
Modeling and Learning
Walking Gaits of Biped Robots

Matthias Hebbel, Ralf Kosse and Walter Nistico
Robotics Research Institute

Information Technology Section
Universität Dortmund

Otto-Hahn-Str. 8, 44221 Dortmund
Email: forename.surname@uni-dortmund.de

Abstract— This paper describes an open loop modeling of
a walking gait by mimicking the human walking style. A
parameterizable model for the leg and arm movement will be
developed. For finding the parameters of these problem classes
often machine learning approaches are used. Thus, several opti-
mization techniques are discussed and finally Evolution Strategies
chosen for the optimization process. The best fitting parameters
like population size or the selection operator are then found
out by doing walk evolution with different configurations of the
strategy in a robot simulator. Finally the best performing strategy
is used to evolve a forward walk on a real robot.

I. INTRODUCTION

The ability for robots to operate in human made environ-
ments is a very challenging task. The movement of the robot
in human environments requires the possibility to adapt to the
ground like a flat surface, soft surface or stairs. To overcome
these problems, a lot of research is done in the area of legged
robots. The task of walking becomes more and more difficult
with a smaller amount of legs. While robots with six or four
legs could always remain stable on the ground while walking,
the problem of generating a walking gait for biped robots is
much harder.

In this paper we first will describe a parameterized model
which generates trajectories for the feet and arms of the robot.
This model contains variables for the trajectories like step size,
step height, timing etc. Finding the walking parameters by
hand is not feasible, because the search space is too large
and the parameters strongly depend on each other, i.e. opti-
mizing them separately is not possible, but machine learning
approaches can be used to optimize these parameters. Thus
an overview of possible techniques to find these parameters is
given. Afterward, chosen strategies with different population
sizes and selection operators are used to optimize the walk
in the simulator. Finally, we present the results of a walk
learning experiment which was done on a real robot. For these
experiments we have developed a system which allows the
robot to learn to walk fully autonomously.

II. THE EXPERIMENT PLATFORM

First we will explain the used humanoid robot model
including the degrees of freedom, afterward the used simulator
for the evaluation of the learning strategy will be explained.

A. The robot
The used robot is the KHR-1 from the Japanese manufac-

turer Kondo and is presented in Fig. 1(a). It is being delivered
as a construction set and has been partially modified for this
work. The KHR-1 has 17 degrees of freedom, all of them
are rotatory joints realized by servo motors. Each leg has 5
degrees of freedom, each arm has 3. The head of the robot can
also be rotated but is not considered in the walking model.

A particularity is the arrangement of the servo joints in the
legs: the robot does not have the ability to rotate the legs.

(a) The “Kondo KHR-1” robot. (b) Kinematic structure including
the defined coordinate system.

Fig. 1. The used robot with the available joints.

Small hardware modifications had to be done to let the walk
evolution run on the KHR-1. First a controller board has been
developed to control the 17 servos of the robot. The controller
board uses a serial communication to receive requested joint
values and send the current sensor readings. The board can ei-
ther communicate with an external PC or a PDA. Additionally
the board is equipped with an accelerometer and a gyroscope
to be able to detect the orientation in space.

Further the small plastic gears in the servos have been
replaced by gears of metal. The small plastic gears have to
stand the biggest torsion forces and tended to break frequently.
The metal gears turned out to have a much longer lifetime and
less play but created also a bigger friction inside the servos
which resulted in slightly weaker servos. The controller board

enrico
Text Box
 Proceedings of the Workshop on Humanoid Soccer Robots of the 2006 IEEE-RAS International Conference on Humanoid Robots Genoa, Italy, December 4, 2006 pp. 40-48 ISBN: 88-900426-2-1

can update the servos at a freuency of up to 100 Hz but tests
have shown that an update rate of 50 Hz shows no apparent
difference. Thus we controlled the servos with 50 Hz.

We define a coordinate system shown in Fig. 1(b). For an
upright standing robot the X axis points forward, the Y axis
to the left side of the robot and the Z axis points upwards.

