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1 Introduction

This paper describes some aspects of the analysis of strings defined over an aélhhthkestrings may

be related to a biological phenomenon (DNA base pairs, ammino acid sequences...), but this is not strictly
necessary since the same analysis techniques also apply to different types of information such as natural
linguistic texts, dictionaries or transaction records. The term “string analysis” is quite generic and it encom-
passes a broad family of operations on strings; some of them are:

e gathering of statistics (number of occurrences of each symbol, average word length, etc.) on a string;
¢ identification ofpatterns(repeated words or symbols, frequent words, etc.) inside a string;

e search for the presence of known words or substrings inside a string;

e evaluation of a suitably defined “distance” between pairs of strings.

Such operations, and even the plain storage of the strings, rely on swtghlstructures In this survey

paper we will focus on some data structures that have been developed to efficiently dealewitry
hierarchies The importance of these structures can be appreciated by considering that all modern computers
exhibit a memory hierarchy, i.e. an interconnection of memory modules with different sizes and speeds, and
that the explicit management of the hierarchy typically leads to noticeable performance improvements.

The rest of the paper is organized as follows. Section 2 explains what a memory hierarchy is, then it
introduces some theoretical models of computation that describe memory hierarchies. Section 3 is a survey
of the most prominent data structures that literature offers to cope with memory hierarchies. The theoretical
models of Section 2 are used to evaluate which string operations can be efficiently performed with such
structures, and also how much time and memory space does it take to build them.

2 Memory Hierarchies and Cost Models

Memory hierarchies arise from a technological limitation. Nowadays, the technology of processors is ad-
vancing more quickly than the technology of memories, and this statement has been true since many years
from now. As a consequence, there is a widening gap between the speed of processors and the speed of
memory: the memory is not able to feed the processor enough data to keep its functional units busy. This
is an unacceptable bottleneck, so the memory architecture has been shaped trying to avoid it in as many
practical cases as possible. Since it is easier to build a fast memory device if it contains few cells, memory
has become a cascade connection of modules with increasing size but decreasing speed: relevant data are
kept in the faster modules as long as possible, so as to minimize accesses to the slower cells. This cascade
connection is called amemory hierarchy A memory hierarchy works well in practice because memory
accesses always exhibit a certain degrelecdlity of referenceinformally speaking, during a limited time



frame accesses point to a small pool of consecutive memory cells, which can then be moved to the faster
levels of the hierarchy. Up to now such data movements have been performed automatically by the hard-
ware or the software, not by the programmer: anyway, it is increasingly difficult to maintain this automatism
without hampering performance. The hierarchy is becoming steeper and more complex: a typical hierarchy
now includes CPU registers, L1 cache, L2 cache, main memory, disks, tapes, and even the network can be
regarded as a level of the hierarchy; the access times for L1 and disk differ by approximately 6 orders of
magnitude. This complexity is hardly managed through automatic mechanisms: exposing even part of it to
the programmer usually leads to significant performance improvements. Theoretical models of computation
have been designed that take memory hierarchy into consideration; each of them focuses on some different
aspects of the hierarchy, and no universally accepted model has emerged yet. In what follows we survey
the most popular models by grouping them into two broad families: Section 2.1 is reserved to models for
external memory (i.e. disks), and Section 2.2 deals with models for internal memory (i.e. cache RAM and
DRAM).

2.1 External memory

The issue of external memory has been widely studied because it arose early in the database community,
which has long faced the need to deal with massive amounts of data. In recent years, “external memory”
has almost been synonymous with “hard disk”, since this is the most effective medium offered by current
technology to store data that do not fit in main memory. Accurate models of disks have been proposed in the
literature (see for example [27, 28]), but their complexity make them impractical for the theoretical analysis
of algorithms. As a consequence, simpler models have been developed.

The most successful of these models is certainly the I/O model [4, 29], which exhibits one RAM-like
processing unit connected with a finite-size random access memory. If the processor needs data that are not
in main memory, it must load them from one or more disks; data are fetch@ddks which typically span
many memory cells. The metric to measure the performance of an algorithm is the number of block transfers
it requires; this is the reason that gives the model its name. This cost model makes sense since an access
to disk is several orders of magnitude slower than an access to RAM (nanoseconds versus milliseconds),
therefore RAM computations can be taken to be “free”. If multiple disks are available then they can be used
in parallel, i.e. the processor can access a different block from each disk in a single unit of time. As a whole,
the 1/O model is described by the following parameters:

¢ the sizeM of the internal (random access) memory;
e the sizeB of a block;
e the numbem of available disks.

In the rest of the paper we will stick to the above notation unless otherwise noticed. Vitter and shriver also
proposed [30] a parallel version of the model (often referred to as “the” parallel disk model), but we will not
deal with it in this paper.

2.2 Internal Memory

From the very beginning control over accesses to external memory has been given to the programmer, while
things have been quite different in the realm internal memory. Up to recent years the presence of multiple
levels of cache was considered something the programmer need not (or should not) be in control of; as a
consequence, it was not necessary to deal with cache parameters in theoretical models. This approach has
now shown its weaknesses, and a wealth of models for hierarchical memory has appeared. The most popular
ones are:



e theHierarchical Memory Mode(HMM) of Aggarwal et al. [2]; access to memory celtakes time
f(i), wheref(-) is a suitable nondecreasing function. A variant of this model exists which supports
block transfer [3];

¢ theParallel Memory HierarchfPMH) model of Alpern et al. [6];

o the Uniform Memory HierarchfUMH) model. The first author of the paper is, once again, Bowen
Alpern [5].

Among these models, the most successful one is probably the HMM, which is very simple and therefore
easy to use as a performance analysis tool. Aggarwal et al. [2] also introduce a congefaraily optimal
algorithms, i.e. algorithms which exhibits fair performance across a set of memory hierarchies. Anyway, it
seems that this concept has not been as successful as the model.

