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Abstract

This dissertation describes the work done by the author in the period of

his Ph.D. in the field of omnidirectional vision.

After a general presentation on omnidirectional vision, the dissertation

focuses on omnidirectional vision for mobile robotics. Each chapter of the dis-

sertation covers a different topic in omnidirectional vision for mobile robotics.

The three main chapters describe the evolution of an omnidirectional vision

system to be mounted on a mobile robot. First, a new simple algorithm

used to produce low-cost omnidirectional mirrors with custom profiles is pre-

sented. Second, a new method of hierarchical localisation is described. Hi-

erarchical localisation is defined as the determination of the robot’s position

with different accuracies depending on the environment structure. Third,

the implementation of the Spatial Semantic Hierarchy is described in detail.

The Spatial Semantic Hierarchy of B. Kuipers has been previously imple-

mented only on simulated robots or on robots with sonar in very simple

environments. The described implementation deals with a real robot, in a

real-world environment, equipped with an omnidirectional vision sensor only.

The last chapter describes an extension of omnidirectional vision from

single robot domain to multi-robot domain. The aim is to build an Omni-

directional Distributed Vision System. In a Distributed Vision System, the

different sensors are networked. The interaction and the communication be-

tween the sensors enables intelligent behaviours not achievable with a single

sensor. This last section should be considered as an overview of the current

work of the author, in which preliminary results and preliminary experiments

are reported.
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Abstract

Questa tesi descrive il lavoro svolto dall’autore nel campo della visione

omnidirezionale durante il suo adottarti.

La tesi, dopo una presentazione generale sulla visione omnidirezionale,

si concentra sulla visione omnidirezionale per robot mobili. Ogni capitolo

affronta un diverso argomento di visione omnidirezionale per robotica mo-

bile. I tre capitoli principali descrivono l’evoluzione di un sistema di visione

omnidirezionale per un robot mobile. Dapprima presentato un nuovo algo-

ritmo per la produzione di specchi omnidirezionali a basso costo con profilo

variabile. Poi si passa alla descrizione di un nuovo metodo di localizzazione

gerarchica per il robot: l’idea quella di determinare la posizione del robot

con un’accuratezza che dipende dalla struttura dell’ambiente che circonda

il robot. In fine viene descritta in dettaglio l’implementazione della Spatial

Semantic Hierarchy di B. Kuipers su un robot reale. La Spatial Semantic

Hierarchy era stata testata precedentemente solo su robot simulati o robot

dotati di sonar che operano in ambienti molto semplici. L’implementazione

descritta stata realizzata su un robot reale, che opera in un ambiente reale

ed dotato solo di un sensore di visione omnidirezionale.

L’ultimo capitolo riporta il lavoro svolto per applicare la visione omni-

direzionale a sistemi multi-robot. L’obiettivo quello di realizzare un Om-

nidirectional Distributed Vision System in cui i vari sensori omnidirezionali

siano collegati in rete tra loro e in cui l’interazione tra i singoli sensori genera

dei comportamenti intelligenti che non possono essere ottenuti con un singolo

sensore. L’ultimo capitolo dovrebbe essere considerato come una panoramica

del lavoro attuale dell’autore, in cui vengono riportati risultati ed esperimenti

preliminari.
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Chapter 1

Introduction

The sense of vision is one of the most effective way of collecting information on

the surrounding environment. This is true both for animals and for machines.

Since the beginning of research on mobile robotics the scientists tried to

give the robots the sense of vision. Many times the progress of science and

technology was inspired by the observation of the Nature. We will introduce

the omnidirectional vision and its advantages by looking at the world of

nature. From these observations, it will be evident the need to design different

vision systems for robots performing different tasks.

1.1 The Sense of Vision

The knowledge of the surroundings in Nature is essential to survive. For

instance, the ability to effectively track the motion of a pray or the ability

to spot a predator while it is far away are essential skills in the struggle for

survival. The natural distinction of animals into preys and predators brought

to the development of two different kind of vision systems.

The vision systems of preys is “designed” with the largest possible vision

field in order to survey the widest area around them. This brought to very

large eyes positioned on the opposing sides of the snout. This arrangement

1



2 Omnidirectional Vision for Mobile Robots

Figure 1.1: The field of view of preys (left) and predators (right).

assures the maximum coverage of the environment, because the field of views

of the two eyes have a very little overlap or do not overlap at all. With this

arrangement preys can achieve up to 360◦ of field of view.

The vision system of predators is designed with the highest acuity in

order to accurately locate their preys. This brought to eyes positioned on

the forward part of the snout with a big overlap of the vision fields of the two

eyes in order to perform stereoscopic vision enabling the accurate estimation

of the pose of objects of interest. The resolution achievable by animals is

impressive, e.g. an eagle can spot an hare from two kilometres away.

The two tracks followed by the evolution are evidences of the trade off we

face when building an artificial vision system: should we privilege the high

resolution or should we privilege the wide field of view? The two approaches

can be combined only to some extent. In fact, increasing the resolution of

the vision sensor and extending the vision field of the sensor, both increase

the amount of information gathered from the sensor. This information then

should be processed. If the amount of information is too high this processing

is too burdensome and there is no advantage. This is true for the vision

organs of the animals and for the artificial vision systems we can build.
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In this dissertation, we will present our efforts for building an artificial

vision system with a very large field of view. We will focus on the design

of sensors that can grab images with 360◦ of horizontal field of view and on

the techniques developed by the author for extracting from omnidirectional

images the information needed by a mobile robot.

1.2 Omnidirectional Vision

The term Omnidirectional Vision refers to vision sensor with a very large

field of view, i.e. sensor with a horizontal field of view of 360◦ and a variable

vertical field of view usually between 60◦ and 150◦ .

Usually animals achieve a 360◦ field of view with two eyes. The field of

view of every eye is limited to 140–220◦ , but some animal presents eyes with

a 360◦ of horizontal field of view. These eyes can be considered as omnidirec-

tional sensors. When the mankind started to reproduce the world into paint-

ings, it tried to give the sense of “reality” by generating very large sight of the

represented environment. Lately, machine vision researchers discovered that

the imaging techniques developed as a form of art or “divertissment” could

be used also in scientific domains and new generations of omnidirectional

sensors sprouted out.

Omnidirectional vision is a new technique and probably is not mature

yet for commercial and market application, but its use is growing very fast.

More and more laboratory around the world are developing new sensors and

new applications of omnidirectional vision.1 Today, omnidirectional vi-

sion is used in tasks as: wide area surveillance [32], video-conferencing [25],

remote reality [11], non-destructive inspections [30] [5], 3D environment re-

1As an example of the rate of growth, consider the web page “The Page of Omnidi-
rectional Vision” (www.cis.upenn.edu/ kostas/omni.html). This page links to Universities
and Companies working in the field of omnidirectional vision. When the author started
his work on omnidirectional vision in 2000, this page had only 10 links to Universities and
5 or 6 links to companies. Now the links present in the page are more than doubled.



4 Omnidirectional Vision for Mobile Robots

construction [15], etc. Probably, the domain where omnidirectional vision

found the largest application is the mobile robotics domain. This disserta-

tion will illustrate the work of the author in several fields of applications of

omnidirectional vision to mobile robotics.

1.3 Omnidirectional Vision for Mobile Robotics

Usually the cameras used in machine vision tasks are off-the-shelf cameras.

These cameras are designed for television purpose or for grabbing still pic-

tures. In order to apply them to Computer Vision or Robot Vision tasks,

the researchers developed several workarounds to overcome the limitations of

these systems. On the contrary, we believe that, as nature designed different

kind of eyes for different tasks, we should employ (or design, as well) different

imaging sensors for the different tasks assigned to the machines. This is not

always possible due to external constraints (like costs and technological limi-

tations), but omnidirectional cameras, and in particular catadioptric camera,

greatly extended the flexibility of the imaging systems.

Omnidirectional vision is a relatively new technique for mobile robotics.

Its range of applications and the new possibilities offered are not fully under-

stood. In fact, despite the fact that the first works that used omnidirectional

vision sensors mounted on mobile robots date back to the early 90’s, there are

no public available software libraries dedicated to omnidirectional vision.2

Omnidirectional vision sensors are valuable sensors in the field of mobile

robotics, because they offer in one shot a global view of the area surrounding

the robot. For instance, the knowledge of the positions of the objects at

360◦ around the robot is essential in tasks like map matching or image-based

navigation. The field of view at 360◦ greatly reduces the perceptual aliasing

2At the time of writing, at the Intelligent Autonomous System Laboratory (IAS-Lab)
of the University of Padua we are working on the first release of V2 our omnidirectional
vision software suite
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(i.e. the possibility that two distinct places offer the same sensory reading).

In addition, in highly dynamic environment, the continuous view of the area

surrounding the robot enable simple tracking techniques to follow the objects

of interest.

Moreover, the impact of omnidirectional vision is not fully understood

also by people working with omnidirectional vision sensor. The use of an

omnidirectional vision sensor should influence the entire robot. Omnidi-

rectional vision sensors should be considered as a totally different sensors

with respect to a standard perspective cameras. The completeness of their

360◦ field of view should influence the complete robot: the whole body, the

driving system and the software controlling the robot. There should be a

complete synergy between the omnidirectional sensor and the body of the

robot . The body should not impair the omnidirectional vision sensor. For

instance, the body should have a rotational symmetry and be shaped in order

not to occlude the sensor preventing the observation of some areas around

the robot. This recommendation is not followed by many researchers. For

instance, in the RoboCup competitions almost every team is using omnidi-

rectional vision sensors, but only few of them have robots with a circular

symmetry and behaviours that fully exploit the omnidirectional sensor.

1.4 The dissertation overview

This dissertation is intended as a description of the work done by the author

in the field of omnidirectional vision during his Ph.D.

Chapter 2 presents a general overview of the different techniques used

to grab omnidirectional images. The chapter starts with an overview on

omnidirectional vision in animals, then gives a brief panoramic of omnidi-

rectional vision in arts, concluding with the different techniques used at the

moment in the scientific laboratories around the world to capture omnidirec-
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tional images. The aim of the chapter is to identify the roots of the modern

omnidirectional vision used in mobile robotics.

Chapter 3 proposes the idea that the omnidirectional vision sensor mounted

on a mobile robot should be customised on the robot’s task and on the robot’s

body. In the chapter, we also detailed the technique used to design and pro-

duce low-cost omnidirectional mirrors with custom profile. Some examples

of realised mirrors are proposed.

Chapter 4 discusses the main scientific result: a method for the hierarchi-

cal localisation of a mobile robot within the image-based localisation frame.

We realised this work when we were visiting researcher at The Intelligent

Robotics Laboratory of Prof. H. Ishiguro at Wakayama University (Japan).

The second part of the chapter discusses the integration of a Monte-Carlo

localisation method with our method of image-based localisation in order to

solve the main problem that affects image-based localisation, i.e. the percep-

tual aliasing. Experimental results are presented.

Chapter 5 presents another main scientific result: the implementation

of the Spatial Semantic Hierarchy of Prof. B. Kuipers on a real robot

fitted only with an omnidirectional vision sensor. The chapter describes why

the omnidirectional vision sensor is a good sensor to implement the Spatial

Semantic Hierarchy. This work started when we were a Master Student in

Artificial Intelligence at the University of Edinburgh (U.K.) during the first

year of our Ph.D and then continued in Padua.

Chapter 6 presents some new topics we are working on. This chapter

should be considered as a kind of “work-in-progress” section even if the ideas

and the first experiments presented have been published in some conferences.

In the first part of the chapter, we present the concept of Distributed Vision

System and Vision Agents. Then we explore how these concepts can be

exploited with omnidirectional vision. In the end we present the first stage

of an Omnidirectional Distributed Vision system composed of uncalibrated
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omnidirectional cameras that can learn to control a mobile robot.
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Chapter 2

Omnidirectional Imaging

In this chapter, we will give an overview of the omnidirectional vision sensors.

We will start introducing some examples of omnidirectional vision in animals

showing that different eyes evolved for different tasks. Then, we will discuss

how the mankind approached the idea of omnidirectional vision within arts

in order expand the perceptive experience of the observer. We will discuss

some of the philosophical implication of this. In the end of the chapter we will

present a brief survey of the modern technique to capture omnidirectional

images and how these are used in science to build more effective artificial

vision systems.

2.1 Omnidirectional Vision in Animals

Several times, the progress of science has been inspired by the observation of

the Nature, so we will start this overview on omnidirectional vision sensors

by analysing some examples of omnidirectional eyes in animals.

One of the first examples of omnidirectional vision sensor appeared on

Earth about 50 Million of years ago. Fig. 2.1 shows a picture of the fossil

eye of a trilobite. This was a compound eye similar to the one of the modern

insects.

9



10 Omnidirectional Vision for Mobile Robots

Figure 2.1: The close-up view of the eye of a fossil trilobite. One of the first
examples of omnidirectional vision system.

Figure 2.2: A sketch of the compound eye of a diurnal insect. Every facets
has a photoreceptor associated.

Almost, all animal eyes that can be considered omnidirectional vision

sensor are compound eye. The compound eye is composed of a set of optical

elements apt to collect the light rays coming from different directions. These

optical elements are densely packed to form the eye and are called facets.

For the purpose of this panorama on omnidirectional eye, we can broadly

divide the animal compound eyes in three main categories. This division

depends on the technique used to focus the light on the retina.

The first set is composed of eyes where at every facet is associated a

photoreceptive cell, as sketched in Fig. 2.2. This kind of eye is frequent in

diurnal insects.

The second group is composed of eyes with a single retina. The refraction
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Figure 2.3: A sketch of the compound eye of a nocturnal insect. Note that
rays of light entering at different facets are focused in the same point on the
retina with a refraction.

index of every facet is graduated in order to progressively bend the path of

the incoming light rays. The bending causes parallel rays coming from the

same source to focus at the same point in the retina, Fig. 2.3. Such kind of

eye is apt to work in conditions of very low lightening. This compound eye

is found in nocturnal insects.

The third group is composed of eyes similar to the one of the night insects,

but this group uses reflections instead of refractions in order to focus the

light on the retina. At every facet is associated a lenticular element with a

reflective lateral surface. Once the parallel rays of light coming from the same

object enter the different facet, they are reflected at the lateral surface of the

lenticular elements and focused on the retina. Fig. 2.4 shows a sketch of this

kind of compound eye. This last type of eye can be found in crustaceans.

2.2 Omnidirectional Vision in Arts

At the beginning of the XV century, after the brilliant intuition of Giotto in

the middle of the XIV century, Filippo Brunelleschi unrevealed the geomet-

rical rules underlying the human visual perception and created the perspec-
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Figure 2.4: A sketch of the compound eye of a crustacean. Note that rays of
light entering at different facets are focused in the same point on the retina
with a reflection.

tive. The perspective enabled the artist to give a more realistic representa-

tion of reality by following some simple geometrical rules. At the same time,

the artists discovered that they could play with these geometrical rules to

alter the perception of reality. One of the first examples is the representation

in paintings of hemispherical mirror called witch mirror1 .

2.2.1 The extension of the perception

In the painting “The Wedding of Giovanni Arnolfini” of Jan van Eyck (Fig. 2.5)

the witch mirror represents a scenical artifice to extend the perception of the

spectator. The artist was bind to the classical representation of the bridal

couple in the nuptial room. Introducing the witch mirror, he can expand

our sensorial horizont behind the usual border and can represent the whole

room, himself while observing the bridal couple from the door of a second

room.

The same functionality of enlarging our sensorial experience perceiving a

larger portion of the world and then having a better understanding of the

1The name of these mirrors come from the “strange” reality that is reflected by these
mirrors, like if it was altered by a witch or some evil spirit.
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Figure 2.5: “The Wedding of Gio-
vanni Arnolfini” of Jan van Eyck.

Figure 2.6: The zoom on the
witch mirror on the wall behind
the bridal couple showing the rest
of the room and the painter.

Figure 2.7: “The praetor and his
wife” of Quentin Metsys.

Figure 2.8: The zoom on the witch
mirror on the table of the mon-
eylender reflecting the window, the
person waiting beside the window
and the view out of the window.
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reality is performed by the witch mirror in the “The moneylender and his

wife” of Quentin Metsys (Fig. 2.7). Here, the scene illustrates the moneylen-

der and his wife while they are counting some coins and looking at an object.

The main scene does not tell the whole story, it is only the convex mirror

that reveal the drama that is going on. Close to the window reflected in the

mirror, there is a person waiting for the decision of the moneylender. This

person is pawning his goods and he is waiting with impatience the decision

of the moneylender.

Figure 2.9: A litograph of Escher: Hand with Reflecting Sphere 1935.

The philosophycal meaning of extension of the reality and of the knowl-

edge is reached in the famous printing of Escher Hand with Reflecting Sphere

(1935) (Fig. 2.9). Here the painter is observing the spectator through the

reflection on the sphere. The observer has a complete view of the world of

the painter and he completely identify himself with the painter and with his
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mind.

Figure 2.10: An example of anamorphosis. The correct perception of the star
is perceived only after the reflection on the reflecting cilindrical surface.

Figure 2.11: An second example of anamorphosis. The correct perception
of the painted scene is perceived only after the reflection on the cilindrical
surface.

Another example of how reflecting surface can enlarge and puzzle our sen-

sorial experience is the case of anamorphosis. A simple example of anamor-

phosis is depicted in Fig. 2.10. In anamorphosis the object is not represented

following the geometrical rule of perspective, but it is geometrically distorted

at a grade where it is not recognisable. The geometrical distortion can be
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removed only with a reflecting surface with an appropriate shape and po-

sition. The image reflected by the mirror surface appear now to follow the

perspective rules. A more complex example is represented in Fig. 2.11. As

Benosman and Kang brilianntly say in their book “Panoramic Vision” [6]:

“...The catoptric anamorphosis is fascinating not only because it

reveals what is hidden, but it also offers two contraddictory ways

of perceiving reality. In fact, the eye perceives the distorted and its

corrected version on the mirror, and simultaneously understands

both the illusion and the mechanism of the illusion. ...”