B. The simulator

To find an appropriate learning strategy we used a simulator
developed by Bremen University [1]. It is based on SimRobot
including the OpenDynamicsEngine 1 for the physical simu-
lation. The simulator is equipped with a model of the KHR-1,
but the physical simulation is not accurate and realistic enough
to do walk evolution and use the found parameters on the
real robot. However, the general behavior is comparable with
the real robot. For that reason we used the simulator only
to compare different learning strategies and did the real walk
evolution afterward on the real robot with the learning strategy
proven to be best in the simulation.

III. MOVING THE LIMBS

In this section we explain a parameterized walking model
which moves the legs and arms in order to walk. At first only
straight forward walking is explained and afterward extended
to an omnidirectional movement. The walking model is based
on the human walk to put as much previous knowledge
as possible in the model in order to keep the number of
parameters and the search space for parameter optimization
as small as possible.

A. Trajectories for the legs

All existing walking gaits in nature have in common that
the legs move in two phases: The phase when a foot is on
the ground to push the body forward and the phase when it
is in the air to prepare the next step on the ground. In the
period when the leg touches the ground, it moves relative to
the body contrary to the walking direction; during the air phase
it moves into the walking direction. The movement of the feet
on the ground has to be a straight line. The movement in the
air however can nearly be arbitrarily chosen. For our walking
model we apply the constraint that the time for the foot being
in the air equals the time when being on the ground.

The movement of a single foot while walking can be
described as a trajectory in the three dimensional space.
However, for efficient walking a two dimensional description
is sufficient. The trajectory is spanned by a vector pointing
into the walking direction and a vector pointing opposite to
the force of gravity. A third dimension could only cause a
movement which does neither contribute to move into the
requested direction nor have an effect on the height that the
feet has to be lifted during the air phase. The trajectory has to
be a closed path which a foot travels completely along during
a whole step cycle.

The way the feet are controlled by the walking engine
along the specified trajectory is illustrated in Fig. 2(a). The

1http://www.ode.org/

required joint angles to reach the position of the feet on the
trajectory are calculated by means of Inverse Kinematics. A
closed form solution for the inverse kinematic calculation for
legs with more than three joints usually is not existent. But
by making specific assumptions, e.g. the knee always bends
to the front, the system of equations becomes well-defined.
Techniques which iteratively approximate the according joint
angles can also be used but are generally more computationally
expensive than the direct solution [2]. Here for simplicity we
assume that the feet always have to be parallel to the ground.
For robots with toe-like feet [3] with a joint in the sole of
the foot like the robot “Toni” from the University of Freiburg,
this approach has to be extended to guarantee a human-like
movement of the feet. The trajectory on which both feet move
on is identical, but the phase movement is shifted in time by
half of the duration of a whole step, i.e. while one foot starts
to touch the ground, the other one is about to leave it.

(a) The movement of a foot along
the trajectory.

(b) Possible trajectories of the
arms in the X−Z and the Y −Z
plane.

Fig. 2. Trajectories of the feet and the arms.

Due to the fact that the movement of the feet in the air
can be nearly arbitrarily chosen, an overview and evaluation
of possible trajectories will be presented. In the following
trajectory explanations we assume that the timing parameter
is always in the interval 0 ≤ t < 1. The ground phase
movements for all trajectories are defined to be in the time
interval 0.5 ≤ t < 1 and follow the equation

~f(t) =
(

x(t)
z(t)

)
=

(
sl

2 − 2sl(t− 0.5)
0

)
with x(t) and z(t) describing the foot position and the time
sl defining the step size.

1) Semi-circle: An exemplary semi-circle trajectory is pre-
sented in Fig. 3(a). In consequence of the circular movement,
the height the feet are lifted while walking is half of the length
of the step. Assuming a constant speed of the feet on the
trajectory, one parameter is enough to describe the semi-circle.
Experiments with the semi-circular locus have shown that the
fact that the foot touches and leaves the ground perpendicular
to it is very helpful, but the coupling of step height and

step length leads especially for bigger step sizes to stability
problems since high lifted feet cause a lifting of the center of
gravity of the robot.

