
EMBEDDED SYSTEMS

PROGRAMMING 2015-16
UI and Android

ANDROID:

STANDARD GESTURES (1/2)

UI classes inheriting from View allow to set listeners that respond to basic
gestures. Listeners are defined by suitable interfaces.

boolean onTouch(View v, MotionEvent event)

Part of the View.OnTouchListener interface.
The user has performed an action qualified as a touch event, including a press,
a release, or any movement gesture on the screen (within the bounds of the
item).

void onClick(View v)

Part of the View.OnClickListener interface.
The user has touched the item

boolean onLongClick(View v)

Part of the View.OnLongClickListener interface.
The user has touched and holds the item

http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/View.OnTouchListener.html
http://developer.android.com/reference/android/view/View.OnClickListener.html
http://developer.android.com/reference/android/view/View.OnLongClickListener.html

EXAMPLE

ANDROID:

STANDARD GESTURES (2/2)

Standard UI widgets respond to standard gestures

(e.g., a ListView responds to a flick)

Custom UI widgets can handle touch screen motion

events by implementing the

onTouchEvent(MotionEvent event) method;

no gesture recognizer is provided

SUPPORTING

DIFFERENT SCREENS (1/3)

Mobile platforms support a variety of devices

with different screen sizes and resolutions

Resolution does not cont that much: it is size that matters

Bigger screens can accommodate more information

than smaller screens

Tablet screens can accommodate more information

than other screens

SUPPORTING

DIFFERENT SCREENS (2/3)

Different screen sizes may require different artwork

Different screen sizes typically require different UIs

Use more / resize conventional UI elements

Introduce new UI elements that are specifically
designed for tablets

SCREENS: ANDROID

Tens of locales (e.g., -en-rUS), device dependent

Four generalized screen sizes:

small (-small), normal (-normal), large (-large),

extra large (-xlarge)

Two variations of each screen size:

portrait (-port), landscape (-land)

Four generalized screen densities:

120 DPI (-ldpi), 160 DPI (-mdpi), 240 DPI (-hdpi),

320 DPI (-xhdpi), 480 DPI (-xxhdpi), 640 DPI (-xxxhdpi)

Place resources in the appropriate folder: Android will use them

SCREENS: EXAMPLES

Directory for default layouts: “res/layout”

Directory for layouts that target large screens and the portrait

orientation: “res/layout-large-land”

Directory for default artwork: “res/drawable”

Directory for artwork that target US-English devices in landscape

orientation: “res/drawable-en-rUS-land”

For a full list of directories and modifiers, look up the

“Providing resources” page in the Android documentation

Always provide default resources (i.e., a folder with no modifiers)

http://developer.android.com/guide/topics/resources/providing-resources.html

TABLETS: ANDROID

Up to version 2.3 (API level ≤ 10):

no support for tablets

3.x versions (11 ≤ API level ≤ 13):

run only on tablets

Version 4.0 and above (API level ≥ 14):

unified support for tablets and other devices

MULTI-PANE LAYOUTS

From developer.android.com:

+=

The most effective way to create a distinct user
experience for tablets and handsets is to [...]
design “multi-pane” layouts for tablets and

“single-pane” layouts for handsets

SUPPORTING

DIFFERENT SCREENS (3/3)

Implement flexible layouts and

provide multiple version of relevant resources

Design activities using fragments

Use the action bar

FRAGMENT CLASS

Introduced in Android 3.0 (API level 11)

Represents a portion of user interface

Hosted by an activity: to be precise, it “lives” in a

ViewGroup inside the activity’s view hierarchy,

albeit it defines its own view layout and has its own
lifecycle callbacks

Each fragment can be manipulated independently

from other fragments

http://developer.android.com/reference/android/view/ViewGroup.html

FRAGMENT: LIFECYCLE

A class derived from Fragment behaves
similarly to an activity. It includes
lifecycle callback methods
(onCreate(), etc.)

Two additional methods:
onCreateView() and
onDestroyView()

Lifecycle callback methods must be
invoked by the hosting activity

Image from Android Developer

http://developer.android.com/reference/android/app/Fragment.htmlonCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.htmlonCreateView(android.view.LayoutInflater,%20android.view.ViewGroup,%20android.os.Bundle)
http://developer.android.com/reference/android/app/Fragment.htmlonDestroyView()
http://developer.android.com/guide/topics/fundamentals/fragments.html

HOSTING A FRAGMENT

Declarative approach: add the fragment to the

layout file of the hosting activity

Programmatic approach: add the fragment in the

source code of the hosting activity; instantiate the UI

in the onCreateView() method of the fragment

ONCREATEVIEW,

ONDESTROYVIEW METHODS

View onCreateView(LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState)

Instantiates the UI for a fragment and attaches it to container

An implementation for onCreateView() must be provided by

the programmer

If the UI is defined in an XML file, the system-provided

LayoutInflater can be used to instantiate (“inflate”) it

void onDestroyView()

Destroys a previously-created user interface

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/LayoutInflater.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/os/Bundle.html

FRAGMENTMANAGER:

TWO KEY METHODS

An instance of the FragmentManager class allows
interaction with fragments. For instance, it allows to add or
remove a fragment (via a fragment transaction)

Fragment findFragmentById(int id)

Returns the fragment which is identified by the given id
(as specified, e.g., in the XML layout file)

FragmentTransaction beginTransaction()

Start editing the Fragments associated with the
FragmentManager. The transaction is ended by invoking
the commit() method of FragmentTransaction

http://developer.android.com/reference/android/app/FragmentManager.html
http://developer.android.com/reference/android/app/FragmentManager.htmlfindFragmentById(int)
http://developer.android.com/reference/android/app/FragmentTransaction.html
http://developer.android.com/reference/android/app/FragmentManager.htmlbeginTransaction()

HOSTING A FRAGMENT:

EXAMPLE (1/2)

Declarative approach
2 fragments declared inside the layout of an activity.

