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Abstract

Monte Carlo localisation generally requires a metrical map of the environment
to calculate a robots position from the posterior probability density of a set of
weighted samples. Image-based localisation, which matches a robots current view of
the environment with reference views, fails in environments with perceptual aliasing.
The method we present in this paper is experimentally demonstrated to overcome
these disadvantages in a large indoor environment by combining Monte Carlo and
image-based localisation. It exploits the properties of the Fourier transform of om-
nidirectional images, while weighting the samples according to the similarity among
images. We also introduce a novel strategy for solving the “kidnapped robot prob-
lem”.

Key words: omnidirectional vision, image-based navigation, Fourier transform,
Fourier signature, Monte-Carlo localisation

1 Introduction

In mobile robotics the localisation problem is fundamental. In several suc-
cessful experiments, the robot is provided with a geometrical map of the
environment, and it uses some kind of sensors to locate itself in this map
[20; 23]. However, it is not always possible (or convenient) to build a geomet-
rical map of the environment. In the image-based localisation approach
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Fig. 1. (a) A picture of the robot used in the experiments. (b) The plan of the build-
ing where the omnidirectional image data set was built. This is a large environment
in which the length of the longer corridor is 50 metres. The thick line represents the
robot’s path. Details of the map are unimportant; it is presented just to convey the
complexity of the environment.

[1; 4; 11; 13; 19; 8], a map is not used and the agent uses a set of views”
previously taken at different locations to locate its-self. These locations are
called reference locations. The corresponding images are called reference
images. When the robot moves, it can compare the current view with the
reference images stored in its visual memory. In the image based localisation,
the problem of finding the position of the robot in the environment is reduced
to the problem of finding the best match for the current image among the
reference images. Most of the cited works on image-based localisation just
stop here. In this work, we enhance image based localisation with a statistical
approach in a way similar to the work reported in [22] and in [9].

Classical image-based localisation does not work in environments with peri-
odical structures (for instance, a corridor with a set of doors equally spaced
or a set of junctions with the same appearance). In these environments, the
appearance of the world is the same at different places, so the current view
will match not only the corresponding reference image, but also all reference
images similar to the current image. This is a case of perceptual aliasing,
that is, the reading of the sensor is the same at different locations. So, the
vision sensor is not able to discriminate these locations. A robot could use
additional sensors to discriminate between two points, for example, a GPS
sensor or other non-vision sensors. But what if these additional sensors are
not available? The robot needs to manage situations, maybe transitory situa-
tions, in which it has evidence of being located at two distinct points at the
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Fig. 2. Some panoramic images taken at different points in the environment. These
images show that the environment appears very similar even at locations more than
5 metres away one from the other. The arrows show the actual position in which
every image was grabbed.

Fig. 3. Some examples of perceptual aliasing in our test environment. The height
of the picks is proportional to the amount of similarity of the different images. (a)
Input Image 10 matches not only the correct reference image at 1380 centimetres on
the x-axis, but also reference images at 320, 620, and 1060 centimetres. The same
happens in plots (b), (c), and (d).

same time. The solution we adopted here is to use a Monte-Carlo localisation
process to manage the uncertainty about its position [6; 21]. This technique
is able to manage a multi-modal probability density, thus, allowing the robot
to estimate its position correctly when the current image matches more than
one reference image.
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Fig. 4. The process of generation of the Fourier Signature. The omnidirectional
image (top left) is unwarped in a panoramic cylinder (bottom) and the Fourier
coefficient of every row of the panoramic cylinder are calculated (top right).

The environment in which we tested our system presents severe perceptual
aliasing. We show in Fig. 2 some sample images from the reference image
dataset to show that the environment looks the same also at locations more
than five metres away from one another.