The semi-circle trajectory with the step length sl for 0 ≤
t < 0.5 is given by:

~f(t) =
(

x(t)
z(t)

)
=

(
− cos(2πt) · sl

2
sin(2πt) · sl

2

)
.

(a) The semi-circle trajectory. (b) The rectangular trajectory.

Fig. 3. Trajectories for the feet with step length 10 and step height 5 in the
X-Z plane.

2) Rectangle: The rectangular movement of the feet can be
described by two parameters for the shape of the trajectory, the
length of the step sl and the height of the foot lifting sh (see
Fig. 3(b)). Additionally, relative timing parameters have to be
defined: t1 is the time a foot is in the lift phase, t2 defines
the time to move a foot forward and t3 is the time needed to
lower a foot. As defined, the time of a foot in the air has to be
equal to the time on the ground, the relative ground time is 0.5
and t1 + t2 + t3 = 0.5. With these parameters, the rectangular
trajectory is given by:

(
x(t)
z(t)

)
=

(
− sl

2
t · sh

t1

)
for 0 ≤ t < t1

(
2sl(t− t1)− sl

2
sh

)
for t1 ≤ t < t1 + t2

(
sl

2
sh · (1− 2t)

)
for t1 + t2 ≤ t < 0.5

The rectangular locus has, like the semi-circle locus, the
advantage of a plain perpendicular movement of the feet when
the feet leave the ground and start to touch it, but the jerky
movement in the corners of the trajectory resulted in unwanted
shaking of the whole robot body.

3) Semi-ellipse: The semi-elliptical movement (see Fig.
4(a)) can be described by two parameters, step length sl and
step height sh. For 0 ≤ t < 0.5 it is defined by:

~f(t) =
(

x(t)
z(t)

)
=

(
− cos(2πt) · sl

2
sin(2πt) · sh

)
This trajectory has the same properties as the semi-circular
one but the shortcomings of the coupling of step height and
step length is not existing here.

(a) The semi-elliptical trajectory. (b) The sinusoidal trajectory.

Fig. 4. Trajectories for the feet with step length 10 and step height 5 in the
X-Z plane.

4) Sinusoidal: For 0 ≤ t < 0.5 the sine trajectory (see Fig.
4(b)) is defined by:(

x(t)
z(t)

)
=

(
sl

2

(
2 · (2t− 1)− sin(π(1+2·(2t−1)))

π

)
sin(2πt) · sl

2

)
.

The trajectory corresponds to the sine function in the range
of values 0 ≤ π in the x-f(x)-plane. The shape is very
similar to the semi-ellipse but it has the disadvantage that in
the moment of lowering a foot on the ground, the movement
of the foot has still a component converse to the subsequent
movement on the ground. Tests on a carpet have shown that
this caused our robot to stumble and fall over more often than
with the semi-elliptical movement.

B. Trajectories for the arms

Like the human walk shows, the arm movement synchro-
nized with the leg movement supports the walk. The arms
can help to balance or could even give a momentum into
the walk direction, e.g. joggers or runners make extensive
use of the arms. For the arm movement we dispense with
inverse kinematic calculations to follow a defined trajectory.
We only consider the upper shoulder joint and directly control
the joint of the shoulder movement. As shown in Fig. 2(b) the
arms can be moved in the X-Z and the Y -Z plane. The arm
movement is firmly coupled with the leg movement, using the
same timing parameter t. The time to swing an arm forth and
back is equal to the time of a whole step.

For controlling the arm movement we tried a linear move-
ment, swinging the arm forth and back and also a sinusoidal
movement. As expected, the later one caused a much smoother
movement, since it slowly accelerates and decelerates the arms
at the turning points. Another advantage is that the arms stay
longer near the turning points where they can contribute as
balancing weights.

The angle ωarmx of the arm movement in the X-Z plane
over time is defined as

ωarmx(t) =
π

2
xarmmax · sin (2π (t + ϕarmx))

with the maximum amplitude xarmmax and a phase shift of
ϕarmx relative to the leg movement. Like for human walking,
we defined the phase shift to be 0.25 relative to the leg
movement, i.e. the left arm swings forward while the right

leg moves backward and vice versa. The movement of both
arms of course is shifted in phase by 0.5.