Each of these models pays attention to some cache design parameters which are considered essential for
good performance, such as cache size, cache line size, interconnection bus width, etc. The aspects which
are considered crucial to performance vary from model to model, therefore an algorithm that is tuned for
speed on one of them is difficult to analyze on a different one. This theoretical problem reflects the fact that
different cache designs exist in real machines, and that the quest for maximum performance usually forces
a programmer to know the specific parameters of the cache hierarchy he/she is dealing with.

A recent work [19] has suggested to deal with portability problems through the developneauhef
obliviousalgorithms, i.e. algorithms that perform well @my cache architecture. Cache oblivious algo-
rithms are designed on an idealized 2-level hierarchy that closely resembles the I/O model: the fastest level
is now called thecache while the slowest one is called tlmeain memory The processor can only work
on data that reside in the fastest level, which has finite &izeThe main difference with the I/O model is
that data movements are automatically performed by a hardware circuit which is “magically” supposed to
always make the best possible choice: when a cache miss occurs, in fact, the hibclhdie cells that is
overwritten is the one whose next access is furthest in the futlitee performance measure of an algorithm
is thecache complexitg)(n; M; B), i.e. the worst-case number of block transfers the algorithm needs when
the input size is:. Note that the cache line siz8 is not known to the algorithm, therefore the algorithm
designer must prove a bound that is valid for any valu&ofOnce achieved, this daunting task goes not
without reward: [19], in fact, demonstrates that an algorithm with optimal cache complexity on the ideal
model is also optimal on a more feasible model with multiple levels of cache — regardless of the cache line
size at each level — and a realistic LRU (Least Recently Used) cache line replacement policy.

3 Data Structures

The core of this survey are B-trees, string B-trees, suffix trees and suffix arrays. Before describing them,
anyway, we need to introduce some basic data structures: tries, PATRICIA tries and inverted files.

3.1 Tries

A trie [14, 18] Ts is a tree that is used to store a $ebf strings over an alphabét; “trie” is a substring

of the word “rdrieval”. Each edge of the tree is marked with a single symbatpfind there is a one-
to-one correspondence between the stringS and the paths from the root @i to a leaf. If two strings
x,y € S are such that = zv andy = zw (i.e. x andy have a common prefix), then on the tree they share
the part of the path corresponding to substringA string can be extracted from the tree by following the
corresponding path from the root to a leaf; all stringsSican be recovered through a depth-first visit of

*This behavior plainly implies a fully associative cache.



the tree. IfTs resides in a flat memory, the question of whethdrelongs taS can be answered i@ (|x|)

time. Note that the maximum outdegree of a nod&j4ris |X|, which can be very high (or even unbounded

if |X| is infinite); to make things worse, § is small then the outdegree of many nodes will be much lower
than the maximum, or even one. These properties make it difficult to efficiently pack the tree into memory.
If || is small then linked lists are probably the best choice: if the memory isrigrt anddelete
operations of a string both take timeD (|X]| - |x|). Anyway, space efficiency has an impact on performance

if the memory is hierarchical, since elements which are neighbors in a list may be far spaced in memory.
In the worst case each pointer jumping towards the successor of a node may incur a cache miss/page fault,
thus giving an 1/0 complexity ob (|X]| - |z|) for insert ,delete andsearch operations. Note that the
potential impact on performance is higher if the trie is updated dynamically, since nodes are typically more
scattered in memory.

A compacted trigs a compressed representation of a trie. A compacted trie can be obtained from the
corresponding regular trié's by collapsing each sequence of nodes with less than two successors into a
single node; the edge entering the new node is labeled with the substr@sgociated with the path in
Ts that has just been collapsed. In a compacted trie every node is branching, therefore the trie can be
packed in memory more easily; moreover, there is less potential node scatter since at least substrings like
w are now stored in consecutive memory locations. However, update operations now take more time since
some nodes may need to be split (because dfisert  operation) or collapsediélete ) to enforce the
“compactness” property; what's more, different nodes now have different sizes.

A PATRICIA trie[25] is an even more compact representation of a trie, although this time compression
involves a loss of information; PATRICIA stands for “Practical Algorithm To Retrieve Information Coded
In Alphanumeric”. A PATRICIA trie Ps can be obtained by taking the corresponding compacted trie and
substituting each substring with a péira): i is the length of the substring, ands its first character (also
referred to adpranching character If X is finite-size (as it is in practical applications) then each edge of
Pg requires constant space; since each strin§ gan contribute at most one edge to the trie, this implies
thatS can be indexed i (|.S|) space by means of a PATRICIA trie. Note, anyway, that many substrings
may match the same pdif, a), therefore the trie only offer partial information about the substrings.

3.2 Inverted files

Another old and simple data structure is theerted file[21]. An inverted file is created by processing a set

S of strings to produce aimdex fileand apostings file The index file is a lexicographically sorted list of all

the substrings of the elementsSrihat are considered “relevant”, which are also nakesdvords Following

any keywordr in the index there is a pointer to a suitable location in the postings file that contains a list of
all the occurrences af in S. The set of keywords is typically a small subset of all the possible substrings,
therefore the size of the index file is usually limited and it can fit into main memory. On the contrary, the
postings file may be very large and it often resides in secondary storage. If the above hypotheses (index file
in main memory, postings file in secondary memory) is true aigla keyword, then the list of all the
occurrences of can be retrieved in optimal tim@ (log x + k/B). An inverted file is thus more powerful

than a trie for keywords, but it does not contain any information for all the substrings that are not keywords.
Inverted files are mainly used in natural language processing applications, and more generally in all those
situations in which the the set of used words is a small fraction of the set of possible words.

3.3 B-trees

B-trees [8] are one of the canonical data structures for string analysis that were designed with external
memory in mind. A B-tredl" is a search tree built on a sgtof keys the keys are fixed-size, and they may



be tokens for bigger data structures (such as strings over an alphpthett reside elsewherd. satisfies
the following properties.