To have a general feeling of how severe the perceptual aliasing is in this en-
vironment, one might consider Fig. 3, in which the similarity 1 of the images
grabbed by the robot in different positions is plotted against all reference im-
ages (in Fig. 3(a) the input image is number 10, in Fig. 3(b) it is number 18, in
Fig. 3(c) it is number 54, in Fig. 3(d) it is number 59). These plots show that
the similarity of the current input image is high (higher peaks in the plots)
not only for the correct reference image, but also for other reference images in
locations far away from the actual position of the robot.

2 Image Matching

In the image based localisation approach, the main problems are how to store
in a memory-saving way the reference images and how to efficiently compare all
of them with the current input image, considering that for a wide environment
the number of reference images can be very large (e.g. in our 50 × 25 metres
environment, we have about 500 reference images).

1 The similarity between the current image and a reference image is calculated with
Eq. 1.
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Image Memory Required (in bit) Memory Required

omnidirectional 640 × 480 × 24 7.3 Mbits

panoramic cylinder 512 × 80 × 8 328 Kbits

Fourier signature 80 × 15 × 2 × 8 19 Kbits

Table 1
The different memory requirements illustrating the memory savings introduced by
the Fourier signature.

In this paper we have fully developed a method we proposed in previous works
[15; 17; 18]. The robot is equipped with an omnidirectional camera [10; 16]. At
the setup stage, the robot takes a set of omnidirectional images at reference
locations. At the running stage, while it moves in the environment, the robot
compares the current omnidirectional image with the reference images. In
order to store and match efficiently a large number of images, we transform
each omnidirectional image into a compact representation. Fig. 4 sketches the
steps of this transformation. From a colour omnidirectional image (Fig. 4(a))
we create a gray-scale panoramic cylinder, that is a new image obtained
by unwarping the original omnidirectional image, Fig. 4(b). The panoramic
cylinder is expanded row by row into its Fourier series. The robot memorises
each view by storing the Fourier coefficients of the low frequency components,
Fig. 4(c). We called the set of the stored coefficients the Fourier signature
of the omnidirectional image. We showed in [15] that the first 15 Fourier
components are a compact representation for the omnidirectional images that
enable to effectively assess the similarity of the input images with respect to
the reference images. The Fourier signature drastically reduces the amount
of memory required to store a reference image, as reported in Table 1. For a
typical omnidirectional image of 640 × 480 pixels, we build a 512 × 80 pixels
panoramic image, which Fourier coefficients can be stored in a 15×80×2 array
(i.e. 15 Fourier coefficients, 80 rows, 2 for the phase and the magnitude of the
Fourier Transform). So, compared to other techniques that stores the original
omnidirectional colour image, the memory requirements decreases from 7.3
Mbits to 19 Kbits, as shown in [17].

With this approach matching the current view against the visual memory is
also computationally inexpensive. In fact, we defined a simple dissimilarity
function that takes as input the Fourier signatures of two images and gives
a value proportional to the amount of ”dissimilarity” of the two images. In
other words, the less similar the two images are, the higher the value of the
dissimilarity function. In Eq. 1 we defined the dissimilarity function as the L1
norm of the Fourier signatures of the two images Oi and Oj: here k indicates
the frequency and y is the index of the row of the panoramic cylinder. For
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more details on this procedure, please refer to [15].

Dis(Oi, Oj) =
l−1∑
y=0

m−1∑
k=0

|Fiy(k) − Fjy(k)| (1)

To asses the computational burden of our system, we performed the off-line
experiments on a 1400 MHz AMD Athlon with 512 MB of RAM. On this
machine, once grabbed the omnidirectional image, to unwarp it, to calculate
the Fourier signature, and to calculate the similarity with all the reference
images takes less than 30 ms.

2.1 Related Works

Let us highlight the advantages of our approach with respect to other ways
of storing and comparing the images. First, using an omnidirectional camera
reduces the number of images required to fully describe the environment.
In fact, if a perspective camera is used, the view of the environment from
a certain location changes with the direction of gaze. A solution can be to
constrain the movements of the robot in order to have the perspective camera
always pointing in the same direction [4], but this strongly limits the motion
of the robot. An alternative can be to extract from the perspective images
some features that reduce the amount of required memory while retaining a
rich description of the image. A good example of this is reported in [22], where
936 images were stored in less than 4MB. Nonetheless, collecting such a large
number of images is tedious and time consuming.