Since the movement in the Y -Z plane is restricted by the
robot body, the arm movement ωarmy

is defined as

ωarmy (t) =
π

4
yarmmax · (sin(2π(t + ϕarmy)) + 1)

with a fixed phase relative to the leg movement of ϕarmy =
0.5.

C. Moving the body
To countervail the shifting of the center of mass of the robot

while walking, we allow additionally to the arm movement a
movement of the upper part of the body. Fig. 5(a) and 5(b)
show the movement: the robot can “swing” sideways into the
Y direction and forward into the X direction.

(a) The body movement in the Y -Z
plane.

(b) The body movement in the X-Z
plane.

Fig. 5. Schematic illustration of the two body trajectories. The black color
represents the upright standing robot while the gray color shows the robot
moved into the according direction.

1) Swinging sideways: The sideways movement of the
robot is justified due to the fact that a shifting of the center
of mass of the robot into the direction of the foot which is
still on the ground gives a much better stability of the robot.
With a foot size big enough even a statically stable walk can be
achieved by this movement. This sideways shifting is achieved
by only using the leg joints 1 and 5 (see Fig. 1(b)). Like the
arm movement, this movement is also sinusoidal and is also
coupled with the timing parameter t. The sideways movement
is defined as:

ωbodyy (t) =
π

2
ybodymax · sin(2π(t + ϕbodyy))

For a phase shift of ϕbodyy = 0 relative to the leg movement,
the body moves in a way that it leans most to the right side
while the left leg is in the air and just reached the center
of the air phase movement. The upper body is in the center
position when both feet touch the ground. The calculated value
ωbodyy (t) is simply added to the previously (according to
the foot trajectory) calculated value of the leg joints 1. To
guarantee a parallel movement of the feet to the ground, it
has to be subtracted from the leg joint 5.

2) Swinging forward: For completeness also a forward
swinging has been implemented. Birds for example swing the
body slightly forward for each step. The frequency of this
movement has to be double of the rest of the movements,
since it has to be done for each step. It is described by:

ωbodyx(t) =
π

4
xbodymax

· (1 + sin(4π(t + ϕbodyx
)))

Like the sideways swinging, the angle ωbodyx(t) is added to
the leg joint 2. A phase shift of ϕbodyx

= 0 leads to the
described behavior.

D. Controlling the walking direction

By now only straight forward walking has been considered.
But like humans, the robot should be able to walk sideways
and to rotate. Best would be to be able to combine a translative
movement vector (in the X-Y plane) with a rotational com-
ponent, i.e. an omnidirectional movement to be able to walk
on a circle for example.

As previously mentioned, the Kondo KHR-1 does not have
a rotational joint in the legs. For robots with rotational joints
along the Z axis the rotational movement can be done by
rotating the foot which remains on the ground while the other
one is in the air.

A translational movement into a direction α in the X-Y
plane however can be achieved easily by simply rotating the
defined trajectory of the feet by the angle α: the calculated x
coordinate is multiplied by the cosine of α and the y coordinate
by the sine of α. This positions the feet on a circle around
the robot center and leads to a problem: for sideways walking,
i.e. α = ±90◦ the legs would continuously collide under the
robots’ body since there is not much space between the legs in
the y direction. To overcome this problem, the legs get spread
for sideways walks proportionally to the sine of α:

ωoffsety
=

sl

2
| sin(α)|

with the step length sl. This offset ωoffsety
is added to the

y coordinate before the inverse kinematic calculations. The
right foot is shifted by ωoffsety

to the side, the left one by
−ωoffsety .

In [4] it has been shown that different walking trajectories
for the different walking directions can improve the walk of
four legged robots. The same approach has been used here
too, but is not explained in detail.

IV. OPTIMIZATION TECHNIQUES

In this section the optimization techniques used to let
the robot learn to walk are explained. The focus lies on
Evolutionary Algorithms which are well-tried for problems
with an unknown structure. The choice of the optimization
techniques is, a problem due to the huge amount of different
approaches. However by analyzing the problem to optimize,
several techniques can be excluded.