1. Every nodev contains a certain numbe¥ (v) of keys, named:; (v), k2(v), - . ., kn () (v), that are
stored in lexicographic order.

. Considered as a whole, the leaves store all the keys in
Every nonleaf node also containsV(u) + 1 pointersc (u), c2(u), - . ., (w1 0 its children.

All the leaves have the same depthwhich is also the height of the tree.

s W N

The keys of node partition the keys of the subtrees rooted.ato non-overlapping ranges. In other
words, ifk is a key that is stored into the subtree associated ayith) thenk;_;(u) < k < k;(u).

A B-tree isbalancedin the sense that no internal node can have “too many” or “too few” leaves: to be
precise,b — 1 < N(u) < 2b — 1 for every nonleaf node: € T. The parameteb can be tuned for
performance; a straightforward optimization rule is to put B/2, whereB is the disk block size of the

I/0 model. In this way, a hode df can fit into a disk block, thus being accessed efficiently. Several other
balancing rules have been defined, giving rise to as many B-tree variants. Here we name two of them.

e Weight-balanced B-tred3]: the weight of a node is required to bev(v) = © (bc’“), whereb andc
are tuning parameters ahds the height of the subtree rootedvatl he weight ofv is defined to be the
number of elements in the leaves of the subtree rooted Bbr such B-trees, the trivial optimization
rule setd = © (B) andc such thatw(v) < B for any nodev.

e Level-balanced B-tredd]: the balancing constraint is on the number of nodes on each level of the
tree; such a number is a decreasing function of the level. (We do not put a formal definition here.)

Regardless of the variant we are considering, an update operation (insertion or deletion of a key) may cause
a violation of the balancing rule, thus forcing a partial rebuild of the tree. For example, the operation
insert(  x) is performed by traversing the tree until the leat reached which contains the biggest key
y < x; if v has available space (according to the balancing rule) thisnadded to it, otherwise a new
leafv’ is created and the keys are redistributed betweandv’ so that both of them contain the minimum
prescribed number of keys. The creatiorvbforces to add a new key/pointer pair in the predecessor of
which in turn may result in another violation of the balancing rule; the restructuring thus propagates towards
the root of the tree, and may reach the root in the worst case. Anyway, each level of the tree requires only
a constant number of potential I/O operations, therefiosert( ) takesO (h) I1/0s. The analysis for
delete( x) is analogous — although this time merging of nodes is what propagates towards the root — and
leads to the same I/O complexity bound. Finally, an update operationpi#tate( =z, y) can be regarded
as adelete( ) followed by aninsert( v) .

Consider now the “nice case” in which the strings to be indexed are short and asymptotically have all
the same length. In this case the strings can be directly used as keys, and the correspondifigcBrtige
stored using (N/B) disk blocks, wheréV is the total length of the strings. Such a bound is clearly optimal.
insert anddelete operations both take tim@ (log; N). The tree itself can be built throughsert
operations, but this strategy leads to a suboptimal 1/0O complexi€y @¥ logz N). The tree construction
can be performed more efficiently by first sorting the keys in external memory and then building the tree
level after level, from the leaves up; this strategy requ@e{iN/B) logM/B(N/B)) I/O operations, which
turns out to be optimal because of the sorting bound of Aggarwal and Vitter [4]. (Remember our observation
in Section 2.1, and consider that the keys are stored in sorted order inside the B-tree.) Most afaall,



now be used to efficiently address a certain number of query types on the strings; three of them are defined
below [17].

1. prefix-search( K) : retrieve, in lexicographic order, all the strings that haves a prefix.

2. range-query( K, K3) : retrieve, in lexicographic order, all the strings which have a prefix be-
tweenk; and K.

3. substring-search( K) : retrieve, in lexicographic order, all the strings that includeas a
substring.

Problems 1 and 2 can be solved through a suitable traversal of the B-tree in /O {ilvg; N + k/B),
wherek is the number of strings if matching the queryange-query(  Ki, K5) implies two traversals
of the tree (from the root to a leaf) to find the leaves L, associated withi{; and K, then the answer
to the query is retrieved by reading the elements in the leaves betiyesmd L,. The 1/O time mentioned
above can be proved to be optimal in the comparison model. On the contrary, a plain B-tree is not suited
to solve Problem 3. Note that this very problem takes I/O t'(méh/\/WJr log|k| N) if the index is a
PATRICIA trie built on the set of all the suffixes of the stringsdri12]; & is the height of the trie.

Things are quite different if the keys have different lengths, and above all if they are “long”, or have
unbounded length. In this case, it is extremely inadvisable to use the strifga®keys to traverse the
tree: variations in length lead to a different number of keys inside each disk block, which clashes with the
balanced structure of the tree. The problem of building an external memory index structure for a set of
arbitrary strings has been addressed by Ferragina and Grossi [17] wittnitigeB-tree

As its name suggests, the string B-tree is a B-tree variant that embodies sophisticated data structures for
the management of variable-sized strings. First of all, the key for an arbitrary strihginow apointerto
the disk block containing the first symbol of the string; for all practical purposes, the keys can be therefore
considered of equal length. The stringsfre packed one after the other into consecutive disk blocks;
different strings are separated by a special character not belongihygtothat the beginning of each string
can be correctly identified. The strings are stored in no particular order (i.e. they are not sorted) but each
stringz occupies consecutive memory blocks, so that the positioniafititharacter of can be determined
through a constant number of arithmetic operations. Observe that adding a newy $trifigs just a matter
of attaching it at the tail of the sequence of previously-stored strings. It is essential to note that the new keys
are small, but they do not give any hint about the lexicographic order of the strings: in other words, string
x may be lexicographically bigger than striggalthough the key for: is smaller than the one far. This
observation shows that some information other than the keys must be stored in the nodes of the tree. To
begin with, the tree is trivially modified as follows.

1. Each leaf node is augmented with pointers to its predecessor and successor leaves, so that the leaves
form a bidirectional list.

