Sparse Coding and Dictionary Learning for Image Analysis

Part I: Optimization for Sparse Coding

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro

ICCV’09 tutorial, Kyoto, 28th September 2009
What is a Sparse Linear Model?

Let \mathbf{x} in \mathbb{R}^m be a signal.

Let $\mathbf{D} = [\mathbf{d}_1, \ldots, \mathbf{d}_p] \in \mathbb{R}^{m \times p}$ be a set of normalized “basis vectors”. We call it *dictionary*.

\mathbf{D} is “adapted” to \mathbf{x} if it can represent it with a few basis vectors—that is, there exists a sparse vector $\mathbf{\alpha}$ in \mathbb{R}^p such that $\mathbf{x} \approx \mathbf{D}\mathbf{\alpha}$. We call $\mathbf{\alpha}$ the *sparse code*.

$\begin{bmatrix} x \end{bmatrix} \approx \begin{bmatrix} d_1 & d_2 & \cdots & d_p \end{bmatrix} \begin{bmatrix} \alpha[1] \\ \alpha[2] \\ \vdots \\ \alpha[p] \end{bmatrix}$
The Sparse Decomposition Problem

\[
\min_{\mathbf{\alpha} \in \mathbb{R}^p} \frac{1}{2} ||\mathbf{x} - \mathbf{D}\mathbf{\alpha}||_2^2 + \lambda \psi(\mathbf{\alpha})
\]

\[\text{data fitting term}\]

\[\text{sparsity-inducing regularization}\]

\(\psi\) induces sparsity in \(\mathbf{\alpha}\). It can be
- the \(\ell_0\) “pseudo-norm”. \(||\mathbf{\alpha}||_0 \triangleq \#\{i \text{ s.t. } \mathbf{\alpha}[i] \neq 0\}\) (NP-hard)
- the \(\ell_1\) norm. \(||\mathbf{\alpha}||_1 \triangleq \sum_{i=1}^{p} |\mathbf{\alpha}[i]|\) (convex)
- ...

This is a selection problem.
Finding your way in the sparse coding literature . . .

. . . is not easy. The literature is vast, redundant, sometimes confusing and many papers are claiming victory . . .

The main class of methods are

- greedy procedures [Mallat and Zhang, 1993], [Weisberg, 1980]
- homotopy [Osborne et al., 2000], [Efron et al., 2004], [Markowitz, 1956]
- soft-thresholding based methods [Fu, 1998], [Daubechies et al., 2004], [Friedman et al., 2007], [Nesterov, 2007], [Beck and Teboulle, 2009], . . .
- reweighted-ℓ_2 methods [Daubechies et al., 2009], . . .
- active-set methods [Roth and Fischer, 2008].
1 Greedy Algorithms

2 Homotopy and LARS

3 Soft-thresholding based optimization
Matching Pursuit

\[
\min_{\alpha \in \mathbb{R}^p} \left\| x - D\alpha \right\|_2^2 \quad \text{s.t.} \quad \|\alpha\|_0 \leq L
\]

1: \(\alpha \leftarrow 0 \)
2: \(r \leftarrow x \) (residual).
3: \textbf{while} \(\|\alpha\|_0 < L \) \textbf{do}
4: \quad \text{Select the atom with maximum correlation with the residual}
\[
\hat{i} \leftarrow \arg \max_{i=1, \ldots, p} |d_i^T r|
\]
5: \quad \text{Update the residual and the coefficients}
\[
\alpha[\hat{i}] \leftarrow \alpha[\hat{i}] + d_{\hat{i}}^T r
\]
\[
r \leftarrow r - (d_{\hat{i}}^T r)d_{\hat{i}}
\]
6: \textbf{end while}
Matching Pursuit

\[\alpha = (0, 0, 0) \]
Matching Pursuit

\[\alpha = (0, 0, 0) \]
Matching Pursuit

\[\alpha = (0, 0, 0) \]
Matching Pursuit

\[\alpha = (0, 0, 0.75) \]
Matching Pursuit

$\mathbf{x} = (0, 0, 0.75)$
Matching Pursuit

\[\alpha = (0, 0, 0.75) \]
Matching Pursuit

\[\alpha = (0, 0.24, 0.75) \]
Matching Pursuit

\[\alpha = (0, 0.24, 0.75) \]
Matching Pursuit

\[\alpha = (0, 0.24, 0.75) \]
Matching Pursuit

\[\alpha = (0, 0.24, 0.65) \]
Orthogonal Matching Pursuit

\[\min_{\alpha \in \mathbb{R}^p} \| x - D\alpha \|_2^2 \quad \text{s.t.} \quad \| \alpha \|_0 \leq L \]