We want to find a parameter set for our walking model
which lets the robot walk satisfyingly. The problem itself
cannot be specified mathematically which means that the only

way to get the “function value” (from now on called fitness)
for a certain parameter set is to try them out. This means we
want to optimize a “black box” system: the black box outputs a
value for a couple of input values. The process inside the black
box is not known and is for the optimization technique not of
interest. Furthermore the measurement affected by noise, i.e.
measuring the fitness of the same parameter set n times can
generally lead to n different values. Finally the role of the
different parameters is not quite clear, e.g. the movement of
the arms or the upper body in the model might be useless or
counterproductive.

These considerations already exclude analytical methods
because of the lack of a mathematical description. Analytical
methods make use of certain properties of the objective func-
tion at the position of the optimum, this can for example be
the slope of the graph at this position. For the slope calculation
typically derivations are used which are for our problem not
existent.

Another class of optimization techniques are the iterative
methods: the principle is a stepwise approach toward the
optimum. Unlike the analytical methods, these methods do
typically not find the exact optimum. Similarly to the analytical
methods, some iterative techniques use beside the value of the
objective function also information about the first or second
derivative of the current point. These are especially all gradient
strategies or the methods of conjugate gradients [5] which
make also use of the second derivative. Due to the lack of a
mathematical description these methods are also not directly
usable.

Still a lot of methods exist which conform to a black
box optimization. The “Hill Climber” approaches for example
follow during the search for the optimum a path of steadily
growing fitness values (for a maximization problem). One of
the biggest shortcomings of these techniques is the problem
of getting stuck in local minima, i.e. points in the search
space whose direct neighbors all have a worse fitness values.
Additionally, these methods are typically very vulnerable to
measurement noise. A point with wrongly measured high
fitness for example can only be left if another point with a
higher fitness can be found. An overview of hill climbing
methods is given by Schwefel [6].

Another very widespread class of optimization algorithms
are heuristics which are inspired by nature. The eminent
category are the Evolutionary Algorithms [7]. They can solve
black box problems and can in certain variants deal with
measurement noise of the fitness. These algorithms operate
on populations of individuals and are based on the paradigm
survival of the fittest. A parent population is creating an off-
spring population by making use of the operators replication,
mutation and recombination. Due to the mutation and recom-
bination operators the offspring individuals “differ” from their
parents, e.g. they have different properties. The selection then
decides which individuals will form the new parent generation,
all other individuals will die out. When the selection operation
is based on the mentioned paradigm survival of the fittest, in
the course of the evolution process the properties of the parent

generation will be optimized with respect to the fitness criteria
of the selection operator. A modification of the evolutionary
algorithms brought up particle swarm and simulated annealing
algorithms.

A. Genetic Algorithms

Genetic Algorithms have been developed by Holland [8]
and originally operate in Bn, the n-dimensional search space
of binary numbers, i.e. the recombination and mutation op-
erations on the individuals are manipulations of bits. Later
versions of Genetic Algorithms however can also operate
in Rn. The fitness of an individual is typically in R. The
algorithm uses a population which has a size bigger than one
to make the recombination of individuals for the generation of
new individuals possible. The “encoding of the chromosomes”
maps the search space of the given optimization problem to the
search space Bn. To find this encoding is the most challenging
problem when using Genetic Algorithms.

B. Evolution Strategies

Evolution Strategies (ES) have been developed in the be-
ginning of the sixties by Schwefel [9] and Rechenberg [10]
to optimize technical problems. The most simple ES uses one
parent and generates by mutation an offspring. The mutation is
realized by adding Gaussian distributed noise to the parameters
of the parent. In case of a better fitness of the offspring, it
becomes the parent, otherwise the parent remains and a new
offspring is generated by mutation. This loop is done until a
termination criteria stops the evolution. This evolution strategy
is called (1+1) strategy. The first number depicts the number
of parents, the second number the amount of offsprings. The +
specifies that is it an elite strategy what means that only fitter
offsprings can replace parents. Ingo Rechenberg analyzed the
(1+1) strategy and developed the 1/5 rule which controls the
mutation strength. He proved for two models that the mutation
strength is optimal if 1 out of 5 generated offsprings is fitter
than the previous parent [10]. In case of a bigger success rate
the mutation strength is too small and has to be increased,
otherwise it is too big and has to be decreased.