Using omnidirectional cameras, we have only one omnidirectional image for
every reference location. The omnidirectional image contains the appearance
of the environment in all possible gazing directions. Several authors, exploited
omnidirectional images for image based localisation. The most common ap-
proach is to extract a set of eigenimages from the set of reference images and
project the reference images and the current image into eigenspaces. Unfortu-
nately, this approach does not lead to rotationally invariant images. Usually,
the images are preprocessed in order to obtain the rotational invariance as in
[1; 12; 8] or the heading of the sensor is constrained as in [13]. On the contrary,
our technique, which uses the Fourier transform of the panoramic cylinder (i.e.
the Fourier signature), is a natural representation for implementing rotational
invariance, as detailed in [15].
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3 Monte-Carlo Localisation

As we stated in the introduction, the image-based localisation approach is mis-
leading in situation in which the appearance of the environment is the same at
two different locations. In this work, we overcame this problem by exploiting a
well-known probabilistic approach in order to estimate the correct position of
the robot. The general method, known as Bayesian filtering (also known as
Markov localisation in robotics) [2; 3; 6; 7; 21], recursively updates the proba-
bility density of the robot’s position (the belief) using motion and perception
information. In the Monte-Carlo method one represents the posterior proba-
bility density of the robot’s pose with a set of discrete points in the configu-
ration space of the robot. To better understand the rest of the paper, we need
to briefly review the theory behind the Monte-Carlo Localisation approach
(MCL). In the Bayesian Filtering problem one has to calculate the probabil-
ity density of the robot’s position Bel(st) = p(st|Ot, at) over time. What is
known is the prior probability density Bel(s0), which describes the initial
robot uncertainty about its position; the prediction model p(st|st−1, at−1)
that applies motion data at−1 to actual state st−1 obtaining a new state st;
the observation model p(Ot|st) that represents the probability of making
observation Ot from state st.

Using the Bayes Formula and Markov assumption about the state space the
equation to calculate the belief is

Bel(st) = ηp(Ot|st)
∫

p(st|st−1, at−1)Bel(st−1)dst−1 (2)

where η is a normalisation factor. In Monte-Carlo localisation, the posterior
probability density of the robot’s position (i.e. the belief) is approximated
with a set of weighted samples {si

t, ω
i
t}i=1...N . The weight associated with

every sample is proportional to the likelihood that the robot is occupying
that position. The samples are updated recursively with a procedure called
sampling-importance-resampling [3]. During resampling the samples are
drawn with probability proportional to their weights. As a result, unlikely
samples die out, while samples with high weights are replicated.

In our implementation, the motion and perception data used to update the
samples come respectively from the odometry and from the omnidirectional
camera. The weight wi associated with every sample si is proportional to the
similarity of the reference images closer to that sample with respect to the
current input image, as shown in Eq. 3

wi =
1

|C|
∑

gj∈C

Sj · (D − dist(si, gj)) , (3)
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where C is the set of the reference positions gj at a distance less than D from
the sample si, and Sj is the similarity value associated with the reference
image at position gj.

3.1 Related Works

The approach we used was inspired by the work of Wolf et al. [22] and turned
out to be very similar to the concurrent work of Gross et al. [9], which we
were unaware of. One might think these approaches are the same of the one
presented by Dellaert et al. in [5]. Actually, they are different in that Dellaert
et al., instead of using single reference images, constructed a complex global
visual map of the environment by mosaicing all the images of the ceiling.