2. The keys in each node are sorted according to the lexicographic order of the strings they refer to.

3. Aninternal node stores both the smallest (leftmost) and the biggest (rightmost) key of all its descen-
dants.

Secondly, the keys in a nonleaf node are not stored in a plain array: instead, they are stored by means of
a PATRICIA trie (see Section 3.1) built on the strings associated with the node. In a way, the properties
of the trie make it possible to pa¢k (B) arbitrary-lengthstrings into aB-sized disk block, like the plain

B-tree did for fixed-length strings. The trie, however, contains only partial information about the strings,
namely the information associated with the branching characters. Consider, for example, an instance of
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prefix-search( K) with K = abracadabra: among other activities, the string B-tree must be tra-
versed from the root to a leaf to determine the first strin@ whose prefix isbracadabra . Consider

the root node, and suppose an edge departing from the root of the associated trie is labell@d4with

the searching algorithm then follows this edge, reaching an internal modi¢he trie. Suppose now that

v has only two outgoing edges, marked with 3) and(b, 4): since the fifth character of our prefix isca

the trie does not contain enough information to perform any further branch. Anyway, Ferragina and Grossi
demonstrate that “things cannot go really bad”, in the sense that

e if the downward branching process leads to a leaifthe PATRICIA trie, then contains one of the
strings (not necessarily the first!) which share the longest common prefix{yith

o if the downward branching process stops on an internal npteen the property above is still satisfied
by choosing a any leaf in the subtrie rooted at

Exploiting this property, the search for a string/prefiin the PATRICIA trie can be performed as follows
(blind search.

1. Trace a downward path using the branching characters as long as possible. If the branching ends on
a leafl then the phase is over, otherwise chobae an arbitrary leaf in the subtrie of the last nade
traversed.

2. Load the string associated witland compare it withr to determine the longest common prefixit
actually shares with.

3. Use|7/| to find the shallowest ancestorf [ whose associated strings have a prefix not lexicographi-
cally smaller than’ (itis the shallowest ancestor whose label from the root is more|tietharacters
long).

4. Using the first mismatching character aftéias a key, descend in the subtrie rooted antil a leaf
is reached: the string in such a leaf is the desired answer to the search problem.

The entire PATRICIA trie is stored in a single memory block, therefore it can be taken to main memory in a
single 1/0 operation; the comparison with the string associated withH &Ep 2) may be more expensive
since itrequire$|z|/B] disk I/0s. The main drawback of the above procedure is that a distinct trie scanning
and string comparison is requiregtery timea B-tree node is traversed, which leadsxd(|K|/B + 1)h)

I/O operations to visit the B-tree duringrefix-search( K) . Ferragina and Grossi show that it is
possible to do better than this by observing thats re-examined from the beginning at each level of the
B-tree, while this is not necessary since each new level “freezes” an increasingly long pugtixrobther
words, every time we move from noago nodev in the tree a certain number of available strings (i.e. those
that are stored in the subtree rooted.diut not in the subtree rooted &} is discarded, and the remaining
strings share a longer prefix witi. Leveraging on this observation, [17] devises an improved trie search
procedure which takes the lengtlof the “frozen” prefix as an input, so that only the characters in positions
£+ 1,4+ 2,...need to be examined during Step 2 of the procedure. The total /O cost of a string B-tree
traversal is therefore reduceddd(| K'|/B + |S|). Using such an efficient traversal strategy, the following
I/O bounds can be proved. We recall thais the number of strings il§ that match a query, anii is the

total length of the strings is.

e Astringx can be added or deleted from the string B-tree uéirigr|/ B + log s |S|) worst-case disk
accesses.

e The construction of the string B-tree tak@g NV log ') worst-case disk accesses.
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o prefix-search( K) takesO ((|K|+ k)/B + logg |S|) worst-case disk accesses.
e range-query( K, K») takesO ((|K1| + |K2| + k)/B + logp |S|) worst-case disk accesses.
e substring-search( K) takesO ((|K|+ k)/B + logp N) worst-case disk accesses.

The last operation is performed througtpeefix-search( K) query using a B-tree built on the set
SUF(.S) of the suffixes of the strings ifi; the equality)SUF(S)| = N clearly holds.

The efficiency of B-trees as indexing structures has also been investigated in the context of multi-level
memory hierarchies. To be precise, the model that has been adopted in such studies provitievels
of memory; a data movement from levigb level+1, 1 < i < k, takes place in blocks of sizg;, therefore
each paifL;, L; 1) of adjacent levels is similar to a standard, 2-level /O model. A trivial adaptation to such
a memory hierarchy [9] is to build a B-tree in which the nodes stored in levbhve sizeO (B, ), the nodes
residing inL, have sized (Bs) and so on. Anyway, the above strategy is asymptotically efficient only if
By > Bs > ... > Bi_1, and even in this case the multilevel structure of the tree complicates the handling
of insert anddelete operations. What's more, the tree must be rebuilt if any level of the hierarchy
changes. Anyway, it has been proved in the literature that a more sophisticated adaptation process leads to
cache-oblivious B-trees.e. trees which guarantee good performances regardless of the parameters of the
memory hierarchy. Indeed, on the the ideal cache model of Frigo et al. (see Section 2.2) cache-oblivious
B-trees exhibit the same number of memory transfers of a plain B-tree in the 1/O model when considering
common operations such essert( x), delete( ) or prefix-search( K).