Schwefel developed in his dissertation [9] Evolution Strate-
gies with a parent population of a size of µ ≥ 1 which
generate λ ≥ 1 offsprings by recombination and mutation.
Additionally he improved the control of the mutation strength:
each parameter which has to be optimized (object parameter)
obtains its own mutation strength (strategy parameter). These
strategy parameters are also included in each individual and
are selected and inherited together with the individual’s as-
signments for the object parameters. Thus, they have a higher
probability of survival when they “encode” object parameter
variations that produce fitter object parameters. This adaption
of the mutation strength is called self-adaption.

An offspring is created by means of recombination of the
parents. Both the object parameters and the strategy parameters
of the parents are recombined. Principally one can differentiate
between discrete and intermediate recombination. Let p =
(p1, . . . , pk) be an individual of the parent population which

includes the object and endogenous strategy parameters, then
the single components ni of the offspring individual n =
(n1, . . . , nk) get randomly chosen out of the pi components
of randomly chosen parents for the discrete recombination.
The intermediate recombination on the other hand creates the
components ni out of the mean value of all pi of the parents.

The selection operator elects the parents for the next gener-
ation. In case of the +-strategy it elects the µ best individuals
out of the offsprings and the parents while in the case of the
,-strategy only the best µ individuals out of the offsprings
are chosen to be the parents of the next generation. For the
+ strategy the lifetime of an individual can be limited to κ
generations. This creates a mixture of the + and the , selection.

C. Simulated Annealing

For the optimization process, the simulated annealing mim-
ics the effects of cooling down metals. The principle is similar
to the (1+1) Evolution Strategy. The search points are changed
with a mutation-like operation. In case of a better fitness
value of an offspring individual, it replaces its parent. In
case of a worse fitness, it can even replace its parent with
a certain probability; this probability gets lower during the
optimization process and is called “annealing schedule”. It
simulates the increasing coherence of molecules in metals
during the cool down process. Thus, the probability of leaving
a local minimum by accepting a worse individual decreases
during the optimization.

D. Particle Swarm Algorithms

Particle Swarm Algorithms mimic the behavior of fish
or bird swarms. Each individual of the swarm (also called
particle) acts fully autonomously, i.e. there is no central control
of the swarm movement. The particles move into a direction
which is on the one hand guided by own preferences and on
the other hand also look about the movement of the swarm.
This creates a combination of individuality and coherence.

For optimization a swarm out of virtual particles is used,
comparable to the population of an Evolutionary Algorithm.
The particles move in the search space and carry the function
value (fitness) of their current position. Based on the best
found fitness value in the whole swarm and the best found
fitness value of the particle itself, a new position can be
calculated with the aid of a random component. Each particle
also orients itself toward the other particles in the swarm,
it “flies” into the direction of more promising values with a
higher fitness.

The difficulty in using the particle swarm algorithms is
in finding appropriate values for constants which affect the
behavior of the algorithm.These constants are very problem
specific and have a big effect on the performance of the algo-
rithms. More details and variants of particle swarm algorithms
are described by Kennedy et al. [11].

V. LEARNING TO WALK

In this section we first present results of several walk
evolution processes in the simulator, each with a different

configuration of the Evolution Strategy. Since several tests
have shown that the semi-elliptical foot trajectory gives best
results, we focus our work only on this trajectory. Overall
11 parameters have been optimized. After having found the
best performing strategy, we apply this strategy to real walk
evolution on a physical robot.

A. Selection of an optimization technique

The use of evolution strategies for this problem is quite
straightforward. Especially the measurement noise and the
long time to evaluate the fitness led to this choice, additionally
very good experiences regarding the progress rate and the
found optimum have been made in the RoboCup Four-legged-
league [4]. For us it was important that the strategy should
adapt automatically to the problem. The class of self-adapting
Evolution Strategies was very auspicious here.