The main differences between our system and the work of Wolf et al. are i) they
used a perspective camera while we used an omnidirectional camera (reducing
the number of images to be stored); ii) they associated a visibility region with
every reference image in the memory database to reduce the search space for
image matching. The use of a visibility region implies the system needs a met-
rical map of the environment and increases the complexity of the algorithm.
We do not need to use the visibility region because our omnidirectional camera
supplies a 360◦ view of the environment; this also means that we rely only on
the similarity computation to distinguish various localisation hypothesis with
a gain in minor complexity of the algorithm.

The differences with Gross’s et al. work are mainly in the way they calculate
the image similarity. Basically, for every omnidirectional image they extract
a feature vector from the colour panoramic cylinder. This feature vector is
calculated dividing the colour panorama into 10 sections and taking the av-
erage RGB values of each of these sections. They defined a image similarity
function that takes as arguments these features vectors and that implements
a rotational invariance. The colour information available in our test environ-
ment is very poor, the predominant colours are gray and white, so a method
based only on colours to match the images would not work. Capturing the
brightness patterns in the environment as provided by the Fourier signature
proved to be very effective.

Concerning, the Monte-Carlo localisation methods used in [22] and in [9], they
are very similar to the one we used. The main difference is in the way the three
works approach the kidnapped robot problem. In the next section, we present
our original contribution to the kidnapped robot problem [17].
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Fig. 5. An example of some samples being generated close to two different reference
images matching the current input image. On the left the cluster corresponding
to the correct reference image and on the right some samples corresponding to a
reference image very similar to the current input image.

3.2 The proposed kidnapping strategy

In the kidnapped robot problem, the robot is lifted and moved to a different
location, so it does not have any odometric feedback on this motion. This
problem aims to test the system in situations in which the odometric informa-
tion of the robot is totally wrong or the robot has to recover from an incorrect
localisation.

In the Monte-Carlo localisation methods when the robot has a good localisa-
tion, the samples are generated only in a tight cloud close to the estimated
position of the robot. This makes it difficult to solve the kidnapped robot
problem. In fact, if the robot is moved to a new position without perceiving
this motion (kidnapping), it will continue to generate the samples around the
previous position, without generating any samples around the new unknown
position. If the robot does not have any samples around the new position, it
will never recover from the localisation error. The standard approach replaces
a certain number of samples with others randomly drawn in the entire envi-
ronment [7]. This approach relies on the hope that some samples of this subset
will be generated by chance close to the position where the robot has been
moved. In this case, these samples will have large weights in the next mea-
surements and will survive and cluster the other samples close to them. The
drawback is that it takes several iterations for the samples to cluster around
the correct position and sometimes it might takes some iterations even to gen-
erate a sample close to the position where the robot was kidnapped. This was
the approach used also by Wolf et al. in [22]. Gross et al. used an alternative
approach, instead of generating a certain amount of samples at random po-
sition, they have a certain number of samples generated at fixed important
positions in the environment (about the 3% of the total number of samples)
[9].

We propose a new solution: instead of randomly drawing the sample, the new
samples should be generated only around the reference images that best match
the current input image. Each time the samples are generated a number of
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samples (10% of samples) are replaced with new samples drawn around the
positions of the reference images most similar to the current input image.
This assures that the newly generated samples are concentrated around possi-
ble locations only. This approach is made possible by the technique we use to
match the input image with the reference images. Usually, all reference images
matching the input image are close to each other, so the new samples concen-
trate in a region around the correct reference image. In case of kidnapping or
perceptual aliasing, the reference images that are similar to the input image
can be far away one from the other and so the new samples are generated at
two different positions in the environment, like in Fig. 5. In other words, the
samples are taking into account alternative possibilities for the actual loca-
tion of the robot. In the case of kidnapping, the new location is stable and
the samples will quickly cluster in the new location. In the case of perceptual
aliasing, it is just a transient situation lasting for one or two steps that will
not spoil the correct estimation of the robot’s pose. In both cases, our system
is able to quickly calculate the correct position.