Cache-oblivious B-trees were introduced by Bender et al. [9]. To achieve obliviousness, the authors
must store the nodes of the B-tree in a particular order, ensuring that any possible subtree is located in a
contiguous block of memory. Moreover, data inside each node must be packed densely enough to guarantee
that the cache is exploited efficiently, although not too densely since this makes update operation extremely
expensive. As a matter of fact, the cost of update operations appears as the sheer difficulty of the whole
procedure, therefore Bender et al. take the necessary precautions to maintain it within reasonable bounds.
First of all, the balancing rule of the standard B-tree is too “weak”: update operations may violate it too
frequently. As a consequence, the authors use a weight-balanced B-tree [7] described by the following rule:
the weightw(v) of a nonroot node at heightk satisfy the inequalities

dkfl

T § UJ(U) S 2dk_1,
with w(v) — d"~1/2 = 6 (d’“) and2d*!' —w(v) = 6 (d’f) The parameted (referred to as thbranch-
ing parametey must be an integer greater tharand can be chosen by the programmer. The above rule
guarantees that if a nonroot nodat heightk has jus been rebalanced, then the B-tree must iﬁc(uﬂ€
update operations beforeneeds to be rebalanced again. In turn, this ensures a low amortized cost for up-
date operations. The rule also imposes a constraint on the number of descendants each node can have: to be
precise, the root has between 2 aktichildren and all the other nodes have betwéghand4d children.
For efficiency reasons, every leaf of the tree is also augmented with a pointer to its right sibling.

Secondly, the weight-balanced B-tree is placed into memory according to the followinganl&nde
Boas layou{26]). Let h be the height of the tree and letbe the smallest power of two greater thaf®:

1. recursively place into memory the topmast- h levels of the tree (these levels are also given the
name oftop subtreg

2. when the above placement is complete, lay recursively in memory the subtrees corresponding to the
remainingh levels of the tree (thbottom subtregsin “left to right order” (i.e. the subtrees whose
leaves are lexicographically smaller come first).
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It can be proved that, with this placement rule, a search in the weight-balanced’ Beme&es at most
O (logg N) memory transfers regardless of the cache block Bize
Finally, we have already observed that the exact placement of the data into memory must reserve some
(but not too much) empty space to deal with futungert  operations. Moving from the ideas of [22], data
are stored so as to satisfy the following two guidelines.

e Any set of k contiguous data is stored @ (k) contiguous memory cells, therefore the data can be
read using) (k/B) memory transfers.

e Inserting or deleting a new datum uié{log2 N/B) amortized memory transfers.

The cost of insertions (and deletions) is due to the fact that, if the data become too densely (too loosely)
packed, then the data are moved and spread out evenly in a bigger (smaller) memory segment.

Let now examine the performance of the cache-oblivious B-tree as an indexing structurek Simze
tiguous keys occupy (k) memory cells and the search for a key in the tree tak¢kgz N) memory
transfers, it is straightforward to conclude that an instancgrefix-search( K) can be completed
with O (logg N + k/B) memory transfers in the worst case. The analysigifsert anddelete opera-
tions is much more tricky since many different costs must be taken into account. For example, the worst-case
cost of executingnsert( x) has four components. (The componentsdelete( z) are analogous so
we will only focus on insertions in this survey paper.)

1. The cost of searching farin the cache-oblivious B-tree.
2. The cost of re-packing the data in the leaf node whegestored.
3. The cost of updating the pointers to any nodes moved as a consequence of the re-packing.

4. The cost of the node-restructuring activities that are needed to enforce the B-tree balancing property.

Costs 1 and 2 can be easily found to®¢log; N) and O (log2 N /B), respectively. To determine cost

3, [9] is forced to distinguish betwedacal andlong-distancenodes. Intuitively, a node is local if its

parent and children are within distanéein memory (thus probably residing in the same cache block of

v), otherwise it is long-distance. Clearly, the pointer updating process is much more expensive for long
distance nodes since many memory blocks must be accessed to take its “family” into cache. The memory
layout must then ensure that long-distance nodes are sufficiently far from one another, so that each node
movement involves only a small fraction of them: to do so, a certain amouniftdr (dummy)nodesis

stuffed around long-distance nodes. The problem is complicated by the fact that the cache blétlssize
unknown, so it is impossible to pick out exactly all the long distance nodes: as a consequence, each node
that simplymaybe long-distance must be treated as such. Bender et al. demonstrate that the root of each
top/bottom subtree and the leaves of any bottom subtree may all be long-distance; as a whole, a fraction
(0] (1/\/5) of the nodes of the B-tree may be long-distance. To separate tHerh/k buffer nodes are

added before and after each top subtdeevherek is the height of the root of the subtree. It can be proved

that, after the insertion of dummy nodes,

¢ the overall memory space occupied by the B-tree is@t{llV);

e any intervall of memory containg® (1 + 1‘\%9 ]I|) long-distance nodes.

fIndeed, the property is valid for all the trees in which the outdegree of the no@ed isand greater than 1.



These properties allow [9] to conclude that the cost of updating the poin'@ré]jgr 1(\%9 log? N) memory
accesses.

The last cost we must evaluate is Cost 4, due to the restructuring of the B-tree to enforce the balancing
property. For aninsert( ) operation, the restructuring is managed as follows.

1. Ascending the tree from the leaf wherdas been inserted, find the first ancestdhat violates the
balancing property.

2. Letwvy, ..., v be the children ofi. Find the biggest integér such that the total weight af;, . . . , v/
is at mostjw(v)/2].

3. Splitw into two nodesu; andus. Update pointers so thatl, . .., v, are children ofu; andwvg 1,
..., v are children ofus.

(A delete operation is dealt with in a similar way. The first ancestahose weight is too low is found and
merged with one of its sibling nodes: the weight of the new node may now be too high, in which case it is
split as described above.) After the tree has been restructured, some more memory operations are required
to repair the van Emde Boas layout and to put a sufficient number of buffer nodes near every potential
long-distance node; we omit the details here. As a whole, ibsttrt anddelete operations require

O (log N/B) amortized memory transfers. By summing costs 1 to 4, we conclude that updating the B-tree
takes

(@) (1 +logp N + 1(Y;EBlogz N)

amortized memory transfers. This bound simplifie@tog; N) if B = Q ((log N)?(loglog N)*), which
is a mild assumption. Indeed the hypothesisibnan be even milder if the B-tree is stored in two separate
arrays: thdeaf array contains the keys, logically grouped into blocks of stzélog N), and thetree array
stores the rest of the tree. The splitting is based on the idea that most memory update operations are con-
centrated near the leaves of the B-tree because of the balancing property, therefore it is advisable to pack
the leaves together in a separate array (note that in the plain van Emde Boas layout the leaves do not occupy
consecutive memory positions). After the splitting, only a fractidfl/ log N) of the update operations
touches the tree array, and the amortized cost of an update is red(@e{dt@ logg N +log? N, /B).