The distortion of the perspective, the witch mirrors, the anamorphosis,

all toghether contributed to create the understanding that what we perceive

through our eyes is just one of the possible representation of reality. If we

can change the way we perceive the reality we can expand our knowledge or

extract more information from the appearance of reality as we will show in

the next chapters.

2.2.2 Capturing the horizon

In the first part of this section, we saw how artists played with the geometrical

rules underlaying perception, in order to extend the sensorial horizont of the

observer. In the second part, we will briefly report the efforts made by the

artists to capture a complete view at 360◦ of a scene, in order to reproduce

the apparence of the environemnt: the panoramic art.

The world panorama was introduced at the end of the XVIII Century

and is the result of the union of the two greek words pan (παν = “all”) and

horama (óραµα=”sight”). For a person of the beginning of the XIX century,

the meaning of the word “panorama” was very different from the current

meaning. The initial meaning of this word refered to the invenction of the

Scottish Robert Barker patented in 1767. The panorama was a format of
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Figure 2.12: The panorama. A) Entrance, B) dark access corridor, C) spec-
tator stage, D) field of view of the spectators, E) vellum: a reversed umbrella
that limited the field of view of the spectators, G) painting, F) slope covered
of grass.

painting at 360◦ that sourrounded the spectator. A scketch of the typical

structure of a panorama is depicted in Fig. 2.12. The spectator was within a

“rotunda” surrounded by the painting. The aim was to impress the spectator

with a realistic representation of a natural or urban landscape. Everything

was designed to convey this reality impression on spectators. The specta-

tors entered the rotunda through a dark tunnel that brought them directly

to the center of the panorama, a sort of mysterious trip. Once entered in

the panorama the impression was really to be in the center of the depicted

scenary. The lighting where shielded by the vellum (a kind of reversed um-

brella that limited the field of view of the spectators), the slope between the

stage and the painting was covered with grass (in order to convey the idea

of a natural landscape). We could say it was one of the first attempt to

realise an immersive virtual reality. Most of the paintings realised for the

panorams have been lost. Few of them survided. In Fig. 2.13 is represented

the cityscape of Edinburgh in Scottland as painted by Robert Barker in 1787.
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Figure 2.13: The panorama of Edinburgh - Scottland. R. Barker (1787)

Panoramas were build in all the major cities of Europe and of the United

States of America. It was a great commercial success, but at the end of the

XIX, the attractive of panoramas quickly declined. In the while,the pho-

tography was invented. The photography was used to recreate even more

realistic landscapes, but it did not have a big success of public. Nevertheless,

this was the born of the panoramic photography. The cameras used to grab

these early panoramic pictures are the ancestors of modern panoramic cam-

eras and panning cameras used by the scientists. In Fig. 2.14 is represented

one of the most successful panoramic cameras, i.e. the Kodak Cirkut 10.

This dates back to 1902 and it is still in use by lovers of panoramic photog-

raphy. In Fig. 2.15 is depicted a modern panoramic picture of the Mount

Mauna Kea Observatory

Figure 2.14: An ancian panoramic camera.
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Figure 2.15: A panoramic picture at the Mauna Kea observatory.

2.3 Omnidirectional Vision in Science

The bending of the laws of perspective and the panoramic art inpired the

machine vision community to explore new way of capturing pictures of the

environment.

The modern omnidirectional sensors used in computer vision and robot

vision can be devided in three big groups. This distinction arises from the

different imaging technique2 . The three goups are:

• the compound-eye cameras;

• the panoramic cameras;

• the omnidirectional cameras;

At this point, a brief note on terminology is needed. There is a mix-up

in terminology in the scientific community. The adjectives panoramic and

omnidirectional are used as synonims, with a sligtly more technical flavour

for omnidirectional. In this dissertation we will use the term “panoramic”

for imaging device able to generate a perspective image at 360◦ of the sur-

rounding with a limited vertical field of view (tipically a panning perspective

camera). The term “omnidirectional will be used for sensors that produces

non-perspective images with a 360◦ horizontal fild of view and with a vertical

field of view that can be bounded or not.

2For a more detailed survey on the different types of omnidirectional sensor, see the
survey paper of Y. Yagi [88].
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Figure 2.16: The DodecaTM 1000
Camera produced by Immersive
Media.

Figure 2.17: The S.O.S. sensor
(Stereo Omnidirectional System)
produced by ViewPLUS Inc.

Figure 2.18: The RingCam re-
alised in the Microsoft Laborato-
ries.

Figure 2.19: The dome for virtual-
ising artistic or sport performance
at Carnagie Mellon University.
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2.3.1 Compound-eye cameras

We will not discuss in detail the compound-eye cameras. We will only men-

tion it for sake of completeness in this overview. Compound-eye cameras

uses multiple camera to grab pictures in different directions and then stich

them one to the other in order to produce a global view of the environment.

The advantages of these cameras are the high resolution these sensors can

achieve and the possibility to grab the pictures in different direction at the

same time. The disadvantage is the complexity of the system and the need

of a accurate calibration process.

The DodecaTM 1000 Camera is composed of 11 cameras able to grab

almost spherical image. DodecaTM 1000 Camera is produced by Immersive

Media. The S.O.S. sensor (Stereo Omnidirectional System) has almost the

same spherical field of view of the DodecaTM 1000 Camera, but it can per-

form stareo vision in this sphere of view. This is possible because the system

is composed by 20 triplets of CMOS cameras looking at different directions.

The S.O.S. sensor was realised by ViewPLUS Inc. Despite these two pro-

totypes, the most commonly used compound-eye cameras are composed of

few cameras looking at the horizon in different directions that shot at the

same time, like the RingCam depicted in Fig 2.18 realised in the Microsoft

Laboratories in U.K. The pictures from the different cameras are merged to

produce a panoramic image, called also panoramic cylinder [40].

Out of curiosity, we present a fourth type of sensor that usually it is not

considered an omnidirectional sensor, but it can be considered a peculiar

kind of compound-eye camera. This sensor is not looking around, like the

other sensor presented, it is looking inside, Fig. 2.19. It does not generate a

unique omnidirectional image. It performs N-stereo vision and it is used to

digitalize motion performances as dance or sportive events [42].
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2.3.2 Panoramic cameras

As we said in the previous note, in this dissertation we use the term panoramic

camera for sensors able to produce perspective panoramic views using a sin-

gle camera. Usually this is achieved by panning a camera around the vertical

axis passing through the focal point of the camera, see Fig. 2.20. This ap-

proach requires very fine calibration and synchronisation of the movements

of the camera and provides high definition panoramic images. If the camera

does not rotate about its vertical axis, but around a vertical axis at a certain

distance from its focal point, it is possible to obtain rough range panoramic

images by matching the views of an object from different positions [13] [40].

This technique is very slow and it is not suited for dynamic environment. In

dynamic environment, we need cameras able to capture a global view in one

shot in order to have at any time in the field of view all the moving objects.

These cameras are omnidirectional cameras.

Figure 2.20: The panning camera (left) and the range technique
(right).(Courtesy of Prof. Y. Yagi at Osaka University)

2.3.3 Omnidirectional cameras

Even if omnidirectional camera have been realised with different techniques,

the basic idea is always the same, i.e to gather the light coming from the



Chapter 2. Omnidirectional Imaging 23

objects in the surrounding of the sensor and convey it into the sensor by

changing the path of the rays of light. Cameras that use only the refractive

effect of lens to bend the light are called dioptric cameras (from dioptrics

the science of refracting elements). Cameras that use the combined effects

of reflection from a mirror and of refraction from a lens are called catadiop-

tric cameras (from catoptrics, i.e. the science of reflecting surfaces and

dioptrics).

Figure 2.21: An Omnidirectional image.

The omnidirectional camera mostly used by the machine vision commu-

nity can be groupped in three cathegories: cameras that uses special lens,

camera that uses a convex mirror and a set of lens, and cameras that uses

two mirrors and a set of lens.

2.3.4 Special lens cameras

Cameras with the use of fish-eye lens can acquire almost a hemispherical

view. The drawback is that the resolution of the images is good at the centre

but very low at the periphery. This is not good for robot navigation, where

the objects to locate lie on the floor and they appear at the horizon or below.



24 Omnidirectional Vision for Mobile Robots

Figure 2.22: A camera
mounting a PAL lens.

Figure 2.23: A cam-
eras mounting convex
mirrors of Accowle Co.
Ltd.

Figure 2.24: An exam-
ple of folded catadiop-
tric camera.

In other words, the resolution is very good looking at the ceiling but poor

at the horizon. Greguss proposed an optical lens called Panoramic Annular

Lens (PAL) composed of three reflective and two refractive planes [31]. See

Figure 2.25. This does not need alignment and can be easily miniaturised.

2.3.5 Convex mirror cameras

Convex mirror cameras are the most widely used in robotics to obtain omni-

directional images. The sensor is composed by a perspective camera pointed

upward to the vertex of a convex mirror. The optical axis of the camera and

the geometrical axis of the mirror are aligned. This system is usually fixed on

top of a mobile robot like in Figure 5.1. Different shapes of the mirror have

been used. The most common are conical mirrors, hemispherical mirrors,

hyperboloidal mirrors and paraboloidal mirrors; see Figure 3.2. Every shape

presents different properties that one has to take in account when choosing

the mirror for a particular task. In Chapter 3, we will compare three possible
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Figure 2.25: A sketch of a basic optics of PAL. (Courtesy of Prof. Y. Yagi
at Osaka University)

different profiles for the mirrors.

Camera

α

Figure 2.26: A sketch of a basic optics of a convex mirror camera.

To produce these mirrors out of glass would be very expensive and for

some particular shape would not be possible. Fortunately, they can be real-

ized from a cylinder of stainless steel shaped with a numeric control lathe.

The surface of these mirror is smooth enough and reflective enough for the
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purposes of omnidirectional vision.

The catadioptric omnidirectional cameras with a single convex mirror will

be the sensor we will discuss in the rest of the dissertation, but before moving

on in the next chapter, where we will explain how to build a convex mirror

with a custom profile, let us discuss the third type of omnidirectional camera.

2.3.6 Folded catadioptric cameras

Camera

Figure 2.27: A sketch of a basic optics of a folded catadioptric camera.

Usually catadioptric cameras tend to have big dimensions compared to

conventional cameras, because a minimal distance is required between the

camera and the convex mirror. To overcome this limitation, folded catadiop-

tric cameras were developped [74]. They use the optical folding method to

fold the optical path between the curved mirror and the lens system. Folding

with a curved mirror creates a 180◦ fold and can reduce undesidered optical

effects. An example is like the Omnirama of Versacorp in Fig. 2.24.
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2.4 Conclusions

In this chapter, we saw the different ways used by animals, artists and

scientists to capture omnidirectional images. The lesson we learned from

panoramic are is that reality depends on the way we observe it. The lesson

we learned from the vision of animals is that “the way we observe” depends

on what we are looking for. Again animals tell us that our perspective sight

is just one of the possible way of vision.

In summary, when we design an artificial vision system for a robot we

should take into account the task of the robot. From this analysis we could

conclude that maybe the robot does not need a high resolution image, but

a wide image with different resolutions in different regions of the image.

Therefore, we should design an omnidirectional vision sensor customised on

these requirements.

In the next chapter, we will see a technique to build omnidirectional vision

sensor tailored on the task of the mobile robot.
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Chapter 3

Omnidirectional Mirror Design

In the previous chapter, we gave an overview on the variety of panoramic

and omnidirectional sensors. As we said, the catadioptric sensors are the

most successful omnidirectional vision sensor. Their popularity is due to:

the low cost (compared to PAL1 sensors); the high-speed in collecting the

data (compared to the panoramic cameras) and the flexibility.

The flexibility of the catadioptric systems derives from the possibility to

easily change the transfer function of the sensor. The transfer function of the

sensor describes how points in the three dimensional world are mapped into

points in the two dimensional image. In a catadioptric system, the shape of

the mirror determines the transfer function of the sensor.

In this chapter, we will show how a desired mapping between world points

and image points can be obtained with a customised profile of the omnidi-

rectional mirror. The design of a custom mirror profile enables to overcome

the limitations of classical omnidirectional sensors and to expand their range

of applications. In other words, the design of omnidirectional sensors with a

custom profile is a key issue in simplifing or developping new applications.

In the second part of the chapter, we will present the actual design of three

1PAL = Panoramic Annular Lens.

29
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Camera

Mirror

Figure 3.1: The omnidirectional vision system. The camera is the vertical
black stick and it is pointed upward to the omnidirectional mirror. Note the
custom profile of the mirror.

mirrors tailored for different applications.

3.1 Classical Mirror Shapes

Before describing in detail how is possible to create a custom profile for an

omnidirectional mirror, we will give a brief overview on the most used types

of omnidirectional mirror. These shapes has been so widely used in mobile

robotics that they can be called classical mirror shapes. In Fig. 3.2, some of

the most used mirror shapes are presented. As we said, every one of these

mirror shapes realises a different mapping between the world points and the

image points. These mappings determine the resolution and the field of view

(FOV) of the different sensors. Let us discuss briefly the properties of each

shape:

• (a) conical mirrors have good resolution in the peripheral, but they

produce a singularity at the cone tip.
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• (b) hemispherical mirrors they have good resolution in the centre

area but poor resolution at the peripheral region. These mirrors present

the widest view angle among convex mirrors.

• (c) hyperboloidal mirrors have good resolution both in the centre

and in periphery. The view angle is almost as wide as that of the hemi-

spherical mirror, but the most important advantage is the presence of

an “effective view point” located at the focus of the hyperbole . The

presence of a single viewpont enables the reconstruction of distortion

free images. As it is depicted in Figure 3.3, from the image of a hyper-

boloidal mirror it is possible to reconstruct a panoramic cylinder or a

perspective images at the desired angles.

• (d) paraboloidal mirrors have the same resolution as hyperboloidal

mirrors even if with smaller angle of view. They present a single view-

point when used with a orthographic projection camera.

These typologies can be mixed to exploit the benefits of the different

classes. For instance, Bonarini used a mirror composed by a sphere inter-

secting a reverse cone in order to avoid the excessive distortion introduced by

the cone tip and have the good resolution of the hemispherical mirror in the

centre of the image [9]. Another example is the mirror of Sorrenti, he pro-

posed a multi-part mirror for the specific task of the Robocup competitions

(www.robocup.org). In this mirror, each part is devoted to the observation

of a different area of the play ground [52].

The two major drawbacks of the systems that acquire a single omnidirec-

tional image in a snapshot are the low resolution and the typical distortion

of the omnidirectional images. The low resolution combined with the geo-

metrical distortion produces images hardly intelligible by a human. This can

be a problem for applications like video–conferencing or tasks that require

to display images to a human operator. If the application requires to display



32 Omnidirectional Vision for Mobile Robots

Figure 3.2: The different mirror profiles. (Courtesy of Prof. H. Ishiguro at
Osaka University)

a final image to a human operator, it is possible to reconstruct perspec-

tive images from omnidirectional images [78]. This type of reconstruction

is limited by the resolution of the sensor, but mainly by the geometry of

the omnidirectional vision sensor. In fact, only sensors with a unique ef-

fective viewpoint enable an exact geometrical reconstruction of perspective

images (for a detailed theory on omnidirectional catadioptric systems with a

single–viewpoint, please refer to the work of Nayar [3]).

The single viewpoint constraint can be relaxed if we are not interested

in an exact reconstruction of the perspective image (the work of Derrien

and Konolige reports how is possible to approximate the single viewpoint

condition even in catadioptric system without this geometrical property [26]).
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Hyperboloidal Mirror
Focal Point

Perspective viewOmni-directional Image

Camera Centre

Hyperboloidal Projection

Panoramic Cylinder

Figure 3.3: Hyperboloidal projection and examples of transformed images.
(Courtesy of Prof. Y. Yagi at Osaka University)

On the other hand, the human readability is not always essential. In lots

of applications the final step of the image processing is not the presentation

of an image to a human operator, but is to extract features to be used in

successive processes. A typical example is a vision system for navigating a

mobile robot . Here the distortion is not a problem, because we can design

the algorithm to take in account the geometrical distortion. Neither is the

low resolution, because we are more interested in the positions of the objects
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rather than in the details on their surfaces. An extreme example of this is

the work of Franz [27].

Abandoning the single viewpoint constraint permits a greater flexibility

in the design of the omnidirectional vision sensor because we are no longer

limited by geometrical constraints. In particular, it is possible to consider

the geometry of the mirror as a variable in the design of the vision system.

In the past, most of the catadioptric omnidirectional vision systems used

convex mirrors with simple geometrical revolution surfaces: hemi-spheres,

cones, hyperboles and parabolas. All these shapes have nice geometrical

properties that have been diffusely studied [4] [37], but they strongly limit

the flexibility of the sensor. Lately, researchers started to use more complex

surfaces in order to realise custom mapping functions between the world

points and the point on the imaging sensor. The mirror can be shaped in

order to have a mapping function that simplifies the image processing [33]

[28]. An example is the work of Lima that used an omnidirectional mirror

designed to give a bird’s eye view of the RoboCup field of play [53] [33]. This

choice preserves the field geometry in the image, permitting a straightforward

exploitation of the natural landmarks of the soccer field, goals and fields lines,

for a reliable self-localisation. Another example is the work of Bonarini, that

introduced the idea of multi-part mirrors to obtain different image resolutions

in specific areas around the robot [10]. The work of Marchese and Sorrenti

combines the two ideas proposing a mirror composed by three parts [52]. The

works of these authors have been the starting points to develop our work also

presented in [59] and in [58].

In this chapter, we present our approach to the design of a mirror with a

custom profile and three examples of mirrors designed for different applica-

tions. Our approach showed to be successful also in the map building task

(as documented in [70]) and not only in the RoboCup community (where

our work [59] was selected as a candidate for the Best Paper Award of the
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RoboCup Symposium of 2001 in Seattle – USA). Our design technique raised

interest in other research groups, like the GMD Robocup Team of the Fraun-

hofer Institut of Bonn that committed us the design and production of the

omnidirectional mirror for their goalkeeper, the CS Friburgh Robocup Team

of the University of Freiburg that is testing one of our three parts mirrors

and the University of Catania that wanted us to design a new omnidirec-

tional sensor for one of their new robot.

