
occlusion of 50% of the omnidirectional camera. Even if
our system was developed for the RoboCup competition,
it can be used to localize the robot in any environments
simply building the right metric and chromatic maps that
depicts respectively the fix obstacles and the chromatic
transitions of interest of the environment. These maps can
be as simple as drawings stored in image files, representing
the plan of the environment augmented with the informa-
tion on the color transitions. From these maps, the system
will automatically recalculate all look-up tables used in
the localization process. At the moment of writing we are
testing our system in a indoor office environment without
any artificial landmark or modification of the environment.
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