1: \(\Gamma = \emptyset \).
2: for \(\text{iter} = 1, \ldots, L \) do
3: Select the atom which most reduces the objective
 \[\hat{i} \leftarrow \arg \min_{i \in \Gamma^C} \left\{ \min_{\alpha'} \| x - D_{\Gamma \cup \{i\}}\alpha' \|_2^2 \right\} \]
4: Update the active set: \(\Gamma \leftarrow \Gamma \cup \{ \hat{i} \} \).
5: Update the residual (orthogonal projection)
 \[r \leftarrow (I - D_\Gamma(D_\Gamma^T D_\Gamma)^{-1} D_\Gamma^T)x. \]
6: Update the coefficients
 \[\alpha_\Gamma \leftarrow (D_\Gamma^T D_\Gamma)^{-1} D_\Gamma^T x. \]
7: end for
Orthogonal Matching Pursuit

\[\alpha = (0, 0, 0) \]
\[\Gamma = \emptyset \]
Orthogonal Matching Pursuit

\[\alpha = (0, 0, 0.75) \]

\[\Gamma = \{3\} \]
Orthogonal Matching Pursuit

\[\alpha = (0, 0.29, 0.63) \]
\[\Gamma = \{3, 2\} \]
Orthogonal Matching Pursuit

Contrary to MP, an atom can only be selected one time with OMP. It is, however, more difficult to implement efficiently. The keys for a good implementation in the case of a large number of signals are

- Precompute the Gram matrix $G = D^T D$ once in for all,
- Maintain the computation of $D^T r$ for each signal,
- Maintain a Cholesky decomposition of $(D^T D r)^{-1}$ for each signal.

The total complexity for decomposing n L-sparse signals of size m with a dictionary of size p is

$$O(p^2 m) \underbrace{+ O(nL^3)}_{\text{Gram matrix}} + O(n(pm + pL^2)) = O(np(m + L^2))$$

It is also possible to use the matrix inversion lemma instead of a Cholesky decomposition (same complexity, but less numerical stability)
Example with the software SPAMS

Software available at http://www.di.ens.fr/willow/SPAMS/

```matlab
>> I=double(imread('data/lena.png'))/255;
>> %extract all patches of I
>> X=im2col(I,[8 8],’sliding’);
>> %load a dictionary of size 64 x 256
>> D=load(’dict.mat’);
>> %set the sparsity parameter L to 10
>> param.L=10;
>> alpha=mexOMP(X,D,param);
```

On a 8-cores 2.83Ghz machine: **230000 signals processed per second!**
Why does the ℓ_1-norm induce sparsity?

Analysis of the norms in 1D

The gradient of the ℓ_2-norm vanishes when α get close to 0. On its differentiable part, the norm of the gradient of the ℓ_1-norm is constant.
Why does the ℓ_1-norm induce sparsity?

Exemple: quadratic problem in 1D

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} (x - \alpha)^2 + \lambda |\alpha|$$

Piecewise quadratic function with a kink at zero.

Derivative at 0_+: $g_+ = -x + \lambda$ and $0_-: g_- = -x - \lambda$.

Optimality conditions. α is optimal iff:
- $|\alpha| > 0$ and $(x - \alpha) + \lambda \text{sign}(\alpha) = 0$
- $\alpha = 0$ and $g_+ \geq 0$ and $g_- \leq 0$

The solution is a **soft-thresholding**:

$$\alpha^* = \text{sign}(x)(|x| - \lambda)^+.$$
Why does the ℓ_1-norm induce sparsity?

Physical illustration

$E_1 = 0$

$E_1 = 0$
Why does the ℓ_1-norm induce sparsity?