B. Fitness evaluation
The major goal of the required walking patterns is the

maximum speed. In robot soccer the team with the faster
robots has an invaluable advantage: the faster robots reach the
ball first and can keep it under control while the opponent is
automatically in a defensive position. Other side requirements
for the walk are stability, to be robust against pushing of other
robots, and smoothness, to prevent the camera from making
blurry images.

As a first approach we decided to use only the maximum
speed of the walk resulting out of the parameter assignments
of an individual as its fitness. To determine the fitness we let
the robot run for a certain distance and measured the time it
needed to travel from the starting to the end point. In case of
falling, the individual was assigned the fitness 0 which in our
implementation is declared to be the worst achievable value,
the same is true for a walk which did not reach the goal within
a maximum period of time.

C. Comparison of Evolution Strategies
To find an appropriate population size and selection oper-

ator, we ran several walk evolution processes with different
configurations of Evolution Strategies. In the following we
present four results.

1) The (1+1) Strategy: At first we ran the walk evolution
with a (1 + 1) strategy with adaption of the mutation strength
according to the 1/5-th rule. This strategy immediately re-
vealed the problems of getting stuck in a local minimum. As
soon as the robot found one walk which was slightly better
than the starting walk (this could have also happened due to
measurement errors), the mutation strength went down because
in the next generations too many lethal individuals have been
created, the robot fell down or the offsprings simply had a
lower fitness. Since all these offsprings have been classified to
have a worse fitness, the algorithm “thought” that a maximum
must be reached and decreased the mutation strength which
led to the impossibility to leave the locally found optimum. A
real optimization with this technique was not possible.

To overcome these disappointing results, we implemented
a “reset” of the mutation strength if it became too low and

Fig. 6. The results of the modified (1 + 1) ES in the simulator.

reached a threshold. This approach is comparable to a multi
start approach, which simply means that the evolution process
restarts at the so far found local optimum. Fig. 6 shows
the course of the fitness during the evolution process. The
maximum speed of about 110 mm/s has been reproducibly
found with this strategy.

2) The (1, 30) Strategy: To overcome the problem of get-
ting stuck in a local optimum we then used a non elite strategy
which means that the parents of the next generation are only
chosen out of the offsprings. The used strategy was a (1, 30)
strategy, i.e. one parent generates by mutation 30 offsprings
and the best of the 30 offsprings becomes the next parent
regardless if its fitness is better than the parents’ fitness. Fig.
7 shows the graph of the fitness. The big fitness discontinuity
around generation 170 immediately attracts attention. This
phenomenon appeared repeatably. It can be explained by
the fact that all offsprings which have been generated could
not walk and so an “invalid” individual became parent and
obviously only generated invalid offspings again, the fact that
the number of lethal generated offspings increases at this point
drastically supports this explanation. The best found fitness
with this strategy was 120 mm/s.

3) The (5, 30) Strategy: The consequential conclusion was
to allow more parents to open the possibility to not only
search around one point. This led to the (5, 30) strategy. In
the fitness graph in Fig. 8 for this strategy, the upward trend is
clearly visible. Now it appears that the population size µ > 1
brings the advantage that none of all simulations with this
strategy created the discontinuity like the (1, 30) strategy, i.e.
the diversity was big enough that always individuals have been
used which could walk without falling. The fact that the bigger
number of parents led to this is supported by the fact that
the other parameters of the strategy did not change from the
(1, 30) strategy. The graph also visualizes that the mean fitness
values are clearly above the found fitness values of the (1, 30)
strategy.

4) The (5 + 30) Strategy with κ = 3: Maybe the reader
could think at this point that it might be smarter to use an

Fig. 7. The results of the (1, 30) ES in the simulator.