A recent paper of Brodal et al. [10] obtains the same memory access complexity of [9] through a
different data structure, which is plainly called tb@che-oblivious search tred his data structure makes
no use of B-trees; instead, it is obtained by performing the following operations.

1. Store the keys of in a dynamic, binary search trd& The tree is not complete but it is balanced, so
that its height idog | S| 4+ O (1).

2. Embed the dynamic tree into a static, complete binaryffdeaving the same height.
3. Store the static treéE’ into memory using the van Emde Boas layout.

The embedding of a static tree into the van Emde Boas layout, which is implicit, makes it possible to calcu-
late the position of every node of the tree with simple arithmetics operéatiomsther words, no pointers

are necessary to link the nodes of the tree, and consequently no pointers need to be updategdrring

or delete  operations. Moreover, the fact thatis balanced makes it possible to st@feusingO (V)
memory cells, which is optimal. Using these properties, it is easy to prove that the cache-oblivious search
tree supportgprefix-search( K) operationsirO (logz N + k/B) worst-case memory transfers.

To be true, [10] uses a pre-computed vector of §izgog | S|) to speed up node jumping.
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As it is customary, anyway, the analysis of update operations is much more delicate, since it must
account for the cost of enforcing the properties of the data structure. The first property to enforce here is the
balancing of the dynamic tréE. To understand how this can be done, defineddesityof a nodev € T
asp(v) = w(v)/2H-4)+1 wherew(v) is the weight ofv in T, d(v) is the depth of (i.e. the number of
nodes on the simple path from the rootfcand H is the height of the complete binary trééthat contains
T. In other wordsp(v) is the ratio between the weight ofin the dynamic tree and the “ideal” weight it
should have were the tree complete. Let us now considersamt( ) operation:H density thresholds
T,..., 7y are defined according to the following rules:

1LO0< < n<...<1g=1;
2. 11> \S]/(2H—1);
3 m=n+@G-1)1-n)H-1)forl<i<H.

If the insertion ofz makes the height of’ increase toH + 1 (thus requiring a bigger complete tree for
the embedding) theffi is rebalanced. Let be the node associated with the newly-insertedkesnoving

up the tree, the nearest ancestoof v is found satisfying the inequality(u) < 74.,). Thej keys in
the subtree rooted at are then sorted, then tHg/2]-th element in the sorted list is assignedutothe
smallest|(; — 1)/2] elements are recursively assigned to the left subtreeasfd the remaining elements
are recursively stored in the right subtregelete operations are dealt with similarly through a second
setwi,...,vm of thresholds, with) < vy < vg_1 < ... < 1 < 71. It can be proved that insertion and

deletions require
log? N)

1 N

amortized memory transfers, with= min{~y; — vy, 1 — 71 }.

3.4 Suffix trees and suffix arrays

The suffix tree is one of the most common index structures that are used today to deahstitictured
texts i.e. texts which contain no known “words” or keys; genetic data may be considered among these texts.
A characteristic of an unstructured text is thay possible subsequence of the text is a candidate for a query,
so the number of possible queries is quite high (quadratic in the length of the text). A suffix tree efficiently
supports such queries, and it can be packed so that it does not take (asymptotically) more space than the text
itself.

Let S be the text, i.e. a strifigbuilt on a specified alphabg&t that may be finite or infinite, and lé¥ be
the length ofS. The suffix treel’s for S is simply a compacted trie built on the set of strifgs= {z$ | =
is a suffix of S and$ ¢ X}; itit clearly || = N. The special characté&ris added to ensure that each suffix
corresponds to a unique position in the text. In what follows, we will denoteaith the string associated
with a path fromw to a leaf inTs; moreover, we will use the notatio$ifi, 5] to indicate the substring of
S composed by charactefi|S[i + 1] - - - S[j]. The suffix tree can be built in less time and stored in less
space than an ordinary compacted trie because the elemehtsad not arbitrary strings: instead they
are all prefixes of a single string. This fact makes it possible to prove some strong properties that can be
exploited in the construction of the tree; here we cite only two of them, which are used by the algorithms in
the rest of the section.

$As usual, multiple strings can be indexed by laying them one after the other, with just one special character in the middle to
mark the beginning of each new string.
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e Property 1.If LCP(z,y) is the longest common prefix of stringsy € F andLCA(u,v) is the least
common ancestor of nodesv € Ts, thenLCP(o(u),0(v)) = |o(LCA(u,v))|.

e Property 2.Let x be an arbitrary string iF", and leta be an arbitrary character from alphabet If
there is a node in Ts such that(u) = ax, then there also exist a nodez Ts such that (v) = x.

The second property suggest to augment the tree with the so-saffedlinks i.e. additional pointers from

the node associated with: to the node associated with Since each node @fs has exactly one outgoing
suffix link, the introduction of suffix links increases the memory space requiremépitanfly by a constant
factor. In a flat-memory model, a suffix tree augmented with suffix links can be construdsed\in time

if 3 has finite cardinality, o® (N log N) time if X is unbounded (several algorithms exist; the classical
reference is [24]). A suffix tree contain a sorted set of strings, therefore the computational complexity of
sorting is a lower bound to the complexity of suffix tree construction: as a consequence(ahipg N)
algorithm is optimal in the comparison model. The same line of reasoning holds if the 1/0O complexity of
sorting is considered. Recently, Farach-Colton et al. have developed an external-memory algorithm to build
Ts in sorting I/O complexity [16], which is optimal in the I/O model of computation. The algorithm is based
on the following divide-and-conquer strategy.