CCD
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Figure 3.4: (Left) Image formation sketch (Right) The geometrical construc-
tion of the custom mirror

3.2 The design of the mirror

In this section we delineate an algorithm for the design of a custom mirror

profile. The algorithm is a modification of the one presented in [52]. To

understand the algorithm, we have to understand first the image formation

mechanism.

In Fig. 3.4, we sketch the image formation mechanism in a catadioptric

omnidirectional vision sensor. Consider the point P laying on the floor. Using

the pin-hole camera model and the optical laws, for every point at distance
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dOP from the sensor, it is possible to calculate the coordinates (x, y) of the

corresponding image point P’ on the CCD.

Vice versa, knowing the coordinate (x, y) of a point in the image plane,

we can calculate the distance dOP of the corresponding point in the world2

. Because of the finite size of the sensitive element of the CCD, we do not

have access to the actual coordinates (x, y) of the image point, but to the

discrete corresponding pair (xd, yd) (i.e. the location of the corresponding

pixel of the CCD). So, if we calculate the distance dOP from (xd, yd), this will

be discrete. The discrete distance deviates from the actual distance with an

error that depends on the geometry of the mirror. In the next section, we

will see how the amount of error we decide to tolerate impinges on the profile

of the mirror.

The main point in the design of a custom profile is the identification of the

function that maps the desired points of the world into the desired points

of the CCD. This is a function f : R3 → R2 that transform world point

(X’,Y’,Z’) into image points (x,y).

Actually, what we want is a simpler function. We want a function that

maps points laying on the plane Y=0 (the ground) around the sensor from

a distance DMIN up to a distance DMAX . Therefore, exploiting the rota-

tional symmetry of the system, the problem can be reduced to find a one-

dimensional function f ∗ where dMAX is the maximum distance on the CCD:

f ∗ : [DMIN , DMAX ] → [0, dMAX ] (3.1)

The exact solution of this problem can be found with a quite complex differ-

ential equation. In [33] a solution to this equation is reported for the simple

case d = f ∗(D) = KD, i.e. the distance, from the centre of the CCD, of

the image of a world point is proportional to the distance of the world point

from the sensor’s axis. In [52] is reported an approximated solution. In [59]

2For a detailed theory of catadioptric image formation, refer to the homonym paper of
Nayar [3]
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we presented this algorithm applied to the design of a mirror to be used in

the RoboCup domain, but this technique can be applied to design mirrors

for any application.

3.2.1 The algorithm

The solution we use is similar to the one presented in [52], consisting in a local

linear approximation of the mirror’s profile with its tangent. This solution

is completely general and permits to choose a arbitrary set of world points

and map them in an arbitrary set of CCD points. Let us see in the detail

the algorithm:

1. transform the interval [DMIN , DMAX ] in a discrete set of points in the

world [D0, D1, D2..., DN ] that will be mapped by f ∗ in the discrete set

of points on the CCD [0, d1, d2, ..., dN ] (remember these two sets can be

arbitrarily chosen);

2. the tip of the mirror is in P0 = (0, Y0) and the tangent to the mirror

is tan(arctan(DMIN/y0)/2). With this choice the point at distance

D = DMIN is mapped into d=0. Let us call r2 the line passing by P0

whose derivative is tan(arctan(DMIN/y0)/2);

3. r1 is the line passing by the pin hole (0, f) and the point (−d1, h) on the

CCD, where h is the height of the CCD on the ground. The intersection

between r1 and r2 determines the point P1. The line r3 will be created

as the line passing by the point P1 and the point (D1, 0). Now the line

r3 and r1 constitute the path the light has to follows if we want to map

the world point (D1, 0) into CCD point (−d1, h). Therefore the tangent

to the profile of the mirror in the point P1 must be perpendicular to

the bisector formed by r3 and r1. And so on, until all the points in the

set [D0, D1, D2..., DN ] are mapped in the set [0, d1, d2..., dN ];



38 Omnidirectional Vision for Mobile Robots

4. The mirror profile is obtained by the envelope of all the previously

calculated tangents at the points Pi, i=0, 1, 2, ..., N;

Another variable in the design of the mirror is its radial dimension. If

we want that the omnidirectional view will be maximised in the camera

image, we have to choose the radial dimension of the mirror depending on

the camera–mirror distance. Consider Fig. 3.7(left), α is the angular aperture

of the camera. If the border of the mirror is tangent to the solid angle α, the

omnidirectional image will be exactly circumscribed by the camera image

frame. The closer we position the mirror to the camera, the smaller the

radial dimensions of the mirror will be. If we want that the system can grab

focused images, the minimum distance between the mirror and the camera

(Dmin) is limited by the closest subject distance of the camera3 [37]. On the

other hand, if we can tolerate a certain amount of defocus on the images, we

can place the mirror closer and make it smaller and lighter.

3.2.2 The making of the mirror

In order to test the mirror profile obtained with this algorithm, before ma-

chining the actual mirror, we can test its performances in a simulated envi-

ronment. The set of points describing the mirror profile can be used to create

a virtual model of the mirror in a virtual world created with a ray-tracing

program. In our work we chose the open-source program POV-Ray4 . In

Fig. 3.5(a) the virtual model of a mirror is depicted and in Fig. 3.5(b) is pre-

sented a simulated omnidirectional image obtained with the virtual mirror

in a virtual reconstruction of the RoboCup field of play. Using the synthetic

images generated with PovRay the final design of the mirror profile is as-

sessed. If this is satisfactory, the set of points describing the mirror profile

3In fact, the virtual image of reflected objects forms behind the mirror surface, as
detailed by Ishiguro in [37]. Also the focal depth (∆min) is important if we want to have
the whole image in focus and not just a slide of the mirror’s reflection.

4Information and downloads at www.povray.org
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Figure 3.5: (Left) The virtual model of a custom profile mirror. (Right) A
virtual omnidirectional image of the virtual reconstruction of the RoboCup
field of play.

is passed to a numerically controlled lathe, that machines a cylinder of an

aluminium alloy to obtain the final mirror. To decrease the weight of the

final mirror it is possible to unload the mirror by scooping a concave hollow

in the back side of the mirror. In Fig. 3.6(a) you can see the actual mirror

produced and in Fig. 3.6(b) you can see an omnidirectional image captured

in the RoboCup field of play.

3.3 The task commits the design

As we tried to stress in the previous sections, the mirror’s profile should be

designed according to the task performed by the robot. As an example, we

will consider the design of mirrors for similar tasks and for very different

tasks. In this paper, we report the differences in the design of the mirrors for

two of our soccer player robots and for a robot whose task is to explore an

unknown environment and to build a map of it using the Spatial Semantic

Hierarchy [70] [46].

The task of the goalkeeper is to prevent the ball from rolling into its own

goal, by stopping the ball with its own body and kicking the ball away with
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Figure 3.6: (Left) The actual mirror produced for the goalkeeper. (Right)
An omnidirectional image acquired with the omnidirectional sensor of the
goalkeeper.

its pneumatic kicker.

The task of the attacker is to kick the ball in the opponent goal and to

catch the ball when this is still or to win the ball when this is carried by an

opponent.

The task of the mapping robot is to locate the objects in the environment,

to track the vertical edges of the objects and to follow the baseline of the

objects.

The tasks of the two soccer robots are quite similar, but nevertheless we

will see how a mirror tailored for each robot can improve the performances

of the robots. On the other hand, we will see that the mirror designed for

the mapping robot will have a totally different profile. Let us consider first

the requirements for the soccer robots and then for the mapping robot.

3.3.1 Requirements for the soccer robots

Similarities: The described tasks implies that the vision systems of the two

robot should have the following capabilities:

All these requirements corresponds to the following requirements on

the vision sensor:
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Num. Capabilities
A to spot the ball in the field of play, even when it is far away
B to precisely locate the ball when it is near the robot’s body
C to identify the team’s markers carried by the other robots

Table 3.1: The capabilities required to the vision system of the soccer robots

Num. Constraints

A
to have a large field of view with a good resolution for looking
at the field of play

B to present a high resolution area around the robot

C
to have a very wide field of view that extends from the ground
up to above the horizontal, the resolution is not important

Table 3.2: The constraints on the vision system of the soccer robots

These constraints require to have three different zones of the sensor with

very different optical properties. So, we decided to design a multi-part mirror

composed of three parts: a inner part and two circular rings, that we called

respectively: the measurement mirror that observes the wider area of the

field of play with a good resolution; the proximity mirror that observes the

area around the robot’s body with a high resolution; the marker mirror

with a large field of view, but with very low resolution.

Differences: There are small differences in the tasks performed by the two

robots. For instance,

So, we obtain two additional requirements for the vision sensor of the

attacker:

Also the mechanical construction of the two robots influences the design

of the tailored mirrors. The bodies of the two robots have different sizes and

heights, so the regions of low, good and high resolution around the robots

should have different dimensions.
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Num. Requirements

D

the goalkeeper should observe precisely its own goal in order
to be able to shield it effectively and to locate it-self with
respect to it. The attacker robot should be able to see both
goals from any points of the field of play, in order to always
know where are its own goal and the opponent goal

E
the attacker moves much more in the field of play and so it
should be lighter than the goalie

Table 3.3: The constraints on the vision system of the soccer robots

Num. Constraints

D
to have a wider vertical field of view (to view both goals from
anywhere)

E be more compact (in order to be lighter)

Table 3.4: The constraints on the vision system of the soccer robots

3.3.2 Requirements for the mapping robot

As will be diffusely explained in Chapter refchpt:omniMapping detailed in

[70], in order to build a topological map of an unknown environment using

the Spatial Semantic Hierarchy proposed by Kuipers, the robot should be

able to spot the distinct places along its path and to navigate using the pre-

defined control laws between two distinct places. As detailed in [71], the

robot uses the vertical edges to detect meaningful topological situations and

to pose new distinct places and uses the baseline of the objects to navigate

between two distinct places. Therefore the vision system should be able to:

All these requirements corresponds to the following constraints on the

vision sensor:

A ) to have a vertical field of view spanning from the ground close to the

robot to some degrees over the horizon (every vertical in the environ-
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Num. Requirements

A
to robustly detect the vertical edges present in the environ-
ment

B to precisely locate the baseline of the objects close to the robot

Table 3.5: The requirements on the vision system of the mapping robot

Num. Constraints

A
to have a vertical field of view spanning from the ground close
to the robot to some degrees over the horizon (every vertical
in the environment will be in the field of view)

B to present a high resolution area around the robot

Table 3.6: The constraints on the vision system of the mapping robot

ment will be in the field of view);

B ) to present a high resolution area around the robot;

These requirements are satisfied with a mirror composed by two parts

with different profiles. The inner part of the mirror occupies most of the

image and generates a highly distorted image in order to stretch the vertical

edges (longer lines are recognised more robustly) and distorts non-vertical

lines into curves that cannot be confused with radial lines. The outer part

of the mirror presents high resolution and low distortion to easily detect,

using a Hough transform, the position and directions of the base lines of the

objects.

3.4 The final design

The relative radial dimensions of the different parts of the mirror depends

both on the proportion of the image we want to dedicate to the rays reflected

by each part and by the resolution we want in each area.
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Figure 3.7: (Left) The radial dimension of the mirror if we want the omnidi-
rectional view to occupy the widest portion of the image. (Right) A sketch
of the multi-part mirror profile.

In the general structure of the three mirrors, we can identify two similar

regions: the inner part and the outer part. We will discuss first the inner

part and the outer part common to all mirrors and then the annular ring

introduced only for the soccer robots. These three parts are called respec-

tively: measurement mirror, proximity mirror and marker mirror.

In Section 3.4.2, we will detail the differences between the mirrors explain-

ing the differences in the geometrical dimensions of the mirrors and in the

different curvatures of their parts.

3.4.1 The common structure

Let us consider first the inner part of the mirror, called the measurement

mirror. This part has the wider field of view. For the tip of the measurement

mirror we have two possibility: a mirror with a continuous curvature, like

the Bonarini’s and Sorrenti’s mirrors, or a mirror with a discontinuity in the
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vertex, like conical mirrors. The latter has been our choice. In fact, in a

multi-part mirror is possible to eliminate the disadvantages presented by a

conic mirror, exploiting other sections of the mirror. The first disadvantage

is the low resolution close to the sensor. This is overcome by the outer

part of the mirror: the proximity mirror, that permits to have a very good

resolution near the body of the robot. The second disadvantage (in the case

of soccer robots), the limited field of view, is eliminated by the middle circular

ring of the mirror, i.e the marker mirror, that permits a long range field of

view. Therefore, considering the whole structure of the mirror we have no

drawbacks to the advantages introduced by a mirror with a discontinuity in

the vertex and thus this will be our choice.

The measurement mirror

We chose to design a mirror that maps world points on the CCD with a

constant relative error α, i.e. a relative error that does not depend on the

distance from the sensor. So, the position of an object close to the sensor will

be determined with good precision while an object far away from the robot

will have a sensible absolute error. This choice is sensible both for the soccer

robots and for the mapping robot. The constant relative error is obtained

dividing the space between the minimum and the maximum visible distance

in a set of intervals of increasing size, each one mapped in one pixel.

The resulting profile is the first part of the mirror profile sketched in

Fig. 3.7 and it maps the world points into the area I1 of the CCD.

The proximity mirror

The measurement mirror produces low resolution images close to the sensor.

To clearly see objects close to the body of the robot we designed the proximity

mirror. The proximity mirror is the outer part of the multi-part mirror, so

it has the most convenient position to observe objects close to the body of
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the robot. This part is designed with a low curvature and a quite large

portion of the image is dedicated to the light it gathers. Thus, objects close

to the robot have quite big apparent dimensions. To enhance this effect we

made this latter part concave, so points closer to the robot are mapped in

outer points of the image, Fig. 3.7 (right). Fig. 3.7 (right) presents a sketch

showing how the different areas of the world are mapped on the image. Note

that there is an overlapping region that is seen by both the measurement

mirror and the proximity mirror. This is not a problem, on the contrary, it

can be used to perform more precise measures.

As we said before, these two parts are enough for the mirror dedicated to

the mapping task, while for the soccer robots we need an additional portion

with very low resolution and very wide field of view called marker mirror.

The marker mirror

In the RoboCup competitions every robot has to wear a coloured marker that

identifies the team the robot belongs to. The marker must be positioned at a

maximum height of 60cm. Therefore, we need a part of the mirror pointing

to objects over the field of play. This implies to see objects out of the game

arena. The vision of object out of the field of play causes troubles to the vision

systems of the robots that are designed for the highly structured RoboCup

environment. In order to reduce the bad influence caused by seeing many

unknown objects, we dedicated just a small portion of the image to the vision

of the markers. The light reflected by the marker mirror will be mapped in

a low resolution annular ring: area I2 in Fig. 3.7 (right). In this area we do

not care about precision of the measurements, we want only to be able to

detect the markers and to associate them to the robots localised with the

measurement mirror.
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Robot Low Resolution Good Resolution High Resolution
Goalkeeper 2 ◦ 70 cm– 6m 40 – 80 cm
Attacker 20 ◦ 60 cm– 7m 30 – 100 cm
Mapping −− 100 cm – 10 ◦ 30 – 120 cm

Table 3.7: The areas at different resolution of the three omnidirectional vision
sensors

3.4.2 The mirrors’ parameters

In this section we will see how the separate design of the three mirrors fulfilled

the different requirements of each mirror. Let us first discuss the parameters

of the soccer robots. In order to fulfil requirement D the attacker’s mirror has

a vertical field of view of 110 ◦, while the goalkeeper’s mirror has a vertical

field of view of 92 ◦. In order to fulfil requirement D the radial dimension

of the attacker’s mirror is 4 cm, while the one of the goalie is 7 cm. The

resulting weights are 75 gr. for the attacker’s mirror and 150 gr. for the

goalie’s mirror. For the mapping robot, we chose a vertical field of view of

100 ◦ and a radius of 5cm with a weight of 100 gr.

The extensions of the different resolution areas are reported in Table 3.7.

Note that for the low resolution areas a angular value is given, because the

field of view of this area extends over the horizon and so it is meaningless to

speak of an area for it. The angular value represents the filed of view over

the horizon. The mapping robot does not have the low resolution area, but

its good resolution areas extends 10 ◦ over the horizon, as reported in Table

3.7

The resulting profiles are shown in Fig.3.8 note the different scales in the

three plots. For a comparison of the true dimensions of the three mirrors

refer to Fig. 3.9
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Figure 3.9: A comparation of the attacker’s, the goalie’s and the mapping’s
mirror profiles. Note that not only the sizes of the three mirrors, but also
the slopes of the different segments are different.

3.5 Conclusions

In the first part of this chapter we detailed the design and production steps

to realise a mirror with a custom profile for an omnidirectional sensor. We

detailed all the phases of the process: the design, the simulations and the

actual machining of the mirror. In the second part of the chapter we focused

on showing how the task assigned to the robot commits the design of the

omnidirectional mirror. We highlighted how different tasks produces different

requirements for the vision sensor. We gave an example of this, detailing

the design choices for three different mirrors. We showed the three mirrors

produced for the mapping robot, the attacker robot and the goalkeeper robot,

discussing the similarities and the differences.

This chapter is the result of several works presented in [59] [64] [62] [66]

[70].
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Chapter 4

Omnidirectional Vision for

Robot Localisation

In the previous chapter, we understood in detail how the omnidirectional

vision system works and how is possible to build a custom sensor. In this

chapter, we will apply this sensor to the robot localisation problem. We

will present two original results in the localisation problem: the hierarchical

localisation and a solution to the perceptual aliasing. The hierarchical local-

isation is the possibility to have different accuracies in the robot localisation

depending on the environment structure. The problem of the perceptual

aliasing is the problem to be able to discriminate between two different loca-

tion that have the same appearance. The two solution have been proposed

within the image-based localisation approach. This work sprouted from a

collaboration with prof. H. Ishiguro of the University of Osaka (Japan), so

the approach we used in the image-based localisation is the one proposed by

Ishiguro in [39].