Physical illustration

\[E_1 = \frac{k_1}{2} (x_0 - x)^2 \]

\[E_2 = \frac{k_2}{2} x^2 \]
Why does the ℓ_1-norm induce sparsity?

Physical illustration

$$E_1 = \frac{k_1}{2} (x_0 - x)^2$$

$$E_2 = \frac{k_2}{2} x^2$$

$x = 0$!!

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro
Why does the ℓ_1-norm induce sparsity?

The geometric explanation

general quadratic problem: coupled soft-thresholding.
Optimality conditions of the Lasso

Nonsmooth optimization

Directional derivatives and subgradients are useful tools for studying ℓ_1-decomposition problems:

$$\min_{\alpha \in \mathbb{R}^p} \frac{1}{2} \|x - D\alpha\|_2^2 + \lambda \|\alpha\|_1$$

In this tutorial, we use the directional derivatives to derive simple optimality conditions of the Lasso.

For more information on convex analysis and nonsmooth optimization, see the following books: [Boyd and Vandenberghe, 2004], [Nocedal and Wright, 2006], [Borwein and Lewis, 2006], [Bonnans et al., 2006], [Bertsekas, 1999].
Optimality conditions of the Lasso

Directional derivatives

- **Directional derivative** in the direction u at α:

$$\nabla f(\alpha, u) = \lim_{t \to 0^+} \frac{f(\alpha + tu) - f(\alpha)}{t}$$

- Main idea: in non smooth situations, one may need to look at all directions u and not simply p independent ones!

- **Proposition 1**: if f is differentiable in α, $\nabla f(\alpha, u) = \nabla f(\alpha)^T u$.

- **Proposition 2**: α is optimal iff for all u in \mathbb{R}^p, $\nabla f(\alpha, u) \geq 0$.
Optimality conditions of the Lasso

\[
\min_{\alpha \in \mathbb{R}^p} \frac{1}{2} \| x - D\alpha \|_2^2 + \lambda \| \alpha \|_1
\]

\(\alpha^* \) is optimal iff for all \(u \) in \(\mathbb{R}^p \), \(\nabla f(\alpha, u) \geq 0 \)—that is,

\[
-u^T D^T (x - D\alpha^*) + \lambda \sum_{i, \alpha[i] \neq 0} \text{sign}(\alpha^*[i]) u[i] + \lambda \sum_{i, \alpha^*[i] = 0} |u[i]| \geq 0,
\]

which is equivalent to the following conditions:

\[
\forall i = 1, \ldots, p, \quad \left\{ \begin{array}{ll}
|d_i^T (x - D\alpha^*)| & \leq \lambda \\
d_i^T (x - D\alpha^*) & = \lambda \text{sign}(\alpha^*[i])
\end{array} \right. \quad \text{if } \alpha^*[i] = 0
\]

\[
\quad \left\{ \begin{array}{ll}
|d_i^T (x - D\alpha^*)| & \leq \lambda \\
d_i^T (x - D\alpha^*) & = \lambda \text{sign}(\alpha^*[i])
\end{array} \right. \quad \text{if } \alpha^*[i] \neq 0
\]
Homotopy

- A homotopy method provides a set of solutions indexed by a parameter.
- The regularization path \((\lambda, \alpha^*(\lambda))\) for instance!!
- It can be useful when the path has some “nice” properties (piecewise linear, piecewise quadratic).
- LARS [Efron et al., 2004] starts from a trivial solution, and follows the regularization path of the Lasso, which is is **piecewise linear**.
Homotopy, LARS

[Osborne et al., 2000], [Efron et al., 2004]

\[\forall i = 1, \ldots, p, \quad \begin{cases}
|d_i^T(x - D\alpha^*)| & \leq \lambda & \text{if } \alpha^*[i] = 0 \\
 d_i^T(x - D\alpha^*) & = \lambda \operatorname{sign}(\alpha^*[i]) & \text{if } \alpha^*[i] \neq 0
\end{cases} \]

The regularization path is piecewise linear:

\[
D_\Gamma^T(x - D_\Gamma\alpha_\Gamma^*) = \lambda \operatorname{sign}(\alpha_\Gamma^*) \\
\alpha_\Gamma^*(\lambda) = (D_\Gamma^T D_\Gamma)^{-1}(D_\Gamma^T x - \lambda \operatorname{sign}(\alpha_\Gamma^*)) = A + \lambda B
\]