1. Theodd treeT, of Ty is recursively built. The odd tree is the compacted trie built on the suffixes of
S that start in odd positions.

2. Theeven tre€l, of T is recursively built.
3. T, andT, are merged to géefs.

A deterministic construction of the odd and even trees is detailed in [15]. The idea tdlbugdo sort
the NV/2 pairs of consecutive characters of the foff{2: — 1], S[2i]) and eliminate the duplicates in the
sorted list. The compacted list is used to build a new stGhgver alphabe{1,2,..., N/2}: S'[7] is the
rank of (S[2i — 1], S[24]) in the compacted list. After that, the suffix trée for S’ is recursively built. A
key property ofl’s is that there is an injective map from the internal nodeggfat leveli and the internal
nodes of7,, at level2i: exploiting this mapping{, can be obtained frorff’s; in sorting 1/O complexity.
OnceT, is known, the even tre&, can be calculated from it: this is possible because each even prefix is
just a suitable odd prefix with an extra character attached at its head. The lexicographic order of the leaves
of T, is determined by taking the lexicographically sorted list of the leavds @fvhich, in turn, is given by
an inorder visit of7,), then sorting it using[2i — 2] as the key for the leaf associated with the odd prefix
S[2i—1, N]; a stable sorting algorithm must be used. After that, the length of the longest common prefix for
each pair of adjacent leavesih is computed by taking advantage of Property 1 of suffix trees (see above).
Finally, the even tred. is reconstructed from the sorted list of its leaves and the information about longest
common prefixes.

Let 75 (V) be the 1/0O complexity of building the suffix treéBs for a string of length/V, and let
Tmerge(N) be the complexity of merging the odd and even tree$@af As a whole,Ty,¢(/V) obeys the
following recurrence relation:

Tsuf(N) = Tsuf(N/2) + aTsort (N) + Tmerge(N)a

whereq is a suitable constant. All that remains to do is to deternfing..(/N). The merging phase is

the most technically complex part of the algorithm: structural properties of the suffix trees are exploited
to efficiently perform this step. The merging algorithm is based on the knowledgeje node# both

the odd and the even tree;is said to be a merge node if the node it gives birth td'§nhas descendants
coming from bothl, and7,.. Once merge nodes are knowii; can be built by simultaneously visiting the
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Euler tours ofl}, andT. and undertaking appropriate measures every time a merge node is encountered; the
calculation of the Euler tours is the most expensive operation of this process, and it can be done in sorting
I/0 complexity [11]. In turn, merge nodes are located with the aidrafhor nodesindside trees A node

v, € T, is an anchor node if it has a “twin” node € T, such thatr(v,) = o(v.); anchor nodes clearly

exist in pairs. A side tree is a maximal subtre€lpf(or of T,) that contains no anchor nodes. All anchor

nodes and their ancestors are merge nodes, but only some of their descendants have the same property: to
be precise, the descendants of anchor nodes which are also merge nodes form pattappatgihside

the side trees. Farach-Colton et al. demonstrate that both anchor nodes and zippers can be located in sorting
I/O complexity: as a consequence, we can concludefhat,.(N) = O (Tt (IV)) and the whole suffix

treeTs can be built in sorting I/O complexity.

Although the algorithm of [16] is asymptotically optimal, it is unpractical because of the constant hidden
by the big-oh notation; what's more, the building of the tree requires a large amount of working space to store
auxiliary data structures. As a matter of fact, all known practical algorithm for suffix tree construction still
exhibit a® (N?) worst-case I/O complexity, and they typically require betwe®N and26 N memory cells
to accomplish their task [12, 13]. Since these space/time complexities are often unacceptable in practice,
more compact (albeit less powerful) indexing structures have been developed. Among such structures, the
most famous one is undoubtedly theffix array

The suffix array [23] is usually regarded as a “simplified version” of a suffix tree, and this is the reason
why we describe it in this section; anyway, a suffix array can be defined for a generic trie [16]. The suffix
array SAr of atrieT is a pair of arrays: theort array A and thelongest common prefix arrayCP;

Arl[i] points to thei-th leaf of 7" in the lexicographic order, aridCP is the length of the longest common
prefix of the strings associated with leaveand: + 1, again according to the lexicographic order.71f

is a suffix tree, then the corresponding suffix ar&¥r is usually stored through the sort array alone. In
other words, the suffix array of a suffix trég is a single arraylr, containing the lexicographically sorted
sequence of the suffixes 8t Az, [i] is an integer that indicates the starting position ofzttie suffix inside
string S. If N = |S| < 232, which is true in most practical cases, thén, occupiesiN bytes, i.e. four
times less than a typical suffix tree. The suffix array can be used to pepi@fir-search( K). Let
imin = min{i | the suffixS[i] is not lexicographically smaller thali }, and leti,,.x = max{i | the suffix
STi] is not lexicographically bigger thaft'}; the values of,,;, andiy,.x are determined through a binary
search in the array, then the suffix€8,in], S[imin + 1], - - -, S[imax| @re produced in output as the result of
the query. The 1/0O complexity of this algorithmds((|K|/B)log N + k/B), wherek = imax — imin + 1

is the number of results to the query.

It remains to be seen how much time does it take to build a suffix array. A thorough work in this sense has
been done by Crauser and Ferragina [13], who analyzed six different algorithms for suffix array construction
from both a theoretical and experimental point of view; in this paper, anyway, we will survey only three of
them, since the other three offer inferior performances from both points of view. Crauser and Ferragina use
the 1/O model for their theoretical study, but they choose to perform a separate accounting of bulk 1/0Os and
random I/Os. We havelaulk I/Owhen a sequence of at least two contiguous disk pages is accessed; instead,
arandom |I/Ois any single-page disk access which is not part of a bulk I/O. This distinction is motivated by
current disk technology: in a modern hard disk, in fact, the access time is nearly completely due to the time
required to move the disk head and position it accurately over the desired track; once the head is in place, the
high rotational speed of the disk and the high areal density of the tracks make it possible to read consecutive
blocks very quickly. As a consequence, [13] suggests that bulk I/Os must be considered less expensive than
random 1/Os: algorithmd4; may perform a higher number of I/Os than algorittty, but if the fraction of
random I/Os is higher fod; then it may prove the faster algorithm in practice. The experimental part of
[13] proves this observation is well founded.