51
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4.1 Robot Localisation

A mobile robot, that moves from place to place in a large scale environment,

needs to know its position in the environment to successfully plan its path

and its movements. The general approach to this problem is to provide the

robot with a detailed description of the environment (usually a geometrical

map) and use some kind of sensors mounted on the robot to locate it in its

world representation. Unfortunately, the sensors used by the robots are noisy

and they are easily mislead by the complexity of the environment. Neverthe-

less, several works successfully addressed this solution using high precision

sensors like laser range scanners combined with very robust uncertainty man-

agement systems [84] [16]. Another solution, very popular in real-life robot

applications, is the engineering of the environment. Artificial landmarks,

as stripes or reflecting dots, are added to the environment. The robot can

use these objects, easy to spot and to locate, to calculate its position. An

example of successful application is the work of Hu [35].

Unfortunately, this two approaches are not always feasible. First of all

because there are situations in which an exact map of the environment either

is not available, like old buildings or unexplored environment, or is not useful,

like in dynamics environments in which the configuration of the objects in the

space frequently changes. So, the robot needs to built its own representations

of the world. This internal representation of the world can be something

different from a metrical map, for instance a topological map. Topological

maps are representations of the environment that capture the topology of

the environment and that have been successfully used for tasks like robot

navigation or map building [22] [50] [81].
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Figure 4.1: Image based localisation. The map of a test environment. The
red circles represent the reference locations.

4.2 Image-based Localisation

If we shift our attention from robots to humans, it is proved that, in addition

to the capability of reasoning about the environment topology and geometry,

humans show the capability of recalling memorised scenes that help them-

selves to navigate. This implies that humans have a sort of visual memory

that can help them to locate themselves in a large environment. There are

experimental evidences that also very simple animals like bees and ants use

the visual memory to move in very large environments [23].

In order to mimic this approach the robotics researchers proposed a new

approach to the robot navigation, i.e. the image-based navigation [1] [41]

[29] [45] [39]. In the image based navigation approach, the robotic agent is

provided with a set of views of the environment taken at several locations in

the environment. These locations are called reference locations because

the robot will refer to them to locate itself in the environment. The corre-

sponding images are called reference images. In Fig. 4.1 is sketched the
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map of the test environment we will use in the reminder of the chapter. The

red circles represent the reference locations, i.e. the locations where the ref-

erence images were grabbed . When the robot moves in the environment, it

can compare the current view with the reference images stored in the visual

memory. When the robot finds which one of the reference images is more

similar to the current view, it can infer its position in the environment. In

fact, it is closer to the corresponding reference location more than to any

other reference location. This give a topological localisation of the robot.

If the reference positions are organised in a metrical map, an approximate

geometrical localisation can be derived.

With this technique, the problem of finding the position of the robot in

the environment is reduced to the problem of finding the best match for the

current image among the reference images. The problem now is how to store

and to compare the reference images, that for a wide environment can be a

large number. As we will see in Section 4.2.1, different methods have been

proposed.

As we said, this work started from a collaboration with prof. H. Ishiguro.

Therefore, we adopted the image-based approach proposed by Ishiguro in

[39]. This method is different from the ones of the other authors because

it uses peculiar properties of the omnidirectional images. Let us see how

this method works. The robot is equipped with an omnidirectional camera

and takes a set of omnidirectional images at the reference location, then it

compares the current omnidirectional image with the reference images. In

order to store and match efficiently a large number of images, we transform

each omnidirectional view into a compact representation by expanding it

into Fourier series. The agent memorises each view by storing the Fourier

coefficients of the low frequency components. This drastically reduces the

amount of memory required to store a view at a reference location. With this

approach also the matching of the current view against the visual memory is
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computationally inexpensive. Details on how to calculate the image signature

from the original image are given in Section 4.2.1. In Section 4.2.2, we will

describe the process of matching the current view against the visual memory.

This process is based on the calculation of the degree of similarity between

two omnidirectional images using the signature associated to them.

Figure 4.2: An omnidirectional image taken at a reference location.

Figure 4.3: The panoramic cylinder created by the omnidirectional image of
Fig. 4.2.

Through the rest of the chapter, we will show why this method should

be preferred with respect to other methods proposed and we will illustrate

several benefits this method carries with it. In particular, we will focus on

the possibility of calculating a hierarchical localisation for the robot and

how the similarity between the images can be used as weights of the samples

in a Monte Carlo localisation process.
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In Section 4.3, we will show experimental evidence of the hierarchical

localisation in a complex real-world environment in which many objects are

present and we will give some hints on how it will be possible to create a

hierarchical description of the environment.

In this first section, we introduced the problem of image-based localisation

and navigation, we outlined the solution adopted in this work, we highlighted

the advantages of our method with respect of the approaches of other authors.

In the next section, we will explain the technique we used to reduce the

dimensionality of the input data and how the signature associated to each

image is calculated.

4.2.1 Image signature

As we pointed out in the introduction, the first problem to tackle when

building an image-based localisation system is to find a manageable way of

storing and compare the reference image. The aim is to have a data set that

fully describes the environment and permits to reliably associate the current

view with the reference view taken at a nearby location, all this while keeping

the dataset small enough to be easily stored and fast processed.

The first step, in order to lower the number of required reference image, is

to use an omnidirectional camera [37]. An omnidirectional camera can store

in a single image a 360◦ view of the environment from a certain location, see

Fig. 4.2. Conversely, if the robot is fitted just with a standard perspective

camera, the view of the environment from a certain location changes with

the direction of gaze. In order to be able to recognise this point regardless

of the instantaneous heading, the robot needs to take several pictures in the

different directions. The amount of memory required to store and retrieve

such a big number of images can rapidly grow to an unmanageable size. A

solution can be to constraint the movements of the robot in order to have

the camera pointing always at the same location [21], but this strongly limits
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the motion of the robot. Another solution can be to extract from the images

some features that reduce the amount of required memory while retaining a

unambiguous description of the image. A good example of this is reported in

[87], where 936 images where store in less than 4MB. Nonetheless, to collect

such a big number of images is tedious and time consuming. Moreover, high

resolution images are not needed for tasks like navigation and localisation.

Let us come to the second step, the comparison of the current image

with the reference images. The simplest approach might appear some sort of

direct comparison of two images pixel by pixel, but this is not robust at all

and will force us to store the whole image using a lot of memory storage.

Ishiguro proposed to use the Fourier transform of the omnidirectional im-

age and to use a subset of its Fourier coefficients as signature for the image

[39]. He did not apply the 2-D Fourier transform to the original omnidirec-

tional image, Fig. 4.2, but he calculated the 1-D Fourier transform of every

line of the corresponding panoramic cylinder. The panoramic cylinder

is a new image obtained unwarping the original omnidirectional image, as

depicted in Fig. 4.3 .

The use of the panoramic cylinder brings great simplifications in the so-

lution of the matching problem. First of all, the panoramic cylinder is a

periodic function along the x-axis and this simplify the calculation of the

Fourier transform and second it is the natural representation for implement-

ing a rotational invariance. As we said, the robot must be able to match

the current view with the corresponding reference image regardless of the

current heading. So, we need to introduce a sort of rotational invariance

in the calculation of the similarity between two images. Using the Fourier

coefficients as signature for the images, this come for free. Let us explain

how this works.

If the robot grabs two omnidirectional images at the same location but

with different headings, these two images are actually the same omnidirec-
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tional image rotated about its centre. The amount of rotation correspond

exactly at the number of degrees the robot rotated. This means the two

panoramic cylinders created by unwarping the omnidirectional image are

actually the same image just shifted along the x-axis. Let see how this con-

sideration affects the Fourier transform of the two images. If f(x) is one

row of the the first panoramic cylinder, f(x − a) is the corresponding row

of the shifted panoramic cylinder and we applying the Shift Theorem, we

can write:

F{f(x− a)} = e−j2πasF{f(x)} (4.1)

where F{f(x)} is the Fourier transform of f(x). In other words, the

Fourier transform of a shifted signal is equal to the Fourier transform of

the original signal, multiplied by the unit magnitude complex coefficient

e−j2πas. This properties states for every row of the panoramic cylinder. This

means that the amplitude of the Fourier transform of the shifted image is

not changed and there is only a phase change, proportional to the amount

of shift a.

Coming back to our panoramic images, we can then associate the mag-

nitude of the Fourier transform to the appearance of the environment from

a particular place and the phase of the Fourier transform to the heading of

the robot. In such a way, when the robot is turning on the spot and the

apparency of the environment is not changing, the magnitude of the Fourier

transform does not change. What is changing is the phase of the Fourier

transform and the amount of change is proportional to the change in the

heading.

Associating the apparency of the environment, and then the position

of the robot, to the magnitude of the Fourier transform and the heading

of the robot to the phase of the Fourier transform, we obtained both the

desired rotational invariance and a way to calculate the difference between
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Figure 4.4: The power spectrum of the Fourier transform of the image in
Fig. 4.3. Note that only the first 30 components are shown and compo-
nents after the 15th have very small values and so can be neglected in the
calculation of the similarity function.

the current heading and the heading associated to the reference image. On

the rotational invariance using the Fourier transform, see also [77].

Other authors used different approaches for reducing the memory require-

ment of the omnidirectional images. The most used technique is to extract a

set of eigenimages from the set of reference images and to project the images

into eigenspaces. The drawback of such systems is that they need to prepro-

cess the panorama images they created from the omnidirectional image in

order to obtain the rotational invariance like in [1], in [41] and in [29] or to

constrain the heading of the sensor like in [45].

The reduction on the memory requirement with our method is large, Ta-

ble 4.1. Figure 4.2 shows a 640× 480 pixels omnidirectional image at 24 bit

per pixel. Figure 4.3 is shown the 512×80 pixels panorama cylinder at 24 bit
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Image Memory Required (in bit) Memory Required
omnidirectional 640× 480× 24 7.3 Mbit
panoramic cylinder 512× 80× 24 980 Kbit
Fourier signature 80× 15× 2× 8 19 Kbit

Table 4.1: The different memory requirements illustrating the impressive
memory saving introduced by the Fourier signature.

per pixel, created from the omnidirectional image. Figure 4.4 shows a plot of

its magnitude coefficients of the Fourier series. As the figure shows, dominant

powers exist in the frequencies before the 15th. As a result, we can repre-

sent the omnidirectional image just with the values of the first 15th Fourier

components. In summary, the signature associated to each omnidirectional

image is a three dimensional array composed of 80 rows (corresponding to

the rows of the panoramic image), 15 columns (corresponding to the first 15

Fourier components) and two values for each element (corresponding to the

module and the phase of the Fourier component).

In the next section, we will describe how these 15 values are used to assess

the degree of similarity between the images.

4.2.2 Similarity computation

To compute the similarity between two omnidirectional images we define a

similarity function that takes as arguments the two sets of m values rep-

resenting the magnitude of the first m Fourier components associated with

two omnidirectional images. First of all, we transform the two omnidirec-

tional images in the two corresponding panoramic cylinders. Suppose each

panorama image is composed by l row. We transform every row into Fourier

series and we take only the first m frequency components, the first m compo-

nents with non neglectable magnitude. We define the similarity Sim(Oi, Oj)

between two omnidirectional images Oi and Oj as
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Figure 4.5: The plot of the similarity function values versus the distance
between the reference image and the current image. The different lines in
the plot represent different pairs of reference image - current image.

Sim(Oi, Oj) =
l−1∑
y=0

m−1∑
k=0

|Fiy(k)− Fjy(k)| (4.2)

where Fiy(k) and Fjy(k) are the Fourier coefficients of the k-th frequency

of y-th row of Oi and Oj, respectively. In other words, as a measure of

similarity between two omnidirectional images, we are using the L1 norm

between the Fourier coefficient of the corresponding panoramic cylinders.

The plot in Fig. 4.5 depicts how the value of the similarity function

changes depending on the distance between the current image and the ref-

erence image. The different lines in the plot represent five different pairs of

reference image-current image taken in an cluttered office environment. The

similarity linearly decreases with the distance within a short range and it

is related, somehow, even for a long distance. In fact, as you can see from

the plot in Fig. 4.5, the value of the similarity function steadily grows when

the distance between the two images increases, but after a certain distance it

will saturate. This happens because when the two images are taken at points

far apart one from the other there is no correlation at all between the two
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Figure 4.6: The values of the similarity functions calculated at every reference
point for the current image. The empty circles on the xy plane represent the
reference images. The full circle represents the actual position of the current
image. The hight of the surface at every reference location is proportional
to the degree of similarity of the reference image with the current image.

images1 . The absolute value of the similarity function is unimportant, it

depends on the environment layout, what is important is the relative values

obtained for the current image against all the reference images. The refer-

ence image that matches best the current image is the one with the lowest

value for the similarity function. So this give us a topological localisation for

the robot. In other words we do not know where the robot is, but we know

that it is closer to the location of the matched reference image than to any

other reference location.

However, most of the time a precise geometrical localisation is not neces-

sary for tasks like navigation. For the robot is enough to have a topological

localisation and in most situations the robot can effectively navigate with a

broad topological localisation. In fact, the localisation accuracy the robot

needs to navigate depends on the environment and on the current action the

robot is performing. If the robot is crossing a wide open space, it does not

need to know where it is down to the centimetre, but if it has to enter a

1This is exploited in the practical implementation of the algorithm to speed up compu-
tation: when the partial sum of Eq. 4.2 exceeds a predetermined threshold the computation
of the similarity function is stopped and a no-matching value is returned.
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door the accuracy must be high. This is similar to the behaviour we expe-

rience walking in a street of an unknown town using a map. When we are

following the high-street we do not need to know our exact position on the

map, but when we have to take a detour or to enter a building we need to

shrink down the uncertainty about our position, maybe looking for additional

environmental clues. We called this process hierarchical localisation.

In this section we proposed a quantitative measure of the amount of simi-

larity between two omnidirectional images. In the next section we will intro-

duce the concept of the hierarchical memory-based localisation and how this

can be easily calculated from the signature associated to the omnidirectional

images.

4.3 Hierarchical Memory-based Localisation

As we hinted in the previous section, when navigating in large environments

the robot needs to know its position with different accuracies depending if

it is travelling in a clear area or if its manoeuvring in a cluttered area. This

can be achieved with hierarchical localisation.

Also other authors spotted the need for different localisation accuracy de-

pending on the kind of motion required to the robot. The work in [29] is an

example of a vision-based navigation system that uses different localisation

accuracies for different tasks. This system uses two different vision-based

navigation strategy: a topological navigation and a visual-path following nav-

igation. The system switches between these two alternatives depending on

the situation. The drawback of this solution is that visual path following

requires handmade design and an accurate control systems. We solved the

requirement of a different localisation accuracy within the frame of topologi-

cal image-based navigation using the same technique described in Section 4.2,

actually simplifying this technique.
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To explain how this work, we need to give some insight on the meaning

of the Fourier coefficients we can calculate from the panoramic cylinders.

When we calculate the Fourier transform of a brightness signal, like one

row of the panoramic cylinder, we are actually decomposing this signal in its

component on a set of basis functions:

{sin(2πωx), cos(2πωx), ω ∈ R}

This basis functions are related to the spatial brightness variation. The

first basis function, the one with zero frequency, is the constant brightness

signal and the coefficient associated to it is giving the level of brightness.

Basis functions with higher frequencies are related to brightness patterns

with higher spatial frequencies. The relation between the Fourier components

and the brightness pattern present in the image can be easily understood

with the example of Fig. 4.7, kindly provided by Marco Foracchia. The test

image presents a continuum of brightness patterns at different frequencies

Fig. 4.7 (a). In Fig. 4.7 (b) is represented the Fourier transform of the test

image. Now, we apply a pass-band filter to the Fourier transform and we keep

only the middle frequencies, i.e. those components that are with in the filter,

Fig. 4.7 (c). In the last stage, we calculate the Fourier antitrasformation of

the filtered components and we will obtain Fig. 4.7 (d). As you can see, this is

just the test image with the spatial frequency of the brightness signal filtered

if out of the the pass band filter.

When we are calculating the similarity function for two images we are

summing up all the contribution from the different frequency components,

the low frequency values give the biggest contribution to the final value of

the similarity function.

When looking for the similarity between two images we can see that the

average brightness of the images changes very slowly when increasing the

distance between the two images. While the distribution and the presence of
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(a) (b)

(c) (d)

Figure 4.7: The relation between brightness pattern and spatial frequency.
(a) The test image presenting a continuum of brightness patterns at different
frequencies. (b) the Fourier transform of the test image. (c) A pass-band
filter applied to the Fourier transform. (d) The Fourier antitrasformation of
(c)
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Figure 4.8: An example of hierarchical localisation. The number of Fourier
components used to calculate the similarity function is increasing from the
left to the right. The empty circles represent the reference images. The full
circle represents the actual position of the current image and the gray area
represent the calculated possible locations of the robot.

brightness patterns (that represent the objects in the environment) changes

much faster. Therefore, we can expect that the low frequency components

of the Fourier transform of the two images are similar in a larger interval of

distances than the higher frequency components. This means that if in the

calculation of the similarity function we stop the calculation of the sum in

Eq. 4.2 to the first N Fourier components (with N < 15) our current image

will match not only the closest reference image, but also a larger number of

reference images distributed in the surroundings of the current position.
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As a result, we can have an hierarchical localisation just by choosing the

number of Fourier components to compare with the similarity function. In

other words, within the technique used in this work, the hierarchical localisa-

tion comes for free from the calculation of the similarity function and actually

save some computational power as well. In fact, if the robot needs only a

broad localisation it does not need to calculate the inner sum in Eq. 4.2 for

every value of k, it can just stop at the very first values. The result is to

match the current view not only with the closest view but also with other

reference views close to it. When a more precise localisation is needed, like

in situation in which the robot has to manoeuvre in a cluttered environment,

the sum can be extended to higher values of N in order to have a more strict

matching against only one reference images. So Eq. 4.2 becomes Eq. 4.3

Sim(Oi, Oj) =
l−1∑
y=0

N∑
k=0

|Fiy(k)− Fjy(k)| where N < 15 (4.3)

In Fig. 4.8 is depicted a graphical representation of the hierarchical local-

isation achieved with our system. The empty circles represent the reference

images. The full circle represents the actual position of the current image.

The possible position of the robot, as calculated by the system, is represented

by the gray area. From the left to the right the number of Fourier components

used to calculate the similarity function is increasing, consequently the gray

area showing the possible localisation of the robot is shrinking. In this test

the reference image were taken on a 25 cm grid in a office environment clut-

tered with many pieces of furniture, as you can see from pictures in Fig. 4.2

and Fig. 4.3.