(1) (2) (3) (4) (5)

Fig. 6. The kidnapped robot problem solved with the standard approach. Note the
robot needs many steps in order to recover from the kidnapping. The small dots are
the samples generated by the Monte-Carlo filter, the line with the dots is the actual
path of the robot (the dots are the position at which the robot takes the input
images), and the thick curve is the estimated path of the robot. The estimated
position of the robot is calculated as the average position of the samples and is
marked with a cross.

(1) (2) (3) (4) (5)

Fig. 7. The kidnaped robot problem with our newly proposed kidnapped strategy.
Note the robot needs only 3-4 steps to recovers the correct localisation.

We compared our proposed technique of generating new samples with the
standard technique used in [22]. Fig. 6 shows the solution to the kidnapped
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robot problem with the standard approach of drawing 10% of new samples
uniformly distributed in the environment at random positions. One can see
that the system needs many steps to recover from the kidnapping and even
after five steps the localisation error is still very high. In Fig. 6, the system
is performing the same test using our technique, in just four steps the robot
has fully recover from the localisation error. As we will see in Section 4, our
system proved to give better performances in all the test we performed. The
proposed kidnapped strategy has also been applied in the global localisation
with a significative speed-up in the convergence of the estimated position to
the real position (almost twice as fast).

We did not compared our approach to the Sensor Resetting Localisation (SRL)
approach of Lenser et al. [14]. Their approach is well suited in situations were
the kidnapping of the robot is frequent (i.e. the robot is frequently lifted and
moved away, like in the Four-Legged League RoboCup Competition) and when
there are landmarks with known positions. In this case, one can trust more the
vision sensor than the localisation method. However, in typical indoor applica-
tions kidnapping is not so frequent and our system does not use fix landmarks,
but relies only on the appearance of the environment. This appearance might
temporary change due to occlusion from people walking by. In the case of
temporary occlusion, we do not want all the sample to move away to the next
most similar reference image, as it would happen with SRL. Every time there
are more than one reference image similar to the current image, we want to
take into account all new possible localisations, but with a bias toward the
previous location. In other words, we want to trust less the vision sensor than
the localisation algorithm.

A possible extension of our approach is to use the idea of ”hierarchical local-
isation”, introduced in [15]. The hierarchical localisation is the capability of
the robot to calculate its position with a tight or broad accuracy. In [15], we
showed that the hierarchical localisation can save computational time when a
precise localisation is not needed. Here we suggest the hierarchical localisation
can be used also to select if the Monte-Carlo filter has to take into account
a smaller or a larger number of alternative localisation hypotheses. In our
approach, the hierarchical localisation is obtained by controlling the number
of Fourier components used to calculate the similarity between the images,
therefore controlling the number of reference images that match the current
input image. This idea is not discussed further, because it is out of the scope
of the this paper.
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Fig. 8. The odometric data used in the experiments. Note the odometric information
used by the robot is really inaccurate.

4 Experiments

The system was tested along the corridors marked in the map of Fig. 1 (right).
This is a large office building composed of a long corridor (about 50 metres)
and four shorter corridors forming a loop (the loop is about 20 metres in
diametre). The corridors are about 3 metres wide. The total path of the robot
is about 100 metres long. Some panoramic snapshots are shown in Fig. 2
(left). As stated before, this environment is particularly challenging because
of its high perceptual aliasing, that is all corridors look very similar. They
have white walls, gray doors and little colour information is available. Along
the path, the robot faces many false localisation hypotheses, but the correct
localisation is never lost.