From a theoretical point of view, the fastest known algorithm for the construction of suffix arrays is
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the one proposed by Manber and Myers together with the suffix array itself [23]. The MM algorithm is
organized intglog, N + 1] stages. In the first stage, thé suffixes ofS are put into|X| distinct buckets
according to their first symbol; it is assumed that the buckets are arranged following the lexicographic order
of the symbols, so that after the first stage the suffixes are lexicographically sorted according to their first
symbol. In the subsequent stages, the content of the buckets is further partitioned by sorting (via radix
sort) according to an ever increasing number of symbols: to be precise, duringi dtegeuffixes are
lexicographically sorted according to the figdtsymbols, therefore at the end of the stage the suffixes in
the same bucket exhibit a common prefix of len@th After the last stage each bucket contains exactly
one suffix, soAr, is obtained by looking up the buckets in order. While this algorithmic idea is simple,
its time/space efficient implementation is not trivial; anyway, it can be proved that each sorting stage has
O (N) worst-case I/O complexity and usé® extra space, hence the algorithm of Manber and Myers
requiresO (N log N) I1/0s and8 N overall space. The I/Os come from repeated sorting operations, and they
are all random.

The algorithm of Gonnet et al. [20] similarly takes an incremental approach to the construction of the
suffix array: during each step a new portifia;,,; of the array is calculated in internal memory, then it is
merged with the previously-built portiofiA.,; which is stored in external memory. The strifigs loaded
into main memoryn cells at a time, wheree = AM and\ < 1is a constant that is chosen to ensure that all
necessary data structures fit into main memory; the GBS algorithm then reghiifes| = © (N/M) steps
to complete. For ease of presentation we assumenihdivides N evenly. During step, 1 < i < N/m,
substringS[(i — 1)m + 1, ¢m] is taken into main memory, then the suffix arréiyl;,,; is generated which
contains only the suffixes beginning insif: — 1)m + 1, im/; note that this may require further accesses
to disk since it may be necessary to knS\im + 1, (i + 1)m] to perform the comparison of two suffixes
that begin in the current block ¢f. WhenS A;,,; is ready, it is merged witl§ A...: with the help of a counter
arrayC' that is built as follows:S' is scanned from left to right an@[;] is incremented every time a suffix
Si, N| lexicographically lies betwee6A;,;[j — 1] and.SA;,.[j]. With the help ofC the position of the
new suffixes ofS A4;,,; inside S A.,; can be easily determined, and the merging process then requires just a
scan ofS A..:. Itis not difficult to prove that at the end of stéy A, is the lexicographically sorted set of
suffixesS[0, N], S[1, N],..., S[im, N], thereforeS A, = Az, when the last step is over. The theoretical
analysis of the GBS algorithm demonstrates that it req@inésnemory cells and ((N?3log M)/(M B))

I/Os in the worst case, which is completely unappealing if compared to the MM algorithm. Crauser and
Ferragina, anyway, make two crucial observations.

¢ \Worst-case analysis is too pessimistic in this case: under very mild assumptions on the inpit string
(assumptions which are usually verified in practice) the 1/O complexity of the algorithm is reduced to
O (N?/M?).

e Nearly all I/Os are bulk because they are caused by scan operations.

For these reasons the conjecture is made that the GBS algorithm may still be efficient in practice. Indeed,
Crauser and Ferragina implemented the algorithms of both [23] and [20], and experimental evidence shows
that the GBS algorithm decidedly outperforms the one of Manber and Myers. As a matter of fact, the
MM algorithm is faster as long as all its data structures are contained in main memory, but when this is no
longer true the performance of tiié M algorithm quickly declines because of random 1/Os, and it becomes
unacceptable even for mildly sized problem instances. This result shows that the /0O model of computation,
which has been explicitly designed to model disks, may nonetheless lead to wrong conclusions.

Moving from the above observations, Crauser and Ferragina propose a new algorithm of their own,
which we will call the L-pieces algorithm The name is justified by the fact thatsorted arraysi;, As,
..., A are built instead of one; array; stores the lexicographically ordered set of suffix8§, N|, S[i +
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L,N],S[i + 2L, N],...} . Array Ay is built first: the set of string$S[L, 2L — 1], S[2L,3L — 1],...} is
sorted, then each string is replaced by its rank in the sorted list, thus composing an auxiliay fEte
sort arrayAr,, for S’ is then built in internal memory, and the suffix array is finally obtained by setting
Apli] = Ar,[i]- L, 1 < i < N/L. OnceAyp is known, the other sorted arrays can be quickly built
by observing that a suffi$[i + kL, N] in A; is the concatenation of charactg&fi + kL] and the suffix
S[i + 1+ kL,N]in A;;1: consequentlyA; can be built fromA;,, by sorting N/L pairs of the form
(S[i + kL], pos; . 14xz), Wherepos; is the rank of suffixS[j, N]in A;1.

By settingL = 4, Crauser and Ferragina obtain a suffix array construction algorithm that Géeds
memory cells of working spac€) (sort(V) log N') random 1/Os and ((N/M) log(N/M)) bulk 1/Os. In
other words, thd.-pieces algorithm exhibits a better theoretical complexity than the GBS algorithm, and it
also proves to be somewhat faster in practice [13]; anyway, it must be remembered that the suffix array it
gives is split into pieces, which may or may not be acceptable depending on the application. In the most
favorable case, the query performance with such a structure is slowed down by a constait factor
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