In Fig. 4.9, we present the hierarchical localisation obtained at different

locations in the same environment. In the figure is sketched also a rough map

of the test environment. In which the objects present in the environment are

sketched as boxes of different colour. Lighter boxes represent lower objects
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Figure 4.9: Several examples of hierarchical localisation at different places
in the environment. The layout of the room in which experiments were
performed is shown and the boxes represent the objects in the environment.
Lighter boxes represent lower objects, darker boxes represent taller objects.
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(like desks or chairs), darker boxes represent taller objects (like filers or

shelves ). At the moment of writing, we are investigating the relation between

the shape of the localisation areas and the disposition of the objects in the

environment.

In summary, our method provide a direct way of calculating the hier-

archical localisation for the robot by comparing the frequency spectrum of

the current image with the frequency spectrum of the set of reference images.

Broad localisation is provided at minimal computational cost, just comparing

very few frequency components. When higher accuracy in the localisation is

needed, the system will use a little extra computational power.

4.4 Monte-Carlo Localisation

As we stated in the introduction, the image-based navigation is mislead in

situation in which the appearance of the environment is the same in two

different points. For this reason, we used a Markov particle filter to represent

the belief about the robot position and how this belief can be updated every-

time the robot grabs a new image.

The approach we used is inspired by the one proposed by Burgard in

[87]. Every time the robot moves, it grabs a new image. The grabbed image

is compared with the reference images in the memory of the robot and a

similarity value is calculated for every reference image. These similarity

values are used to assign a weight to the sample used in the Monte-Carlo

localisation process.

There are two main differences with respect to Burgard’s work. The first

is that we used an omnidirectional vision sensor, so that at every position

in the environment is associated one and only one image (with a drastic

reduction of the number of required images). The second is that we do not

associate any visibility region to the reference images in the memory database.
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The pose of the robot lt is estimated with Monte-Carlo localisation, a

variant of the Markov localisation [2, 87, 19]. The Monte-Carlo localisation

algorithm is composed of the following steps:

Algorithm 4.1 Monte-Carlo Localisation algorithm

1: {s′t} = Predict({st−1}, odometry(at−1))

2: {w′
t} = Weight({st−1}, similarity-grid)

3: {s′t, w′′
t } = Normalise({st−1, w

′
t})

4: {st} = Re-sample({st−1, w
′′
t })

5: lt = Estimate({st})

Let us discuss in detail the single steps.

1. the step Predict predicts the position of the new sample s′t from the

current sample st−1 using the odometry information.

2. the step Weight assigns to each sample s′t obtained in step 1 a weight.

The weight is proportional to the degree of similarity of the current

image with the reference images in the neighbours of the sample. Every

weight is calculated as the weighted mean of the similarity values Sj

associated to the closest reference images gj (i.e. gi ∈ C). The closer

is a sample to a reference image and the higher is the contribution of

the corresponding similarity value to the final value of the weight, as

can be inferred from Eq. 4.4

w′i
t =

∑
gi∈C

Sj(D − ||s′it − gj||) (4.4)

where D is the distance threshold.

3. the step Normalise simply normalises the samples before the re-sampling;

4. the step Re-sample eliminates the sample with lower weights (i.e. the

sample with a low similarity to the current image) in order to focus
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the elaboration on the samples with higher similarity. The re-sampling

algorithm is the one proposed in [19];

5. the step Estimate returns as estimation of the robot position the av-

erage position of all the samples present at the moment;

In Fig. 4.10 are presented two examples of Monte-Carlo localisation based

on the similarity between the current image and the reference images. The

estimated position of the robot is calculated as the average position of the

samples and is marked with a black square. The upper series presents the

position tracking problem. In the position tracking task the robot knows

its initial position (left) and the belief distribution is update with the new

observation at every step the robot takes (middle and right). The lower

series presents global localisation problem. The initial position is unknown

to the robot (the samples are uniformly distributed in the environment) (left)

and the robot has to infer its position in the environment. During the motion

of the robot the belief distribution is updated and converges to the actual

position of the robot (middle and right).

4.5 Conclusions

In this chapter, we presented two steps we took toward a robust vision-

based localisation system that can operate in every type of environment. We

presented our approach to the problem of lowering the computational and

memory requirements posed by the image-based localisation. This solution

uses the Fourier transforms of the omnidirectional images grabbed by the

robot. We discussed the advantages of this solution with respect to the

solutions devised by other authors. We focused on the possibility offered by

this representation to implement a hierarchical localisation of the robot.

To overcome the limitation of the vision-based localisation systems, i.e. the
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Figure 4.10: Two examples of Monte-Carlo localisation are presented. These
are some snapshot of our system while tracking the robot position, in the
upper sequence, and while performing a global localisation, in the lower se-
quence.

lack of robustness in case of perceptual aliasing, we introduced a Monte-

Carlo localisation technique. We showed that this system is able to

track the position of the robot while moving and it is able to estimate the

position of the robot without any prior knowledge on the real position. This

work has been described in [57] and [68]. At the moment of writing, we

are testing robustness of our system to occlusion, kidnapping and odometric

noise. The final step of this project will be to test this system in large outdoor

environment and in indoor environment with high perceptual aliasing like a

long corridor with several identical doors and junctions. The feeling is that

because the current system does not make any assumption on the structure of

the environment, it should work on outdoor images without any modification.

The natural extension of the hierarchical localisation is a hierarchi-

cal description of the environment in which the density of the reference

images in the space is no longer constant but depends on the structure of
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the environment. In fact, consider an empty space where the reference im-

ages are very similar, we can represent this space just with a single reference

image representative of all close reference image.
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Chapter 5

Omnidirectional Vision for

Mapping

In the previous chapter, we saw how the robot can calculate its position with

respect to a set of reference images. The image-based localisation is feasible in

environments with a limited extensions. In very large environments, we need

a more compact representation of the world. In this chapter we will see how

this compact representation could be a topological map of the environment.

We will explain how a robot fitted with an omnidirectional vision sensor

can extract the topology of the environment using the theory of the Spatial

Semantic Hierarchy (SSH) proposed by Kuipers. This work demonstrated

that an omnidirectional vision sensor has properties that enables to simplify

the implementation of the SSH (Spatial Semantic Hierarchy).

5.1 Mobile Robot Navigation

Often, a mobile robot does not need a map to perform a simple displacement,

especially if the environment is very simple or highly engineered. But, if the

robot’s task requires an understanding of the world, the robot has to answer

the three questions posed by Levitt and Lawton [51]: “Where am I?”, “How

75
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do I get to other places from here?”, “Where are other places relative to

me?”.

In other words, it needs a map of its world. There is a wide range of

different maps a robot can use. Different kinds of maps answer the three

basic questions using different properties of the environment. We have to

keep in mind that the distance which separates two objects is only one of the

properties of the space in which the two objects are embedded. The choice

of which property to exploit and therefore which kind of map to use depends

on the task the robot will be required to perform.

Two examples that are poles apart are metric and qualitative maps. In

metric maps the space is represented in a single global coordinate system.

The relation between different places is a metrical relation composed of mea-

sure of distances and angles. In qualitative maps, the environment is repre-

sented as a set of places connected by paths. There is no metric or geometric

information, such as distances, angles, etc. but only the notion of proximity

and order [43].

What if there is no map? Can the robot be induced to build its own

map? This idea opens another stream of research: the map building task.

In this case, the robot has to travel through an unknown and unexplored

environment and to construct a map of it. Again, depending on the task these

maps can be very different [7] [27]. One of the most effective representations

of an environment is the so called topological map. This is a qualitative map

which extracts from the environment the topological relationships between

the different places and paths. The advantages of such a representation are its

compactness, because it represents only interesting places and not the whole

space, and its intrinsic solution to the problem of movement uncertainty.

This is because when a robot goes to places, its position is known with a

certain error and this error accumulates while it moves. Because topological

maps do not rely on a global coordinate system, the error in position is reset
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whenever the robot reaches one of the distinct places identified within the

space. One of the key issues in the generation of topological maps is the

abstraction of a discrete set of distinct places from the continuous sensorial

experience. Topological maps can be upgraded to metric maps by adding

metric information to the places and to the relationship between paths and

places. Therefore, a map can be seen as a hierarchal structure built layer by

layer. Benjamin Kuipers created a formalisation of this intuition: the Spatial

Semantic Hierarchy (SSH).

The purpose of this chapter is to show the effectiveness of omnidirectional

vision as sole sensor for a robot building a topological map of a man-made

environment1 , using the Spatial Semantic Hierarchy. So far, the SSH was

only implemented on either simulated robots or real robots with very simple

sensors, as sonars. No attempt to use a vision sensor has been made.

In Section 5.2, the basic concepts of the Spatial Semantic Hierarchy are

introduced. In Section 5.4, we present the simulations run in a virtual en-

vironment to generate simulated omnidirectional image sequence. We per-

formed a qualitative analysis of the simulated images. From this analysis, we

identified transitions in the image sequence and features in the images them-

self, strictly related to the SSH representation. In Section 5.5.1 We present

the algorithms designed to extract the desired information from the image

sequences. Finally, in Section 5.6, we present the results of simulated exper-

iments and in Section 5.7 we present the results of experiments performed

with the real robot of Fig. 5.1, in a test environment. The robot depicted in

the picture is the goal keeper of the Artisti Veneti Team2 .

1like an office or a building
2Artisti Veneti Team is the team of The University of Padua at Robocup Championship,

the robot football competition.
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Camera

Mirror

Figure 5.1: The robot with its omnidirectional vision sensor.

5.2 The Spatial Semantic Hierarchy

The SSH (Spatial Semantic Hierarchy) is a model of the way humans organise

their knowledge of a large environment that extends beyond their sensorial

horizon, i.e. an environment with section not directly perceptible. In other

words, the SSH is a model of the knowledge of large-scale spaces of humans,

intended to serve as a “method for robot exploration and map building” [46].

This model was proposed by Benjamin Kuipers [49] [47] [48] [79]. The SSH

is made up of several layers: the sensory level, the control level, the causal

level, the topological and the metrical level. Each layer can be implemented

independently, even if they strongly interact. Let us see in details what each

layer is about:

The Sensory Level

The sensory level is the interface with the agent’s sensory system. It extracts

the useful environmental clues from the continuous flux of information it

receives from the robots’ sensors.
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The Control Level

The control level describes the world in terms of continuous actions called

control laws. A control law is a function which relates the sensory input with

the motor output. Each control law has conditions for its appropriateness

and termination. A selected control law is retained until a transition of

state is detected. These transitions can be detected with a function called

a distinctiveness measure. The distinctiveness function must be identified

depending on the sensor used and the features which are to be extracted

from the environment.

The Causal Level

The causal level abstracts a discrete model of the environment from the con-

tinuous world. This discrete model is composed of views3 , actions4 and the

causal relations between them. At this stage causal maps and planning are

possible using these three basics elements. For this purpose, it is convenient

to classify actions into two categories: travels and turns. “A turn is an ac-

tion that leaves the agent at the same place. A travel takes the agent from

one place to another” [79].

The Topological Level

The topological level represents the environments as places, paths and re-

gions, with details of how they are connected or contained one in the other.

To use Kuipers words:

The topological model of the environment is constructed by the

non monotonic process of abduction, positing the minimal set

3A view is defined as the sensor’s reading at a place where a transition of state is
detected.

4An action is defined as the application of a sequence of control laws.
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of places and paths needed to explain the regularities observed

among views and actions at the causal level.

The Metrical Level

The metrical level augments the topological representation of the environ-

ment by including metric properties such as distance, direction, shape, etc.

At this stage, it is possible to build a global geometric map of the envi-

ronment in a single frame of reference. This may be useful, but is seldom

essential.

5.3 Omnidirectional vision and map building

omnidirectional vision produces images with a wide angle of view but with

low resolution. This is not a problem, because most of the task which require

an understanding of what is happening in the surroundings do not need high

resolution images. It is better to gather the biggest amount of information

from the highest number of directions than to have a detailed analysis of a

small area.

In the case of a map building robot, the advantages of omnidirectional

vision are clear. For this task a vision sensor with high acuity is useless, it

is not necessary to capture the details of objects and surfaces, but only to

estimate their positions and dimensions. An omnidirectional image captures

at once all the objects visible from the robot location. This image has a strict

connection with the views introduced in the causal level of the SSH, i.e. with

the sensor reading at a distinct place. With an omnidirectional sensor, the

robot does not need several shots to understand the surroundings. It does

not need to turn and take a look around. It does not need to be fitted with

moving parts (camera or mirrors) to increment its field of view. These are

just implementational considerations, there are deeper aspects supporting
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the use of an omnidirectional sensor in the process of building a map with

the SSH.

Figure 5.2: The conic projection. (Courtesy of Prof. Y. Yagi at Osaka
University)

To understand these considerations we have to take a look at how a

omnidirectional sensor maps the scene into the image plane. Consider Figure

5.2. In this figure a conical mirror is represented, but the properties which

are illustrated apply to any kind of omnidirectional sensor.

P1 P2

P3

P5

P4

Figure 5.3: The “exploring around the block” problem. The problem of
recognising the same place under different state labels.
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The vertical edges in the scene are mapped in the image plane as radial

lines originating from the point corresponding to the tip of the mirror. There-

fore, to extract the vertical edges from the images, the image is searched for

radial lines. The azimuth of a radial line in the image corresponds to the

azimuth of the vertical edge in the scene, as viewed from the optical axis of

the camera. The vertical lines in the environment provide an optimal clue

to divide the environment into topologically different places and they can be

used to generate a distinctiveness measure needed to distinguish transition of

state in the robot ontology. Another advantage of the omnidirectional vision

is its rotational invariance. If the robot rotates of a certain angle about the

optical axis of the camera, the relative position of the objects in the image

does not change. The image is only rotated and the objects appear to have

experienced an azimuthal shift equal to the angle of rotation. This permits a

straightforward solution to the problem of exploring around the block, i.e. of

recognising the same place under different state labels. See Figure 5.3. Using

the SSH terminology, it is easy to spot whether the current view is the same

as has been experienced before and therefore to consider this view not as a

different place but as the same place reached from a different direction.

Another problem which is easily solved by omnidirectional vision is to

discriminate the type of movement the robot is performing at a given time.

Using optical flow techniques, Svoboda showed that with an omnidirectional

vision system it is very easy to discriminate between a small rotational move-

ment and a small translational movement [82]. This task is very difficult for a

vision system fitted with a perspective camera. Moreover, using active vision

on an omnidirectional vision system it is possible to estimate precisely the

motion of a robot. See again [82] for a literature review.

The main disadvantage of omnidirectional vision with respect to perspec-

tive vision is the already mentioned poor resolution. This is because with an

omnidirectional sensor light is gathered from a much wider area than with
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a perspective camera. Therefore, if the sensitive surface of the CCDs is the

same, more points have to be mapped into the same pixel. The shape and

size of the mirror influences the resolution of the sensor. Within certain lim-

its, it is possible to design mirrors that maximise the image resolution in the

most interesting regions of the scene.

Other disadvantages of the omnidirectional images are the high distortion

introduced into the image and the poor human readability. A mirror with

a single focal point, like a hyperboloidal mirror, overcomes these difficulties.

In fact the geometry of such a mirror permits transformation of portions of

interest of the omnidirectional image into a perspective image. See Figure

3.3.

5.3.1 The assumptions

In the image analysis, we make use of some assumptions. It is worth to make

them explicit here.

• The robot is moving in a indoor environment. This is a man-made
environment like an office or a building;

• The lighting in the environment does not change during the motion of
the robot;

• The objects present in the scene are static: they do not change their
positions;

• The floor is almost flat and horizontal;

• The walls and the object present in the scene have vertical edges and
surfaces;

• The axis of the camera and the mirror are vertical;

• The robot can only turn on the spot or move on a straight line. It
cannot make more complex movements;
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The last assumption is strong but permits to greatly simplify the image

sequence interpretation. Several constraints on the edge movements are based

on this last assumption.

5.4 The Simulations

As reported in the previous chapter, omnidirectional images are not easy

to understand. They present a point of view (and a field of view) we are

not used to. So we used a simulator to generate omnidirectional images of

a virtual environment. The aim of this simulator was to gain an intuitive

understanding of the dynamic of the sensor (i.e. how the image changes

when the robot moves), and of the proprieties of omnidirectional images.

The qualitative analysis of the images permitted us to extract clues about

the distinctiveness measure and features we should use in the process of

building the map of the environment.

To generate simulation of omnidirectional images we used a ray-tracing

program called POV-Ray5 .

Figure 5.4: The virtual environment generated for the simulations of the
vision system. The robot is the red square with the white sphere on top of
it.

5POV-Ray is a free software for creating three-dimensional graphics. It is downloadable
at the web site www.povray.org.
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Figure 5.5: The Mirror Profile.

Using POV-Ray we created a virtual environment in which to carry out

the simulations. A simulated robot moves in this environment taking snap-

shots with its omnidirectional viewer. The environment is designed to present

to the robot typical views of an indoor space. The environment is a basic

model of a man-made environment like an office. See Figure 5.4. Typi-

cal views are corners, doors, corridors and convex objects (like cabinets or

boxes). The robot is represented as a red square with a white sphere on

top of it. The robot moves through the maze along a predefined path. We

generated a sequence of simulated images captured by the omnidirectional

sensor while the robot moves in the maze.

To simulate the omnidirectional sensor we built a model of the omnidi-

rectional sensor mounted on the real robot. The mirror of the real sensor is

a multipart-mirror composed of a cone intersecting a sphere. It has a hybrid

shape with respect the ones reviewed in Subsection 2.3.5. The dimension

of the cone, the radius of the sphere and the position of the point of inter-

section are calculated such that the cone and the sphere are tangential at

the intersection point. If they were not tangential, a discontinuity would be

present in the image. Figure 5.5 depicts a sketch of the mirror profile with

its dimensions.