Fig. 8. The results of the (5, 30) ES in the simulator.

elite strategy to guarantee a steadily growing fitness, but the
principle of the self-adaption usually does not work well with
the + strategies [6] and the “forgetting” of found values makes
the , strategy less susceptible toward the measurement noise.
However we tried a mixture of the + and the , strategy to be
either able to deal with the noise while trying to stabilize the
found values. We created the (5+30) strategy with κ = 3, i.e.
the individuals for the next generation are chosen out of the
best offsprings and parents, but the parents’ lifetime is limited
to 3 generations. Fig. 9 shows the course of the fitness of this
strategy. The step-like shape shows that obviously a parent
individual often survived the maximum three generations
before it died out. Furthermore several fitness values above
200 mm/s are existent, rechecks of these parameters have
shown that these walks were not faster than 150 mm/s, so
they occurred due to measurement noise. This also shows that
the value of κ should not be chosen bigger because in case of
measurement errors this would disturb the evolution process.

Despite the longer existence of wrongly measured individu-
als, the (5+30) with κ = 3 created in all test the best results.

The found walks of all evolutions with this strategy reached
more than 150 mm/s in the simulator.

Fig. 9. The results of the (5 + 30) ES with κ = 3 in the simulator.

D. Experiments on the real robot

The (5 + 30) strategy with κ = 3 performed best in the
simulation, thus we used this strategy to evolve a forward
walk with a real robot. Fig. 10 shows the installation which
has been created for this. The robot walks inside a rack which
allows it to do the evolution fully autonomously. In case of
falling it got up and walked back to the starting position. The
speed was measured using light barriers.

Fig. 10. The “playpen” for the autonomous walk evolution.

The fastest walk was found after 40 generations and reached
220 mm/s, it should be mentioned that for this walk the robot
did neither carry a battery pack nor the on board computer.
Fig. 11 shows the fitness trend of the evolution.

Fig. 11. The fitness trend of the walk evolution on the real robot.

VI. CONCLUSION

In this paper we suggested a flexible walking model for a
two legged robot. Afterward several optimization techniques
have been presented and discussed in respect of usability
for the parameter optimization of this problem. The class
of Evolution Strategies has been chosen and several variants
tested in the robot simulator. The best performing strategy
finally was used for walk evolution on a real robot and resulted
in speeds faster than 220 mm/s.

REFERENCES

[1] T. Laue, K. Spiess, and T. Röfer, “SimRobot - A General Physical Robot
Simulator and Its Application in RoboCup,” in RoboCup 2005: Robot
Soccer World Cup IX, Lecture Notes in Artificial Intelligence, Springer,
2006.

[2] M. Meredith and S. Maddock, “Real-Time Inverse Kinematics: The
Return of the Jacobian,” tech. rep., Department of Computer Science,
University of Sheffield, 2004.

[3] S. Behnke, “Human-Like Walking using Toes Joint and Straight Stance
Leg,” in Proceeding of 3rd International Symposium on Adaptive Motion
in Animals and Machines, September 2005.

[4] M. Hebbel, W. Nistico, and D. Fisseler, “Learning in a High Dimensional
Space: Fast Omnidirectional Quadrupedal Locomotion,” in RoboCup
2006: Robot Soccer World Cup X, Lecture Notes in Artificial Intelli-
gence, Springer, 2007. to appear.

[5] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for
Solving Linear Systems,” Journal of Research of the National Bureau
of Standards, vol. 49, pp. 409–436, 1952.

[6] H.-P. Schwefel, Evolution and Optimum Seeking. Wiley Interscience,
1995.

[7] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – A comprehen-
sive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[8] J. Holland, Adaption in Natural and Artificial Systems. Ann Arbor,
Michigan: University of Michigan Press, 1975.

[9] H.-P. Schwefel, Evolutionsstrategie und numerische Optimierung. Dr.-
ing. dissertation, Technische Universität Berlin, Fachbereich Verfahren-
stechnik, 1975.

[10] I. Rechenberg, Evolutionsstrategie. Friedrich Fromm Verlag, Stuttgardt,
1973.

[11] J. Kennedy, R. Eberhart, and Y. Shi., Swarm intelligence. Morgan
Kaufmann Publishers, San Francisco, 2001.