When the activity is created, instances of the classes

associated with the fragments are automatically

allocated

HOSTING A FRAGMENT:

EXAMPLE (2/2)

Programmatic approach
Initiate a fragment transaction, instantiate a fragment,

then add it to a suitable ViewGroup

FRAGMENTS: EXAMPLE (1/4)

Big screen (tablet) Small screen (phone)

Activity MainActivity
Activity

DisplayActivity

Activity
MainActivity

DisplayActivity is started only if the screen is small.

It hosts fragment DetailsFragment

MainActivity always manages fragment TitlesFragment and, depending on the

screen size, hosts DetailsFragment as well or starts DisplayActivity

E
x
am

p
le

 f
ro

m
 A

n
d
ro

id
 D

e
ve

lo
p
e
rs

http://developer.android.com/guide/practices/tablets-and-handsets.html

FRAGMENTS: EXAMPLE (2/4)

Layout for MainActivity, big screen

Resides in res/layout-large/

Both fragments are hosted by MainActivity

FRAGMENTS: EXAMPLE (3/4)

Layout for MainActivity, small screen

Resides in res/layout/

DisplayFragment is hosted by DisplayActivity

FRAGMENTS: EXAMPLE (4/4)

Code snippet from the MainActivity class

ACTION BAR

UI component that can contain, from left to right,

1. the application icon,

2. the view control (tabs or a spinner),

3. a certain number of action items,

4. the action overflow menu button

May also contain a hint to the navigation drawer

Picture:

Android Design

http://developer.android.com/design/patterns/actionbar.html

APP BAR

New name for the action bar since Android 5.0

The nav icon, if present can be:

an arrow for navigating the app’s hierarchy

a control to open a navigation drawer

P
ic

tu
re

:
A

n
d
ro

id
 D

e
si

gn

http://www.google.com/design/spec/layout/structure.html#structure-app-bar

NAVIGATION DRAWER

Displays the main navigation options for the app

Appears from the left side of the screen

by clicking on the application icon

P
ic

tu
re

s:
 A

n
d
ro

id
 D

e
si

gn

http://www.google.com/design/spec/patterns/navigation-drawer.html

OVERFLOW MENU

Groups action items that are not important enough

to be prominently displayed in the action bar

Duplicates the functionality of the

option menu + the (hardware)

menu button

In Android 4.0+, developers are

strongly encouraged to migrate

to the overflow menu

Image from Android Design

http://developer.android.com/design/patterns/compatibility.html

SPLIT ACTION BAR

Depending on the screen size,

content may be split across

multiple action bars:

1.main action bar,

2. top bar,

3. bottom bar

Picture: Android Design

http://developer.android.com/design/patterns/actionbar.html

ADDING THE ACTION BAR

Beginning with Android 3.0, an action bar is created
by default for every application that declares a

targetSdkVersion of 11 or greater in its manifest

ACTION BAR: ADDING ITEMS

The action bar can be populated in the
onCreateOptionsMenu() activity method, which
is called when the activity starts

Action items and overflow menu items are managed
together as a menu resource.
The onOptionsItemSelected() activity method
is called whenever an item is selected by the user

If the action bar is constrained for space, some action
items can be moved to the overflow menu

http://developer.android.com/reference/android/app/Activity.htmlonCreateOptionsMenu(android.view.Menu)
http://developer.android.com/guide/topics/resources/menu-resource.html
http://developer.android.com/reference/android/app/Activity.htmlonOptionsItemSelected(android.view.MenuItem)

SUPPORT LIBRARY

PACKAGE (1/2)

Provides static libraries that can be added to an
Android app in order to use APIs that are either not
available on older platform versions, or not part of
the framework APIs

Each library runs only on devices that provide at least
a minimum API level

Must be installed from
the SDK Manager

SUPPORT LIBRARY

PACKAGE (2/2)

v4 Support Library

Minimum API level: 4 (Android 1.6+)

Provides support for fragments and navigation drawers

v7 Appcompat Library

Minimum API level: 7 (Android 2.1+)

Provides support for action bars

More libraries available

https://developer.android.com/topic/libraries/support-library/features.html

SUPPORT LIBRARY: FRAGMENTS

android.support.v4.app.Fragment,

android.support.v4.app.FragmentActivity and

android.support.v4.app.FragmentManager classes,

to name a few, re-implement fragment support

Use such classes to write a single piece of code that runs on any

API level ≥ 4

Host your fragments inside a FragmentActivity

To get the FragmentManager, invoke
getSupportFragmentManager()

REFERENCES

Android User Interface

Supporting Different Screens

Supporting Tablets and Handsets

Building a Dynamic UI with Fragments

Designing for Multiple Screens

Designing for Seamlessness

http://developer.android.com/guide/topics/ui/index.html
http://developer.android.com/training/basics/supporting-devices/screens.html
http://developer.android.com/guide/practices/tablets-and-handsets.html
http://developer.android.com/training/basics/fragments/index.html
http://developer.android.com/training/multiscreen/index.html
http://developer.android.com/guide/practices/seamlessness.html

LAST MODIFIED: MAY 18, 2016

COPYRIGHT HOLDER: CARLO FANTOZZI (FANTOZZI@DEI.UNIPD.IT)

LICENSE: CREATIVE COMMONS ATTRIBUTION SHARE-ALIKE 4.0