We reproduced a model of this mirror in POV-Ray. The multi-part mirror
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is defined as the intersection of two primitives: a sphere and a cone. The

surfaces of the two primitives are defined as totally reflective, so they behave

like mirrors on which the image of the surrounding world reflects. This

reflection is the image captured by a perspective camera placed under the

mirror and pointing upward to the mirror.

In Figure 5.6.a we show a perspective view of the simulated environment

and in Figure 5.6.b how the same scene is seen by the omnidirectional viewer.

Note that the body of the robot does not appear in the simulated images.

We simulated only the viewer not the whole body. In the next paragraph,

we will explain which kind of feature we extracted from the omnidirectional

images to understand the surrounding environment.

(a) (b)

Figure 5.6: (a) The perspective view of the virtual environment. The robot
is the red square with the white sphere on top of it. (b) How the same scene
is seen from the simulated omnidirectional viewer. Note that the body of the
robot does not appear in the image.



Chapter 5. Omnidirectional Vision for Mapping 87

5.4.1 The feature selection

To extract from the images the information about where are the objects in

the environment and where the robot is going, we need to select a feature,

or a set of features, to search for. These features must be present in the

environment or in the pictures of the environment and must be reliably, and

possibly easily, detectable. First, we have to decide if we want to search

for features naturally present in the scene or if we want to exploit the use

of artificial landmarks. The task for which this robot is designed: map

building, presumes the existence of an unknown and unexplored environment.

Therefore, we have to discard the use of artificial landmarks. Several author

selected features that strictly speaking are not present in the environment

but only in the pictures of the environment, like brightness pattern or other

features only loosely related to the objects in the world. Usually, these

features are extracted from the pictures with the use of heavy mathematical

tools [44] [86] [27]. We decided not to follow this approach, but to select

features that humans can easily understand and that are strictly binded

to the objects in the real world. The features we selected are the vertical

edges present in the world. The vertical edges are diffusely present in the

environment the robot is designed for: an indoor man-made environment like

an office or a building. Examples of vertical edges are doors, the sides of a

cabinet, the legs of a chair, etc. As we said, vertical edges are mapped by the

omnidirectional mirror as radial lines. Therefore, we search the images for

radial lines. When the robot moves, the edges appear to move in the image.

Analysing this movement it is possible to extract information both on the

topology of the environment and on the robot’s movements.
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5.4.2 Qualitative Analysis

We decided to move the robot in the maze with two basic movements: trans-

lations and rotation on the spot. This was done to mimic the distinction

made by the SSH between the two type of actions: travel and turns. If we

force the robot to move only in straight lines and to turn on the spot to

change the heading direction, it is possible to identify two separate sets of

constraints on the apparent movements of the edges. The apparent motion

of the edges depends on the movements of the robot and on the topology of

the environment.

The topological events for translations

In Figure 5.7 is presented a simulation of the translation of the robot. For

a better understanding of the scene two frame sequences are presented: the

perspective view of the environment in which the robot is moving and the

corresponding sequence acquired by the omnidirectional camera of the robot.

The situation depicted in the sequence is a typical situation faced by the

robot: it exits a corridor and it aims for an object. In this sequence several

thing happen. Focus your attention on the following:

• The robot approaches some objects and it moves away from others;

• Objects in the heading directions appear to expand;

• Objects in the escaping directions appear to contract;

• The vertical edges of the scene appear as radial lines that move changing
their azimuth;

• There is an optical flow of radial lines with respect to the heading
direction;

It is possible to identify some topological events in the frame sequence.

These events happen at a single point in the space, therefore they can be used

to identify distinct points in the space. This is the key idea that permits us
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to extract from the continuous world a set of distinct places as required by

the Spatial Semantic Hierarchy.

• A new edge exits from occlusion, Figure 5.8;

• An edge disappear because occluded by another object, Figure 5.9;

• The two vertical edges are 180◦ apart in the vision sensor, Figure 5.10;

• The robots sees two pairs of vertical edges 180◦ apart, Figure 5.11. This
identify a single point in the space. This point is the crossing point of
the imaginary lines connecting opposites edges, as shown in the bird’s
eye view in Figure 5.12;

The movements of the edges in the frame sequence are subject to the

following constraints. These constraints will be used by the algorithm that

track the edges in the frame sequence.

• New edges exit from occlusion at a smaller6 angle than the occluding

edge;

• When an edge is occluded by another, the one that survives is the one

with the smaller azimuth in the previous frame;

• The edges closer to the robot have a bigger azimuthal speed;

• Given a certain speed of the robot there is a maximum displacement

an edge can experience from a frame to the next;

• The colours on the side of the edges change only slightly from a frame

to the next one;

New edges exit from occlusion at a smaller angle than the occluding edge,

referring to the absolute value of the angles. It is possible to look at it as if

one edge splits in two when a new edge exits from occlusion, Figure 5.8.

6We define an angle as “smaller” than another, when it is closer to the robot’s heading
direction
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(1) (2) (3)

Figure 5.8: The simulation of an edge exiting from occlusion. Note that in
the first frame a part of the two cyan boxes is occluded by the corridor walls.
In the second frame all the edges of the cyan box are visible. In the third
the cyan boxes are clearly visible.

(1) (2) (3)

Figure 5.9: The simulation of an edge going to be occluded. In the first
frame, the edge between the yellow corridor boxes and the red walls are
clearly visible. In the second frame, they are just visible. In the third frame,
they disappeared.
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(1) (2) (3)

Figure 5.10: The simulation of the robot passing through a door. In the first
frame, the edges of the yellow corridor boxes are not yet at 180◦ . In the
second frame, they are at 180◦ . In the third, they are not longer at 180◦ .

(1) (2) (3)

Figure 5.11: The simulation of the crossing point of the imaginary lines
connecting opposites edges. In the first and third frame, the edges of the
blue box and the corridor are not exactly 180◦ apart. In the second they
are.

When an edge is occluded by another, the one that survives is the one with

the smaller azimuth in the previous frame (always referring to the absolute

value of the azimuth). It is possible to look at it as two edges merge when

one edge disappear because occluded by the other, Figure 5.9.

The two vertical parts of a door frame are 180◦ apart in the vision sensor

when the robot is passing through a door, Figure 5.10;

The robots sees two pairs of vertical edges 180◦ apart, Figure 5.11. This

identify a single point in the space. This point is the crossing point of the

imaginary lines connecting opposites edges, as shown in the bird’s eye view

in Figure 5.12.
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Figure 5.12: The bird’s eye view of the crossing point of the imaginary lines
connecting opposites edges.

The topological events for rotations

Refer to Figure 5.13, in this sequence the robot is turning on the spot in front

of the blue box where it stopped in the sequence of Figure 5.7. As before we

draw from these pictures the considerations and the constraints that apply

to the movement of the vertical edges in the image. Focus your attention on

the following events:

• The robot turns on the spot;

• The distance of the robot from the objects does not change;

• Objects do not change their shape;

• The vertical edges of the scene appear as radial lines that move only
by changing their azimuth;

• The number of visible edges is constant: no edges appear or disappear;

The last consideration comes from the fact that there is no relative dis-

placement between the robot and the objects. Therefore, the occlusions do

not change. In other words, the image does not change, it appears only

rotated around its centre.
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(1) (2)

(3) (4)

Figure 5.13: The simulation of a sequence acquired by the omnidirectional
camera of the robot while it turns on the spot
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(1) (2) (3)

Figure 5.14: The simulation showing that not all radial lines are vertical
edges. Notice how the baseline of the right yellow corridor box appears to
be radial only in the first frame and in the others frame it is not.

The only topological consideration we can draw from the rotation se-

quence is that nothing changes and all the views the robot experiences are

related to the same physical place. Therefore, in the implementation of the

SSH all the views that differ only for a rotation around the centre of the

image must be correlated to the same place.

We can extract the following constraints for the edges:

• All the edges experience the same azimuthal shift;

• The colours on the sides of the edges change only slightly from a frame
to the next one;

All the vertical edges in the scene are mapped into radial lines in the

image, but the converse is not always true. It is not true that all the radial

lines in the image correspond to vertical edges in the scene. There could be

some radial lines in the image that are actually radial to the vision sensor.

For an example see Figure 5.14. There, the right baseline of the corridor

happens to be radial in the first frame. In fact, if the robot is moving on

a straight line, an accidentally radial line will appear as radial only for few

frames, unless the line lies in the direction of the motion. If the robot is

turning on the spot, the accidentally radial line will not disappear until the

robot moves away from that spot. This suggests that it is not enough to
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match the edges in two consecutive frames, but that we need a check over a

longer period of time: a memory, as to say. For instance, we could require

a minimum life time before confirming a candidate radial line as a vertical

edge.

5.5 The Vision System

The vision system has to perform two tasks necessary for the navigation of

the robot: to detect and locate the objects in the surroundings of the robot

and to give information about the movements of the robot it-self. Because

the robot does not have direct access to information on its position or on

its movements, the autonomous behaviours that will control the robot must

come from the mix of these two sources of information.

The vision software is thought to work in real time while the robot moves

from point to point. Its work can be ideally divided into two parts: to extract

the selected features from the single frame and to use the information in the

frames sequence to understand the environment. From a single frame the

robot extracts the vertical edges and from the frame sequence it understands

how the edges moves in the image. From the apparent motion of the edges we

can draw conclusions about the topology of the surroundings. For instance,

if an object occludes a second one, it must be closer to the robot than the

second one. The robot takes a snapshot at a certain location, Figure 5.15.

While it moves to the next location, it processes the image. First, it performs

an edge detection to extract the edges from the picture, generating a black

and white image, Figure 5.16. Second, the black and white image, containing

only the detected edges, is processed with a Hough transform to identify the

radial lines, see Figure 5.17 where the detected radial lines are marked with

a black dot. Lastly, the most delicate task is performed: the edge matching.

The robot has to recognise an edge from frame to frame. Therefore every
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edge has to be matched with its corresponding edge in the previous frame.

The matching process exploit the colours in the image. The average of the

colours in small areas around the detected edge is used as a signature of

the edge. By comparing these signatures in consecutive frames we solve the

correspondence problem. Figure 5.18 shows the output image of our program

after the edge matching. The coloured dots are used to label the edges, every

edge is associated to a unique colour. The black star-like dots beside each

edge are the regions where we calculate the average of the colours to calculate

the edge signature.

The approach used has been inspired by the paper of Yagi [89] Neverthe-

less, the novel matching algorithm is designed by the author.

5.5.1 The algorithm

In this paragraph, we present the algorithm that tracks the edges throughout

the image sequence. This can be divided into three main parts: an edge

detector, the Hough transform and the matching algorithm. The program

we developed in this project is not real time as in the design specification.

This is because in the project we focused more in the problem-understanding

and in the accuracy of the results than in the optimisation of the software.

For this reason in the design and choice of the software the speed was not an

issue.

The edge detector

The edge detector used is the Canny edge detector [18]. This edge detector

is computationally intensive, but it works well and compared with other edge

detectors, like the Sobel’s one, it produces thinner lines. The Canny edge

detector does not produce a shift of the edge position with respect to their

position in the original image. There is a problem: the Canny edge detector
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Figure 5.15: The unprocessed im-
age as view from the robot’s cam-
era.

Figure 5.16: The image after the
Canny edge detection.

Figure 5.17: The edge image after
the Hough transform.

Figure 5.18: The final result show-
ing the edge matching.
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works with monochromatic images and we have RGB colour images7 . To

overcome this problem two approaches are possible. We can transform the

colour image into a grey level one and use this as input for the Canny edge

detector. Otherwise, we split the colour image in three images, one for each

colour channel and we apply the Canny edge detector separately to each

channel image. In the end, we combine the three resulting images by applying

the logical OR operator. In other words, each pixel reported as an edge pixel

at least in one of the three edge detections is an edge pixel of the final

image. The two possibilities are displayed in Figure 5.19. The latter process

is computationally intensive but it is very accurate. Simulations showed that

working with the grey level image obtained from the colour image can result

in a loss of information. As you can see in Figure 5.19 working with the grey

scale image we lost the two vertical edges on the left of the image.

The Hough transform

Once we have extracted the edges in the image, we have to select only the

edges corresponding to the vertical edges in the scene. Therefore, we need

a process to identify the radial edge in the picture. The Hough transform is

such a process [34]. For this task a new parametrisation of the image was

found by the author which greatly simplifies the complexity of the transform.

The new parameters are the angular coordinate and the radial coordinate of

the pixels in a polar coordinate system with the origin in the centre of the

image. In such a polar coordinate system, a radial line is described as a

sequence of pixels with the same angular coordinate and varying radial co-

ordinate. See Figure 5.20 a). To find out where the radial lines are in the

image we apply the following algorithm: for each edge pixel we calculate its

angular coordinate, we round it down to the unit of degree and we incre-

7An RGB colour image is a colour image where each pixel is represented as a triplet of
values: one value for the amount of red in the pixel, one for the amount of green and one
for the amount of blue



100 Omnidirectional Vision for Mobile Robots

Channel
Red

Edge
Detection

Edge
Detection

Edge
Detection

Edge
Detection

OR

Channel Channel
Green Blue

Figure 5.19: The two possible processes for a Canny colour edge detection.

ment a counter corresponding to this number. When all the edge pixels are

processed, we look at the histogram of the counters values. The counters

that show a value over a certain threshold correspond to the position of the

radial edges in the image. See Figure 5.20 a). The threshold corresponds to

the minimal length (in pixels) of the radial lines that we consider as vertical
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edges. The choice of the threshold to set for the minimal length of a vertical

edge must be well assessed. A threshold set too low can detect as composing

a radial line also pixels that have the same angular coordinate but not belong

to the same line or lines that occur to be radial just for a small bit. On the

other hand, a threshold set too high does not identify some vertical edges,

especially when they just appeared in the field of view and they are like small

segments in the periphery of the image.
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Figure 5.20: A the Hough transform.
(a) The black squares are enlarged pixel. Notice they all have the same
angular coordinate. (b) The histogram for the Hough transform.

The matching algorithm

Once we have identified the vertical edges in the pictures, we have to track

them along the frame sequence, i.e. we have to be able to recognise an edge

in different frames. To identify an edge, we use the colours on the left and

the right side of the detected edge. To extract colour information, robust to

the noise of the picture, we calculate the colour as the average colour over a

window positioned across the edge. In Figure 5.21 is presented a close up of a

processed image showing the averaging windows. Each window is composed

of two sub-windows. These are the star-like dots on the sides of each edge.
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The colour of a pixel in the image is represented by a RGB triplet. The

average colour calculated over the pixels of each sub-windows is represented

by a RGB triplet, as well. Each component of the triplet is the average of

the values of the corresponding colour channel over the pixels of the sub-

windows. The windows are placed on a circumference that intersect all the

significant edges, Figure 5.22. The windows are designed to follow the edge

as it moves around in the circle. To understand how this is done, think of the

two sub-windows connected by a rod. The rod is kept always tangential to

the ideal circle shown in red in Figure 5.22. The length of the rod is enough

to keep the sub-windows at a certain distance from the edge, this permits us

to avoid eventual border effects caused by the edge, but short enough not to

overlap with another edge detected nearby. The shape of the sub-windows

has been chosen to be approximately circular for two reasons. First, because

in this way the minimum distance between the edge and the sub-windows

is approximately constant and second because while the sub-windows moves

around with the edge, it spans always over the same pixels. The former

assures us that the sub-windows never goes too close to the edge. The latter

that we calculate the average colours around the edge always on the same

pixels.

At this stage, the program is able to assign to each edge its colour signa-

ture. To track the edges along the whole frame, the program tries to match

the edges in the current frame against the edges on the previous frame and so

on for the whole length of the sequence. The matching is done with the colour

signature, but this could be not enough to correctly identify an edge in the

previous frame. In fact, there could be other edges in the image that have

similar colours signatures. Using the two sets of constraints drawn in the

previous subsection for the edge motion, it is possible to avoid mismatches

by shrinking the area where to look for the corresponding edge. In the case of

linear motion, the first constraint is that the absolute value of the azimuthal
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Figure 5.21: A close up of a processed image showing the averaging windows.
They are the star-like dots around the radial edges.

Figure 5.22: The disposition of the averaging windows in the 360◦ .

coordinate of the edge can only increase from one frame to the next, the sec-

ond is that this increment is bounded to a maximum step. The size of this

step depends on the maximum speed of the robot. In the case of rotation,

the displacement of the single edge cannot be bounded: we do not know

a priori what the turn will be and there is not a maximum turn the robot
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can take8 . There is only a loose bound given by the maximum rotational

velocity, but this is not such a constraint. Therefore, an edge can match any-

one of the edges in the image with a similar signature. The only constraint

we can use is that every edge has to experience the same azimuthal shift.

Therefore, we implemented a backtracking algorithm that finds a matching

for every edge checking that all edges experienced the same azimuthal shift.

The backtracking is necessary to search completely the space of all possible

edge matching.

There is a problem: we have these two different sets of constraints for the

two different type of motion and the robot does not have access to any infor-

mation to decide which set should be used. To overcome this, the matching

algorithm tries to match the edges assuming the robot performed a rotation.

If this does not results in a good matching, it assume a translation and applies

the appropriate rules. A good matching is defined as a matching where

more than half of the edges present in the image are correctly identified. If

neither of the two set of rules is able to match more than half of the edges,

the match that correctly labelled more edges is returned.

We defined a good match as requiring the match of more than half of the

edges present in the image, because we cannot require that every edge in

the current frame is matched with an edge of the previous frame. In fact, if

a new edge exited from occlusion in this frame it cannot be matched with

anything. On the other hand, it is very unlikely that a wrong matching could

identify more than half of the edges.

In all the tests performed by the matching algorithm we introduced a

certain amount of tolerance. We have tolerance on the colour signature, on

the azimuthal shift and on the azimuthal increase. Let us consider them in

detail. The tolerance on the colour signature states that two colour signatures

8Remember the robot does not have any direct access to informations about its move-
ments



Chapter 5. Omnidirectional Vision for Mapping 105

are considered the same if the values of each colour component differs by less

than a certain threshold. The tolerance on the azimuth shift states that two

azimuthal shifts are equal if the shift angle differ less than a certain threshold.