In this test, the reference images were taken every 20 cm on a line approxi-
mately in the center of the corridor. Every reference image was labelled with
the ground-truth position of the robot. In a second run the robot acquired the
input images at different positions along the corridors and the actual positions
of the robot were recorded to calculate the localisation error at run time. The
tests were performed on the system off-line. The inputs are the sequences of
the current images presented one by one every time the robot takes a new step,
and the recorded odometry shown in Fig. 8. The aim of the experiments is to
demonstrate the system is able to reliably localise the robot and to recover
from localisation errors. We carried out several experiments on global locali-
sation, position tracking and robot kidnapping, introducing different amount
of noise to the odometers’ data. The system is able to successfully localise the
robot in any situation.
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Fig. 9. An example of Monte-Carlo localisation. These are some snapshot of our
system while it is performing a global localisation (Steps 00, 01, and 02) and then
position tracking (Steps 09, 19, and 26).

Global Localisation and Position Tracking

The screenshots of Fig. 9 show an experiment of global localisation and po-
sition tracking. The small red dots are the samples generated by the Monte-
Carlo filter, the bigger blue dots are the ground-truth positions of the input
images taken by the robot, the thinner blue line is the ground-truth path of
the robot, and the thicker black curve is the estimated path of the robot. The
estimated position of the robot is calculated as the average position of the
samples and is marked with a black cross. Our system is able to localise the
robot, without any prior information on the robot’s position, after process-
ing about 5-6 images. The correct localisation is achieved even if we use a
very low number of samples. Experimentally, we observed that the minimal
number of samples to obtain a reliable localisation is about the same as the
number of the reference images. In few iterations, the localisation error sets
below the distance of the reference images (i.e. 20 cm). In Fig. 9 (Step 00) the
robot does not have any information on its position, so it generates samples
uniformly distributed in the environment. Note the robot generates samples
also in forbidden positions (that is outside of free space and inside wall or
obstacles). This is because the robot does not have any information on the
geometrical map of the environment. The only information the robot has is
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the relative position of the images one with respect to the others. This proves
our image-based Monte-Carlo approach works without the need of a geomet-
rical map of the environment. The rough map of the environment presented
in this paper is needed only for displaying purposes. In Fig. 9 (Steps 01), the
robot grabs the first omnidirectional image and after the resampling stage
almost all samples are already concentrated around the correct position. All
samples inside the obstacles disappeared. Only few samples are left along the
corridors in locations that have a certain amount of similarity with the current
input image. In Step 02, after grabbing the second image, samples are even
more concentrated and survive only in the first corridor. In Fig. 9 (Steps 09,
19, and 26), the position tracking experiment is presented. It is not shown in
the screenshots, but the system is able to keep track of the robot’s position
when the robot takes long steps (about 200 cm) in dead-reckoning mode (i.e.
it travels for a while without tacking any picture) with large odometric errors.
In this condition, as soon as a new image is grabbed, the system is able to
correct the errors caused by odometry.

Kidnapped Robot

In Fig. 10, we compare again the standard strategy of drawing samples ran-
domly distributed in the environment (left column) with our new kidnapped
robot strategy (right column). The test is performed on a much larger envi-
ronment than the one in Fig. 6 and Fig. 7. The result is that the proposed
kidnapped strategy both allows a quick recovery from the localisation error due
to the kidnapping and also improves the global localisation (less observations
are necessary to cluster all the samples around the actual robot’s position). In
Fig. 11 a statistical analysis of the performance of the two methods is plotted.
We repeated the experiment of Fig. 10 twenty times and we calculated the
average error in the case of the standard strategy (red dashed line) and our
new strategy (blue solid line). The localisation error decreases toward lower
values much faster with our strategy both in the global localisation phase and
in the recovering phase after kidnapping. Also in the position tracking phase
the localisation error obtained using our method is smaller, because with the
standard strategy some of the samples are randomly spread out in the envi-
ronment and so they bias the estimation of the actual position of the robot,
generating a sensible error (see Fig. 11 right, where the plot is zoomed on the
residual error).