A simple interpretation of LARS

- Start from the trivial solution \((\lambda = \|D^T x\|_\infty, \alpha^*(\lambda) = 0)\).
- Maintain the computations of \(|d_i^T(x - D\alpha^*(\lambda))|\) for all \(i\).
- Maintain the computation of the current direction \(B\).
- Follow the path by reducing \(\lambda\) until the next kink.
Example with the software SPAMS
http://www.di.ens.fr/willow/SPAMS/

>> I=double(imread(‘data/lena.png’))/255;
>> %extract all patches of I
>> X=normalize(im2col(I,[8 8],’sliding’));
>> %load a dictionary of size 64 x 256
>> D=load(’dict.mat’);
>>
>> %set the sparsity parameter lambda to 0.15
>> param.lambda=0.15;
>> alpha=mexLasso(X,D,param);

On a 8-cores 2.83Ghz machine: 77000 signals processed per second!
Note that it can also solve constrained version of the problem. The
complexity is more or less the same as OMP and uses the same tricks
(Cholesky decomposition).
Coordinate Descent

- Coordinate descent + nonsmooth objective: **WARNING: not convergent in general**
- Here, the problem is equivalent to a convex smooth optimization problem with **separable** constraints

\[
\min_{\alpha_+,\alpha_-} \frac{1}{2} ||x - D_+\alpha_+ + D_-\alpha_-||^2_2 + \lambda \alpha_+^T 1 + \lambda \alpha_-^T 1 \quad \text{s.t.} \quad \alpha_-, \alpha_+ \geq 0.
\]

- For this **specific** problem, coordinate descent is **convergent**.
- Supposing \(||d_i||_2 = 1 \), updating the coordinate \(i \):

\[
\alpha[i] \leftarrow \arg \min_{\beta} \frac{1}{2} || x - \sum_{j \neq i} \alpha[j]d_j - \beta d_i ||^2_2 + \lambda |\beta| \\
\text{r} \leftarrow \text{sign}(d_i^T r)(|d_i^T r| - \lambda)^+
\]

- \(\Rightarrow \) **soft-thresholding**!
Example with the software SPAMS

http://www.di.ens.fr/willow/SPAMS/

>> I=double(imread('data/lena.png'))/255;
>> %extract all patches of I
>> X=normalize(im2col(I,[8 8],’sliding’));
>> %load a dictionary of size 64 x 256
>> D=load(’dict.mat’);

>> %set the sparsity parameter lambda to 0.15
>> param.lambda=0.15;
>> param.tol=1e-2;
>> param.itermax=200;
>> alpha=mexCD(X,D,param);

On a 8-cores 2.83Ghz machine: **93000 signals processed per second!**
first-order/proximal methods

$$\min_{\alpha \in \mathbb{R}^p} f(\alpha) + \lambda \psi(\alpha)$$

- f is strictly convex and differentiable with a Lipschitz gradient.
- Generalize the idea of gradient descent

$$\alpha_{k+1} \leftarrow \arg\min_{\alpha \in \mathbb{R}} f(\alpha_k) + \nabla f(\alpha_k)^T (\alpha - \alpha_k) + \frac{L}{2} \|\alpha - \alpha_k\|_2^2 + \lambda \psi(\alpha).$$

- There exists an accelerated scheme (gradient method with “extrapolation”) [Nesterov, 2007, 1983]
- Both are implemented in SPAMS.
- suited for large-scale experiments.
Summary of this part

- Greedy methods can address directly the NP-hard ℓ_0-decomposition problem.
- ℓ_1 can be used as a convex relaxation for ℓ_0.
- Homotopy methods can be extremely efficient for small or medium-sized problems, or when the solution is very sparse.
- Coordinate descent provides in general quickly a solution with a small/medium precision, but gets slower when there is a lot of correlation in the dictionary.
- First order methods are very attractive in the large scale setting.
- Other good alternatives exists, active-set, reweighted ℓ_2 methods, stochastic variants, variants of OMP, ...

References II

References III