The tolerance on the azimuthal increase allows an edge to pass this check

even if its actual azimuthal coordinate is slightly smaller than in the previous

frame. The tolerances reported have been tuned during the experiments on

simulated and real sequences in order to have a matching algorithm flexible

enough to cope with the noise but not so loose to produce mismatches.

After the matching process is completed, the program writes in a log file

the information about the edges in the current frame: the unique label of

the edge, its azimuthal position and the values of its left and right averaging

windows. This file is useful for debugging purpose and can be used off-line

for the reconstruction of the topology of the environment. So far, only the

first two of the types of topological transition we saw in Subsection 5.4 are

detected on the fly. In fact, the software is able to detect the topological

event if the number of edges changes from one frame to the next.

To test the software we wrote, we performed first an experiment with a

simulated sequence of frames and then we implemented the system on the

actual robot.

5.6 The Simulated Experiment

To perform the simulated experiments, we generated a sequence of images

captured by the camera under the mirror while the robot moves in the maze.

This sequence of images were used as input for the vision system. Unfortu-

nately, in POV-Ray it is possible to create only off-line simulations. It is only

possible to generate a sequence of images, it is not possible to introduce an

interaction between the vision system software and the rendering program.

In other words, it is not possible to create an interaction between the robot
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= Translation

= Rotation on the spot

Figure 5.23: The path of the robot through the virtual environment.

(1) (2) (3)

Figure 5.24: The simulation of an ephemeral edge. Notice that the edge on
the left marked with the red dot is not present in the second frame.

and the virtual environment. So the robot followed the pre-planned path of

Fig. 5.23.

Two problems sensitive to the choice of the threshold are the ephemeral

edges and the false edges. These cannot be eliminated just tuning the thresh-

old but their effects can be lowered.

We called ephemeral edges, those edges whose presence in the frame

sequence is not detected for some frames and after a few frames is detected

again. An example is the left edge in Figure 5.24. This happens because the

value of the edge counters are under the threshold just for few frames. The
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(1) (2) (3)

Figure 5.25: The simulation of a false edge. Notice that in the second frame
the right baseline of the corridor is detected as a radial line. This does not
happen neither in the previous frame or in the next.

reason can be either that the pixels of the edge spread in the neighbourhood

in such a way that none of their counter is over the threshold or that there is

a variation on the number of the edge pixels introduced by the Canny edge

detector. So far, the program is not able to handle correctly the ephemeral

edges. It does not realise that the new edge that appeared is actually the

same that disappeared a few frames before. This is because the matching

process uses only two frames: the current one and the previous one. This

problem suggests the need of implementing a memory that spans over more

frames causing a persistence of the edges for a certain number of frames after

they disappeared. In this way, when an ephemeral edge reappears, it can be

matched with this persistent image of the edge.

The false edges are the accidentally radial lines in the image. In other

words, these are lines that are radial in the omnidirectional image, but that

does not correspond to vertical edges in the environment as we discuss at the

end of Section 5.4. In Figure 5.25 is presented the same sequence of Figure

5.14. The right base line of the corridor is detected just for one frame as a

new vertical edge. This suggests the need of a confidence measure on the

confirmation of an edge. An edge should be confirmed only if it is present in

a minimum number of frames.
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Despite these problems, the vision system software showed to be able to

correctly track the edges all along the path followed by the robot in these

simulations. See sequence in Figure 5.26 and Figure 5.27

The problems of the ephemeral edge and of the false edges could probably

be solved off-line from the software that exploits the information on the edge

to build the topological map. In other words, the memory of the system

could be implemented at a higher level than the sensory level. Probably, it

would be easy for this program to analyse the log file of the vision system

and spot the presence of an ephemeral or false edge, easier than for the vision

system to spot them on the fly.

5.7 The Real Experiment

As we said in the introduction, the environment chosen for carrying out the

experiments was the robot football playground at the Intelligent Autonomous

Systems Laboratory at the University of Padova. The room has white walls

and a floor covering of green carpet. In this room we built a simple corri-

dor with a turn. In the corridor were two boxes to reproduce a door-like

view. See Picture 5.28. All the vertical surfaces were painted with uniform

colours, except the two boxes. This was done to avoid textures that could

fool the edge detector. During the experiments, also the boxes where covered

with a uniform colour fabric, because of the noise they introduced. Like for

the virtual environment, the colours chosen for the surfaces are vivid and

they stand out one against the other to facilitate the recognition of the edge

signatures.

When we described the omnidirectional vision system we said that the

optical axis of the camera and the geometrical axis of the mirror are aligned.

On the real robot this calibration is not an issue. It can be done roughly

by hand and then we can find in the image where the tip of the mirror is
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Figure 5.28: The experimental set-up. This is the corridor where the exper-
iments were conducted. The two box represent a door. On the right, behind
the wood box there is the turn of the corridor.

mapped. We need this information, because this is the point from where

all the radial edges sprout and where we have to centre the polar reference

system. The performance of the Hough transform depends on the accuracy of

this estimation. In Figure 5.29 is represented how we found the real centre of

the image. We prolonged the radial edges present in the picture, the crossing

point of all the edges is the image centre. This estimations is simple and

accurate enough for our purposes.

The results

All the thresholds set in the previous chapter had to be reset when working

with the real images. The images are much noisier now. In Figure 5.30 an
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Figure 5.29: The centre of a real image. In red the prolongations of the
vertical edges to find out where is mapped the vertex of the mirror.

example of the image process stages for a real image. The noise in the picture

propagates down to all stages of the image process. The edge detection

result is noisy, Figure 5.30 a). Several noise edgelets are detected, some

edges are broken and noise spots are present. This makes it more difficult to

reliably detect the radial lines and the radial lines only. In fact, in the Hough

transform the pixels of the noise sums over the edge pixels and sometimes

the noisy pixels can trigger a false detection of a radial line. An example

is shown in Figure 5.31. The arrow shows a marker of a detected edge

but the edge does not exists in the picture. It is just the effect of several

noisy pixels accidentally having the same angular coordinate. This cannot be

avoided setting the threshold higher, because we would have to set it so high

to loose significant edges. These false edges do not last for more than two

frames and then they could be easily filtered out by the software in charge

of reconstructing the topology of the environment, if this is fitted with a
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(a) The unprocessed image as view
from the robot’s camera.

(b) The image after the Canny
edge detection.

(c) The edge image after the
Hough transform.

(d) The final result showing the
edge matching.

Figure 5.30: An example of the image process stages for a real image.
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Figure 5.31: An example of false edge produced by the noise in the image.
The arrow points the wrong marker.

temporal memory.

The problem of the ephemeral edges exists also in the real image se-

quences. The noise of the images worsens the problem compared to the

simulated images. It happens more often, that an edge disappear and then

reappear after some frame. Again this could be solved by introducing a

temporal memory of the edges.

The undermining problem in the real image is the noise introduced by the

CCD sensor of the camera. This noise affects mostly the colour of the pixels.

The noise is so high that even if the robot is steady in the same position, the

edge signatures of the same edge in two consecutive frame are different. This

problem has been solved with two changes in the vision system software: the

tolerance within two colours are considered the same has been increased and

the windows over which the mean colour is calculated have been doubled.

See Figure 5.32. Doubling the size of the averaging window, we use more

pixels to calculate the mean colour and then the edge signature values are
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Figure 5.32: The averaging windows used in the real experiments. Notice
that the averaging windows are doubled.

more stable.

When the robot moves, the colours around the edges change slightly be-

cause of different shadows and different reflections on the surfaces of the

objects. To cope with this change we had to relax further the colour toler-

ance. Remember that the colour of every pixels of the image and the edge

signature are represented as a RGB triplet. The new criterion we used is:

two edge signatures are considered the same when at least two elements of

their triplets are equal within a certain interval. This is enough to cope with

the noise present when the robot moves in straight lines, but does not work

when the robot turns.

Analysing the images taken from the robot when it rotates, we discovered

that the robot failed to recognise the edges because the colours on the sides

of the edges in different images are actually different. Consider that the view

of the scene does not change and even the shadows and the reflections on

the objects’ surfaces are the same, this should not happen, and the image
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should be exactly the same, only rotated by the angle the robot rotated.

If the explanation of this change of the colours is not in the scene, it must

be in the vision system. The software of the vision system cannot be held

responsible for that: it works fine in the simulation. The only candidate is

the hardware of the vision system. Remember the camera sees the world

through the Perspex cylinder that support the mirror. The explanation of

the change of colours can be found in the changes of the light reflection

on the Perspex cylinder. These reflections change because the robot’s body

does not have a cylindrical symmetry. As you can see in Figure 5.1 not only

the body is rectangular but also the cover on the top of the mirror has a

rectangular shape. The purpose of this cover is to avoid that the camera is

blinded by the lights on the ceiling, but it also shadows the Perspex cylinder

preventing most of the reflection on it. Because the cover is rectangular, it

shields better some region of the Perspex cylinder than others. When the

robot rotates it sees the same points in the world through regions of the

cylinders with different shadowing from the cover and so different reflections

occur at the cylinder surface. The final effect is that the colours appear to

change. This effect is made even worst by the reflections occurring on the

top cover of the robot body. See Figure 5.33 for an example in which these

reflections are particularly strong. Notice the bright spot that seems to move

on the left part of the robots body.

The explanation provided for the failure of the tracking algorithm in the

rotations is consistent with the fact that this effect does not occur when the

robot moves along a straight line. In fact, in this case the change in the

reflection is not sharp.

The solution to the problem of reliably detect the colour of the edges

could be solved changing the colour space. In fact, the RGB space is not

perceptually uniform. As such, the proximity of colours in RGB colour space

does not indicate colour similarity. It would probably be a good idea to
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(1) (2)

(3) (4)

Figure 5.33: A close up of a sequence showing an example of strong reflection
on the body of the robot. Notice the bright spot on the left of the robot’s
body that appears to move from one frame to the next.
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transfer the image to the HSI colour space. In this space, colour pixels are

defined as triplets representing hue (H), saturation (S) and intensity (I). This

colour space has the advantage of being approximately perceptually uniform.

Therefore, colour similarity implies proximity in this colour space [80]

5.8 Conclusions

This work implemented the Spatial Semantic Hierarchy on a real robot. We

realised the sensory level with an omni-directional vision system. This is the

first step toward the construction of an agent able to draw a topological map

of the environment it travels through. Experiments were performed both in

simulation and with a real robot.

In this work, we showed that an omni-directional vision system is a good

sensor for the SSH. We pointed out which of the features present in a omni-

directional image can be used to detect the transitions of state needed by the

control level of the SSH. We showed the existence of a strict link between

the views of the SSH and the image taken by an omnidirectional sensor. We

built a vision system able to extract these features from the images. We

showed that the software runs properly in a virtual environment and finally,

we tested the same software on a real robot discovering that what worked in

the simulations does not work in the real world. This confirms what Ronald

Arkin said, which might seem self-evident but is often forgotten:

To conduct robotics research, robots are needed

—Ronald Arkin ’Behaviour-Based Robotics’ MIT Press

At the time of writing, we are working to solve this implementational

problem. The work presented in this chapter was presented in [70] [71].

At the same time we are working also to extend to multi-robot systems

our approach to the mapping problem. The basic idea is every robot build
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the local map of the portion of environment it visited. When two robots meet

they share their portions of the map, fusing them in a global map. This idea

was presented in [65], preliminary experiments were presented in [67].
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Chapter 6

Distributed Omnidirectional

Vision

In the previous chapter, we showed the synergy that can be implemented

between an omnidirectional vision sensor and the theory of the Spatial Se-

mantic Hierarchy (SSH) proposed by Kuipers. In this chapter we will present

our current works on the distributed omnidirectional vision. In the first part

of the chapter we will explain the concept of distributed vision system and

we will illustrate some of the research lines we are following. In the second

part of the chapter we will present an experiment where a distributed vi-

sion system is autonomously learning how to control a mobile robot. The

works presented in this chapter are in progress and the experiments we are

performing are giving new hints and new insights on the investigated topics.

6.1 Distributed Vision in Robotics

Our work has been inspired by the work of Ishiguro [36]. He proposed an

infrastructure called Perceptual Information Infrastructure (PII). In his pa-

per, he proposed an implementation of the PII composed by static Vision

Agents, i.e. fixed cameras with a certain amount of computational power.

123
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This realisation of the Perceptual Information Infrastructure was called Dis-

tributed Vision System (DVS). The DVS presented in [36] has 16 cameras,

strategically placed in the environment, that navigate two mobile robots.

The robots are not autonomous, in the sense that they need the DVS to nav-

igate, but they has a certain amount of deliberative power, in the sense that

they can decide which Vision Agent provides them the more reliable informa-

tion on the surroundings. The assumption that every Vision Agents is static

simplifies the problem and allows to use very simple vision algorithms. In

fact, to detect the moving objects (the robots) Ishiguro used the background

subtraction algorithm. This implies that the whole system is not scalable to

include Mobile Vision Agents, as we will see in the following.

A parallel but independent work is the one of Matsuyama [54]. Mat-

suyama explicitly introduced mobile robots in the theoretical frame of its

Cooperative Vision System. In the experiments presented in [54], he used

active cameras mounted on a special tripod. The active cameras were pan-

tilt-zoom cameras modified in order to have a fix view point. This allowed,

again, the use of a simple vision algorithm, not very different from the case

of static cameras.

As far as we know, no attempt has been tried to realise a DVS with truly

mobile robots running robot vision algorithms.

Mobile robots are more and more fitted with vision systems. The popu-

larity of such sensors arises from their capability of gathering a huge amount

of information from the environment surrounding the robot.

In multi-robot systems there are two possibilities to acquire visual infor-

mation, i.e. a centralised vision system or a distributed vision system.

The first approach consists in controlling a robot team with a unique

camera that monitors the whole environment where the robots move. This

has been applied in well structured and relatively small environments [14],

but it is unfeasible for large environments. If this is the case, we are compelled
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to move toward the second approach, a distributed vision system. Nowadays,

the relatively low cost of the required hardware allows to equip every robot

with a vision sensor mounting a camera on each robot of the team.

In the second approach, each robot can gather a detailed information

on its surrounding and the system is more versatile. In fact, fix camera

positioned in a priori location in the environment limits the flexibility and

robustness of the system, even if we dispose of several fixed cameras. As an

example think of an industrial site watched with a video monitoring system

composed only of cameras with fixed locations (even pan-tilt-zoom cameras).

If an alarm or a meaningful event happens outside the field of view of any

camera, the system cannot “see” this event. This is because the system has a

predetermined field of view. If we have also some cameras mounted on mobile

robots, the system can send a robot to inspect the new location of interest.

With such a solution the system is more flexible and we realise what we call

a dynamic field of view.

Introducing mobile robots fitted with cameras distributes the sensors in

the environment, but this is not enough: we aim to the creation of a Dis-

tributed Vision System. A set of cameras scattered in the environment (fixed

or mounted on mobile robots) needs to communicate over a network in order

to became a unique Distributed System. If not, they are just a set of different

vision sensors of pertinence of the single vision system.

In the following we will prefer the term Vision Agent instead of “vision

system”. The term Vision Agent emphasises that the vision system is not

just one of the several sensors of a single robot, but that it interacts with the

other vision systems to create an intelligent distributed system.

The final goal

The aim of this work is to introduce a real Mobile Vision Agent in the DVS

architecture, i.e. to apply the ideas and the concepts of Distributed Vision
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Figure 6.1: Our team of heterogeneous robots

to a mobile robot equipped with a camera.

The domain in which we are testing our ideas is the RoboCup compe-

tition. We are on the way to create a Distributed Vision System within a

team of heterogeneous robots fitted with heterogeneous vision sensors. We

want to create a dynamic model of the environment, which can be used by

mobile robots or humans to monitor the environment or to navigate through

it. The model of the environment is built fusing the data collected by every

Vision Agent. The redundancy of observers (and observations) is a key issue

for system robustness.

6.2 Mobile Robot DVS

6.2.1 VAs on the same robot

The first implemental step is to realise a Cooperative behaviour between

two heterogeneous vision agents embodied in the same robot. Exploiting the

knowledge acquired in our previous research [56] [71], we want to create a
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Figure 6.2: A close view of the vision system of Nelson. On the left, the

perspective camera. In the middle, pointed up-ward the omnidirectional

camera

Cooperative Vision System using an omnidirectional and a perspective vision

system mounted on the same robot. The robot is our football player robot,

called Nelson, that we entirely built starting from a Pioneer2 base1 . The

omnidirectional vision sensor is a catadioptric system composed of a standard

colour camera pointing up-ward and an omnidirectional mirror, see Figure

6.1. The omnidirectional mirror presents a custom profile. We designed such

a profile to improve the performances of the vision sensor in the RoboCup

domain2 .

The omnidirectional camera is mounted on the top of the robot and offers

a complete view of the surroundings of the robot [88] [8]. The perspective

camera is mounted in the front of the robot and offers a more accurate

view of objects in front of it. These two cameras mimic the relationship

1For some nice picture of this robot go to the web page www.dei.unipd.it/˜robocup
2For details on the procedure we used to design the custom profile of the mirror, please

refer to [59]
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between the peripheral vision and the foveal vision in humans. The peripheral

vision gives a general, and less accurate, information on what is going on

around the observer. The foveal vision determines the focus of attention

and provides more accurate information on a narrow field of view. So, the

omnidirectional vision is used to monitors the surroundings of the robot to

detect the occurrence of particular events. Once one of these events occurs,

the Omnidirectional Vision Agent (OVA) send a message to the Perspective

Vision Agent (PVA). If the PVA is not already focused on a task, it will move

the robot in order to put the event in the field of view of the perspective

camera. This approach was suggested by our previous researches presented

in [20].

Experiments on such a system are running and they will provide more

insight on the cooperation of the two heterogeneous vision agents.

6.2.2 VAs on different robots

Another stream of research is the creation of a Cooperative Distributed Vi-

sion System for our team of football player robots3 , depicted in Figure 6.1.

Our aim is to implement the idea of the Cooperative Object Tracking

Protocol proposed by Matsuyama [54]. In the work of Matsuyama the central

notion is the concept of agency.

An agency, in the definition of Matsuyama, is the group of the VAs that

see the objects to be tracked and keeps an history of the tracking. This group

is neither fixed nor static. In fact, a VA exits the agency, if it is not able to

see the tracked object anymore and a new VA can joint the agency as soon as

the tracked object comes in its field of view. To reflect the dynamics of the

agency we need a dynamic data structure with a dynamic role assignment

[55].