The Monte-Carlo Localisation software is the most computationally intensive
routine in our system. It requires about 170 ms per cycle using 1000 samples.
Even if the software was not optimised for computational speed, it could offer
real-time performance.
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Fig. 10. Here you can see some snapshots in our test environment. The standard
kidnapped robot strategy (left series of images) is compared with our new strategy
(right series). The blue line is the actual path of the robot and the black curve
is the estimated path of the robot. The snapshots show that with our strategy it
is possible to speed-up global localisation and also to quickly relocalise after the
kidnapping.
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Fig. 11. Average localisation error during the experiment of Fig. 10. The strategy we
proposed outperforms the uniform strategy in robustness and speed in recovering
the correct position. On the right, a zoom of the plot on the left to show the amount
of residual error for the two approaches.

5 Conclusions

In this paper, we presented a robust image-based localisation system that
can operate in every type of environment. We presented our solution to the
problem of lowering the computational and memory requirements posed by
image-based localisation. This solution uses the Fourier transform of omnidi-
rectional images grabbed by the robot. We discussed the advantages of this
solution with respect to the solutions devised by other authors. To overcome
the limitation of the image-based localisation approach, namely the lack of
robustness in the case of perceptual aliasing, we used a Monte-Carlo locali-
sation technique. We showed that this system is able to track the position of
the robot while moving and it is able to estimate the position of the robot
without any prior knowledge on the real position. Moreover, we showed that
our image-based Monte-Carlo approach does not require a geometrical map
of the environment, but just the position of reference images with respect to
each other (that is a kind of topological map). A new approach in solving
the kidnapped robot problem was proposed: we generated a certain number
of samples (here 10%) close to all reference images that match the current
input image. This approach was shown to outperform the standard approach
of generating samples randomly distributed in the environment.

References

[1] H. Aihara, N. Iwasa, N. Yokoya, and H. Takemura. Memory-based self-
localisation using omnidirectional images. In A. K. Jain, S. Venkatesh,
and B. C. Lovell, editors, Proc. of the 14th International Conference on
Pattern Recognition, volume vol. I, pages 1799–1803, 1998.

16



[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on par-
ticle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing, 50(2):174–188, Feb. 2002.

[3] J. Carpenter, P. Clifford, and P. Fearnhead. An improved particle filter
for non-linear problems. In IEEE Proc. Radar, Sonar and Navigation,
volume 146, 1999.

[4] R. Cassinis, D. Duina, S. Inelli, and A. Rizzi. Unsupervised matching
of visual landmarks for robotic homing using Fourier-Mellin transform.
Robotics and Autonomous Systems, 40(2-3), August 2002.

[5] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the condensation
algorithm for robust, vision-based mobile robot localization. IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (
CVPR’99 ), June 1999.

[6] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localization
for mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA99), May 1999.

[7] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo local-
ization: Efficient position estimation for mobile robots. In Proceedings of
National Conference on Artificial intelligence (AAAI’99), pages 343–349,
July 1999.

[8] J. Gaspar, N. Winters, and J. Santos-Victor. Vision-based navigation and
environmental representations with an omnidirectional camera. IEEE
Transaction on Robotics and Automation, Vol 16(number 6), December
2000.

[9] H.-M. Gross, A. Koenig, C. Schroeter, and H.-J. Boehme. Omnivision-
based probabilistic self-localization for a mobile shopping assistant con-
tinued. In IEEE/RSJ Int. Conference on Intelligent Robots and Systems
(IROS 2003), October 2003, Las Vegas USA.

[10] H. Ishiguro. Development of low-cost compact omnidirectional vision sen-
sors. In R. Benosman and S. Kang, editors, Panoramic Vision, chapter 3,
pages 23–38. Springer, 2001.

[11] H. Ishiguro and S. Tsuji. Image-based memory of environment. In Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS-96), pages 634–639, 1996.

[12] M. Jogan and A. Leonardis. Robust localization using panoramic view-
based recognition. In Proc. of the 15th Int.Conference on Pattern Recog-
nition (ICPR00), volume 4, pages 136–139. IEEE Computer Society,
September 2000.
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