3For a detailed description of the robots employed in these experiments, please refer to
[75] [76].
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Figure 6.3: A close view of two of our robots. Note the different vision

systems

Let us sketch how the agency works, using an example draw from our

application field: the RoboCup domain. Suppose to have a team of robots

in the field of play. Each robot is fitted with a Vision Agent. None of the

Vision Agents is seeing the ball. In such a situation no agency exists. As

soon as a Vision Agent see the ball, it creates the agency sending a broadcast

message to inform the other Vision Agents the agency has been created and

it is the master of the agency. After this message a second message follows,

telling the other Vision Agents the estimated position of the ball. All the

other Vision Agents manoeuvre the robots in order to see the ball. Once

a Vision Agent has the ball in its field of view, it asks permission to joint

the agency and send to the master its estimation of the ball position. If this

information is compatible with the information of the master, i.e. if the new

Vision Agent has seen the correct ball, it is allowed to joint the agency.

The described algorithm has been realised by Matsuyama with his fixed

vied point cameras. His system was composed of four pan tilt zoom cameras

mounted on a special active support in order to present a fixed view point.
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The system was able to track a radio controlled toy car in a small indoor

environment. As mentioned before, in such a system there is not a truly

mobile agent. Moreover, the vision algorithm used is typical of static Vision

Agents. In fact, it is a smart adaptation of the background subtraction

technique.

Our novel approach is to implement the Cooperative Object Tracking

Protocol within a team of mobile robots equipped with Vision Agents. This

requires a totally new vision approach. In fact, the point of view of the Vision

Agent changes all the time. The changes in the image are due not only to the

changes in the world (as in the Matsuyama testbed), but also to the change

of position of the Vision Agent. Therefore, we need a vision algorithm able

to identify the different objects of interest and not only to reveal the objects

that are moving. Moreover, we have to introduce a measure of uncertainty

in the estimation of the position of these objects, because the location of

the Vision Agents is not known exactly anymore and there are errors in the

determination of the relative distance between the objects the Vision Agents.

To explain these issues, let us come back to our RoboCup example. Above

we said that if a new Vision Agent sees the ball, it sends a message to the

master that checks if it has seen the correct ball. In a RoboCup match there

is just one ball, but sometimes what a robot identifies as a ball is not the

correct one. This can result either because the robot sees objects resembling

the ball, and erroneously interprets them as a ball (like spectators hands or

reflex of the ball on walls), or because it is not properly localised and so it

reports the ball to be in a fallacious position.

To cope with the uncertainty in the objects position, every Vision Agent

transmits to the master the calculated ball position with the confidence of this

estimation. The master dispatches to the other robot a position calculated as

an average of the different position estimations, weighted by the confidences

reported by every Vision Agent (if there is more than one Vision Agents in
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the agency).

Especially in the described dynamic system, the master role is crucial in

the correct functioning of the agency. The master role cannot be statically

assigned. The ball is continuously moving during the game. The first robot

that sees the ball will not have the best observational position for long. So,

the master role must pass from robot to robot. The processes of swapping

the master role is critical. If the master role is passed to a robot that sees

an incorrect ball the whole agency will fail in the ball tracking task.

The simplest solution could be to pass the master role to the robot with

the highest confidence on the ball position. This means to shift the problem

to identify a reliable confidence function. This makes sense, because the

confidence function will be used for two services that are two sides of the

same coin. In fact, if a robot is correctly localised and correctly calculates

the relative distance of the ball, it will have strong weight in the calculation

of the ball position. Given this, it can reliably take the role of master.

The confidence function

The confidence function ψabs associated to the reliability of the estimation of

the absolute ball position is a combination of several factors. It has to account

for the different aspects that contributes to a correct estimation of the ball

position. In fact, the position of the ball in the field of play is calculated

by a vectorial sum of the relative distance of the ball from the robot and

the absolute position of the robot in the pitch. So, the confidence of the

estimation of the absolute position of the ball is the sum of the confidences

function associated to the self-localisation, ψsl, and of the confidence function

associated to the estimation of the relative position of the ball with respect

to the robot, ψrel.

ψabs = ψsl + ψrel (6.1)
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The self-localisation process uses the vision system to locate landmarks in

the field of play. The process is run only by time to time and if the landmarks

are visible. Between two of these process the position is calculated with the

odometers. This means that the localisation information degrades with time.

The confidence function associated with the self-localisation is the result of

the following contribution:

• type of vision system (perspective, omnidirectional, etc.);

• a priori estimated absolute error made from the vision system in the
calculation of the landmarks position;

• time passed after the last self-localisation process;

The relative position of the ball with respect to the robot is calculated

as in [59]. The confidence function in this process presents the following

contribution:

• type of vision system;

• distance from the ball;

At the moment the exact definition of the confidence function is under

testing. The experiments will tell us how much every contribution should

weight in the final function.

In the next section, we will present some experiments we realised on

Distributed Vision Systems that can learn to control a mobile robot.
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6.3 Learning DVS

Nowadays the applications of networks of sensors are more and more com-

mon. There is an increasing need for intelligent sensors able to dialogue

one to the other in order to exchange information and to perform intelli-

gent tasks. For instance, networks of cameras are something we are used in

every-day-life, but in most cases these are just a set of dummy sensors (e.g.

multi-camera video surveillance systems in banks or airports). They collect

a huge amount of videotape data that human operators need to interpret. In

the scientific community, there is a strong will to integrate these sensors into

an intelligent system. Several researchers are working on autonomous system

of surveillance [24] [73] or on intelligent environments [12] [83], like intelligent

rooms. In the robotics community as well, the interest of the researchers is

shifting form a single agent working in a cell-space to multiple agents working

in the real world. For these kind of applications a single camera is not enough

and multiple cameras are needed to observe the scene. Again, the aim is to

provide an intelligent infrastructure able to support robots’ activities [38]

[36].

In this chapter, we present a network of uncalibrated omnidirectional vi-

sion sensors able to autonomously learn to control a mobile robot in a large

scale environment. The cameras in the network can communicate among

them and with the mobile robot. To stress that the camera network is more

than a simple bunch of sensors scattered in the environment, we called it a

Distributed Vision System (DVS). The term DVS (Distributed Vision

System) emphasises that the camera network acts as a whole, as a single

“super-sensor”, able to navigate the robot. The DVS is composed of several

Vision Agent (VA). A VA (Vision Agent) is a vision sensor able to acquire

images, to process them and to communicate with other VAs over a network.

In the taxonomy of Weiss, a Vision Agent can be defined as a Smart Agent,
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Omnidirectional
Vision Agents

Mobile
Robot

Figure 6.4: A picture of the whole system showing two Vision Agents and
the robot used in the experiments.

because it is autonomous, it is able to learn from experience and it can coop-

erate with other agents to achieve a global goal [85]. In our implementation,

everyone of these agents is embodied in a different sensor and is situated at a

different position. Form a hardware point of view, the DVS presented in this

chapter looks like a set of uncalibrated omnidirectional cameras distributed

in the environment, see Fig. 6.4. The omnidirectional cameras are catadiop-

tric omnidirectional cameras composed of a standard perspective camera and

a convex mirror [37]. The camera is pointed upward to the mirror that is

reflecting the light gathered by the surroundings of the sensor, see Fig. 6.6.

Every camera is connected to a PC that provides computational power for

image processing and network communication.

Ishiguro showed how a Distributed Vision System can navigate a robot

in a toy-scale real-world environment [36]. In that work the learning phase

required the intervention of a human operator guiding the robot in the free

space in the toy town reproduction. In this chapter, we propose a totally

autonomous Distributed Vision System able to learn how to control a mobile
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robot by autonomously generating a set of examples and by propagating the

knowledge through the network.

In Section 2, we will discuss in further detail the task of the DVS. In

Section 3, we will explain the structure of an Omnidirectional Vision Agents.

In Section 4, the learning procedure is discussed and experimental results are

presented. Finally, future work are hinted and conclusions are drawn.

6.3.1 The task to be learnt

As we said in the introduction the task of the DVS is to learn to drive a mobile

robot. This knowledge is first acquired by a single VA and then is propagated

to other VAs in the network. The distributed learning is composed of four

steps:

1. a Vision Agent learns the mapping between its image space and the

robot’s motor space;

2. the Vision Agent transmits the learnt mapping to a second Vision

Agent;

3. the second Vision Agent checks if the received mapping is valid, if not

starts a re-learning phase guided by the first Vision Agent;

4. the knowledge is propagated from the second Vision Agent to the third

Vision Agent, and so on;

The bridge to propagate the knowledge among the Vision Agents is the

robot. The first Vision Agents controls a robot by sending to the robots a

set of random motion commands, see Fig. 6.5. Looking at the motion of the

robot, the system learns the mapping between the position of the robot in

the image space and the robot’s motor space, see Fig. 6.8. As we said, the

acquired knowledge is then propagated to the other Vision Agents on the
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Commands

Observes

Knowledge

Figure 6.5: The knowledge propagation process: the VA on the right send
commands to the robot, the VA on the left observing the robot evaluates the
knowledge received by the first VA.

network, Fig. 6.5. Because the vision sensors are not previously calibrated,

the propagated knowledge cannot be immediately used and a certain amount

of re-learning can be needed. In fact, if the vision sensors are not previously

calibrated, the mapping between the image space and the motor space might

be different: the cameras could be located at different heights or at different

distances from the mirrors, the poles supporting the cameras could be not ex-

actly vertical, etc. In addition, the Vision Agents could mount heterogeneous

vision sensors and so the mapping function have to be relearned. Examples

of heterogeneous vision sensors can be omnidirectional vision sensors with

mirrors with different profiles customised for different tasks [59].

Omnidirectional Vision Agent

Every sensor in the network is composed of hardware and software resources.

We discussed the hardware resources in which the VA is embodied in the

introduction. In Fig. 6.6, the hardware resources of the VA are depicted. In
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Mirror

Camera

Tripod

Figure 6.6: A picture of the hardware resource of the Vision Agent. On the
top the omnidirectional mirror (here a hyperbolic mirror), under the mirror
the camera and the tripod supporting the system.

this section we will discuss the software resources called Vision Agent.

The Omnidirectional Vision Agents used in this work are composed of

the following modules:

• a vision system

• a neural network called navigator

• a neural network called supervisor

• a communication network module

In the next section we will discuss in detail the single modules of the

Vision Agent.

6.3.2 Vision System

The vision system is the sensorial module of the Vision Agent. The Vision

Agent gathers information on the world using the vision system.
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Figure 6.7: The simplified scheme of a Vision Agents. The drawing highlights
the main blocks composing the VA.

The task of the vision system is to calculate the position and the heading

of the robot in the image. To easily detect the position and the heading of

the robot, two coloured balls are fixed on the top of the robot and the vision

system looks for these two coloured blobs. The midpoint between the centres

of gravity of the two balls gives the position of the robot and the line passing

by the centres of gravity of the two balls gives the heading of the robot. In

order to avoid to search the whole image for the coloured blobs, the vision

system uses a background subtraction algorithm to detect the broad region

of image in which is located the robot.

The background subtraction algorithm can be used because we are as-

suming the Vision Agent is static (i.e. its view of the environment does not

change) and the robot is the only moving object in the filed of view of the

camera. The current image with the robot moving in the environment is

subtracted from a reference image in which the robot is not in the field of

view of the Vision Agents. The difference image is thresholded. The centre

of gravity and the vertical and horizontal standard deviations of the “differ-

ent” pixels are calculated. A region of interest (ROI) is created in a region
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centred in the calculated COG (centre of gravity) and spanning an area wide

as six times the horizontal standard deviation and height as six times the

vertical standard deviation. This choice for the width and height of the ROI

assures that all pixels belonging to the robot are included in the ROI (region

of interest). The current image is searched only within this ROI for the blue

and red pixels of the two balls.

The selected ROI is searched twice for the blue pixels and twice for the

red pixels, in order to increase the robustness of the calculation of the blobs’

COGs. In the first scan of the ROI, narrow colour thresholds are used, i.e.

only pixels strictly blue or strictly red are found. The COGs and standard

deviations of the found pixels are calculated and the pixels farther than

twice the standard deviations from the COGs are discarded as false matches.

Two ROIs are created around the calculated COGs and these two ROIs

are searched again with broad colour thresholds for blue and red pixels. In

the end the two COGs of this new blue and red blobs are calculated. This

algorithm proved to be very robust against the image noise and the COGs

of the blobs are steadily detected.

Once the COGs of the blue and red blobs are calculated, we can calculate

the position of the robot as the midpoint between the COGs of the blobs.

The heading of the robot is calculated as the angle between the line going

from the blue blob to the red blob and the image’s frame of reference.

The final output of the vision system is the heading and the position

of the robot calculated both in the polar coordinates centred in the image

centre and the Cartesian coordinates in the usual frame of reference for the

images.

Neural Networks

The output of the vision system is passed to the two neural networks. In

the learning stage the two neural nets are trained using the robot positions
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Figure 6.8: A snapshot of the image processing software that detects the
position and heading of the robot in the image.
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Figure 6.9: The structure of the used neural network.
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Figure 6.10: A plot of the sigmoid function.

and the robot speeds of the autonomously generated training examples. In

the running stage, the task of the navigator network is to calculate the in-

stantaneous translational and rotational speeds necessary to reach the target

position. The task of the supervisor network is to check if the commands

sent to the robot have been successfully executed.

In this first implementation of our system we used a very simple structure

for the neural networks. These are three layer networks with an input layer,

an hidden layer and an output layer, see Fig. 6.9. The units of the networks

are sigmoid units and the networks are trained with the back-propagation

algorithm [72]. The sigmoid function is plotted in Fig. 6.10 and it is defined

as:

σ(x) =
1

1 + e−x
(6.2)

Navigator Network

As depicted in Fig. 6.9, the network has five input units, four hidden units

and two output units. The input units take the three parameters of the

initial position and heading of the robot and the two parameters of the final

position of the robot, respectively named:
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input→ {(xS, yS, hS), (xF , yF )}
output→ {(Speed, Jog)}

(6.3)

Note that in the first part of this work we are not considering the final

heading of the robot, i.e. the robot has only to reach the final position, but

the final heading is not important.

The outputs of the network are the values of linear speed and angular

speed to be set on the motors of the robot, respectively.

These values are the instant speeds necessary to move the robot from the

starting position to the final position. These values are sent at every cycle

of the Vision Agent to the Agent on the robot through the network module.

Supervisor Network

The supervisor network takes as input the starting position of the robot and

the speeds set on the motors and predicts the final position of the robot. The

topology of the Supervisor Network is the same of the Navigator Network,

but inputs and outputs are respectively:

input→ {(xS, yS, hS), (Speed, Jog)}
output→ {(xP , yP )}

(6.4)

If the actual final position of the robot, as reported from the vision system,

is not compatible with the predicted position an exception is raised. This

exception means that the learnt control of the robot is no longer valid and

a re-learning is needed. As we said, in our experiment this mean that the

knowledge received from another Vision Agents cannot be used and a certain

amount of re-learning is needed..
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Communication Network Module

The network subsystem used here is a part of the ADE library, a software

suite written in C++ and used by our RoboCup4 team: Artisti Veneti5 .

ADE provides basic C++ classes implementing thread scheduling, message

passing and seamless network communication [17].

The protocol used for data transmission is the connectionless User Data-

gram Protocol (UDP) over IP. This protocol allows fast network responses

even in case of a temporary failure (as it is often the case in noisy wireless

networks). Packet loss for our application is not an issue since packets are

self-contained and repeatedly sent.

The messages sent via the ADE network (ANet), from a programmers’

point of view, are objects descending from a common virtual base class;

this allows the library to find out at runtime, via the C++ RTTI facilities,

the actual object class and its size. This information is then sent, together

with the real object data, to the receiver network port, where the object is

reconstructed in memory and cast to the correct type.

In this application, we send two types of messages: the motor commands

to the robot and the messages between the Vision Agents.

6.3.3 Training the Neural Networks

The first problem in training a neural net is to have a rich set of unbiased

training examples. In the learning phase, the Vision Agent generates a set

of random commands for the motors of the robot. The Vision Agent stores

in a file the initial pose of the robot, its final pose and the command that

moved the robot from the starting position to the finish position. These data

are used to train the two networks. In the first experiments we performed

4RoboCup: the Robotics Soccer Championship, URL www.robocup.org
5Artisti Veneti is the RoboCup team of the University of Padua for the Middle-Size

League [76]
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Figure 6.11: The positions of the robot in the image for the training data.

the motion of the robot was constrained in a portion of the field of view of

the Omnidirectional VA. Fig. 6.11 shows the position of the robot for each

training example. As you can see, the robot moved in the left field of view

of the camera, approximately. Every motion had random speed and jog in

order to present to the network a set of examples of velocity and jog values

not biased by the choices of the user. The linear speed was randomly chosen

between -400 mm/s and 400 mm/s. The angular speed was randomly chosen

between -1 rad/s and 1 rad/s. We collected sets of about 200-300 examples

and we used about 160-260 examples as training examples and the rest as

validation examples. The training errors for a set of examples is reported in

Fig. 6.12 and in Fig. 6.13. The two figures respectively refer to the error in

the linear speed determination (called speed) and in the angular speed (called

jog).

6.4 Conclusions

In the first part of the chapter, we introduced the concept of Vision Agent

and Distributed Vision System and we presented some of the experiments we

are carrying on these topics. These works on Omnidirectional Distributed
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Figure 6.12: A plot of the learning error on the speed output.

Figure 6.13: A plot of the learning error on the jog output.
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Vision have been presented in [63] [62] [61] [60].

In the second part of the chapter, we presented a new idea in the creation

of an intelligent network of sensor. We proposed a Distributed Vision System

that is able to navigate a mobile robot in a large space. The DVS is composed

of several Vision Agents that are able to autonomously learn how to control

the robot. This knowledge is acquired locally and is distributed through the

network from a Vision Agent to the rest of the Vision Agents using as a

bridge the mobile robot for this knowledge propagation. This work has been

presented in [69].
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