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1 Introduction

This paper describes some aspects of the analysis of strings defined over an alphabetΣ; the strings may
be related to a biological phenomenon (DNA base pairs, ammino acid sequences...), but this is not strictly
necessary since the same analysis techniques also apply to different types of information such as natural
linguistic texts, dictionaries or transaction records. The term “string analysis” is quite generic and it encom-
passes a broad family of operations on strings; some of them are:

• gathering of statistics (number of occurrences of each symbol, average word length, etc.) on a string;

• identification ofpatterns(repeated words or symbols, frequent words, etc.) inside a string;

• search for the presence of known words or substrings inside a string;

• evaluation of a suitably defined “distance” between pairs of strings.

Such operations, and even the plain storage of the strings, rely on suitabledata structures. In this survey
paper we will focus on some data structures that have been developed to efficiently deal withmemory
hierarchies. The importance of these structures can be appreciated by considering that all modern computers
exhibit a memory hierarchy, i.e. an interconnection of memory modules with different sizes and speeds, and
that the explicit management of the hierarchy typically leads to noticeable performance improvements.

The rest of the paper is organized as follows. Section 2 explains what a memory hierarchy is, then it
introduces some theoretical models of computation that describe memory hierarchies. Section 3 is a survey
of the most prominent data structures that literature offers to cope with memory hierarchies. The theoretical
models of Section 2 are used to evaluate which string operations can be efficiently performed with such
structures, and also how much time and memory space does it take to build them.

2 Memory Hierarchies and Cost Models

Memory hierarchies arise from a technological limitation. Nowadays, the technology of processors is ad-
vancing more quickly than the technology of memories, and this statement has been true since many years
from now. As a consequence, there is a widening gap between the speed of processors and the speed of
memory: the memory is not able to feed the processor enough data to keep its functional units busy. This
is an unacceptable bottleneck, so the memory architecture has been shaped trying to avoid it in as many
practical cases as possible. Since it is easier to build a fast memory device if it contains few cells, memory
has become a cascade connection of modules with increasing size but decreasing speed: relevant data are
kept in the faster modules as long as possible, so as to minimize accesses to the slower cells. This cascade
connection is called amemory hierarchy. A memory hierarchy works well in practice because memory
accesses always exhibit a certain degree oflocality of reference: informally speaking, during a limited time
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frame accesses point to a small pool of consecutive memory cells, which can then be moved to the faster
levels of the hierarchy. Up to now such data movements have been performed automatically by the hard-
ware or the software, not by the programmer: anyway, it is increasingly difficult to maintain this automatism
without hampering performance. The hierarchy is becoming steeper and more complex: a typical hierarchy
now includes CPU registers, L1 cache, L2 cache, main memory, disks, tapes, and even the network can be
regarded as a level of the hierarchy; the access times for L1 and disk differ by approximately 6 orders of
magnitude. This complexity is hardly managed through automatic mechanisms: exposing even part of it to
the programmer usually leads to significant performance improvements. Theoretical models of computation
have been designed that take memory hierarchy into consideration; each of them focuses on some different
aspects of the hierarchy, and no universally accepted model has emerged yet. In what follows we survey
the most popular models by grouping them into two broad families: Section 2.1 is reserved to models for
external memory (i.e. disks), and Section 2.2 deals with models for internal memory (i.e. cache RAM and
DRAM).

2.1 External memory

The issue of external memory has been widely studied because it arose early in the database community,
which has long faced the need to deal with massive amounts of data. In recent years, “external memory”
has almost been synonymous with “hard disk”, since this is the most effective medium offered by current
technology to store data that do not fit in main memory. Accurate models of disks have been proposed in the
literature (see for example [27, 28]), but their complexity make them impractical for the theoretical analysis
of algorithms. As a consequence, simpler models have been developed.

The most successful of these models is certainly the I/O model [4, 29], which exhibits one RAM-like
processing unit connected with a finite-size random access memory. If the processor needs data that are not
in main memory, it must load them from one or more disks; data are fetched inblocks, which typically span
many memory cells. The metric to measure the performance of an algorithm is the number of block transfers
it requires; this is the reason that gives the model its name. This cost model makes sense since an access
to disk is several orders of magnitude slower than an access to RAM (nanoseconds versus milliseconds),
therefore RAM computations can be taken to be “free”. If multiple disks are available then they can be used
in parallel, i.e. the processor can access a different block from each disk in a single unit of time. As a whole,
the I/O model is described by the following parameters:

• the sizeM of the internal (random access) memory;

• the sizeB of a block;

• the numberD of available disks.

In the rest of the paper we will stick to the above notation unless otherwise noticed. Vitter and shriver also
proposed [30] a parallel version of the model (often referred to as “the” parallel disk model), but we will not
deal with it in this paper.

2.2 Internal Memory

From the very beginning control over accesses to external memory has been given to the programmer, while
things have been quite different in the realm internal memory. Up to recent years the presence of multiple
levels of cache was considered something the programmer need not (or should not) be in control of; as a
consequence, it was not necessary to deal with cache parameters in theoretical models. This approach has
now shown its weaknesses, and a wealth of models for hierarchical memory has appeared. The most popular
ones are:
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• theHierarchical Memory Model(HMM) of Aggarwal et al. [2]; access to memory celli takes time
f(i), wheref(·) is a suitable nondecreasing function. A variant of this model exists which supports
block transfer [3];

• theParallel Memory Hierarchy(PMH) model of Alpern et al. [6];

• theUniform Memory Hierarchy(UMH) model. The first author of the paper is, once again, Bowen
Alpern [5].

Among these models, the most successful one is probably the HMM, which is very simple and therefore
easy to use as a performance analysis tool. Aggarwal et al. [2] also introduce a concept ofuniformly optimal
algorithms, i.e. algorithms which exhibits fair performance across a set of memory hierarchies. Anyway, it
seems that this concept has not been as successful as the model.

Each of these models pays attention to some cache design parameters which are considered essential for
good performance, such as cache size, cache line size, interconnection bus width, etc. The aspects which
are considered crucial to performance vary from model to model, therefore an algorithm that is tuned for
speed on one of them is difficult to analyze on a different one. This theoretical problem reflects the fact that
different cache designs exist in real machines, and that the quest for maximum performance usually forces
a programmer to know the specific parameters of the cache hierarchy he/she is dealing with.

A recent work [19] has suggested to deal with portability problems through the development ofcache
obliviousalgorithms, i.e. algorithms that perform well onany cache architecture. Cache oblivious algo-
rithms are designed on an idealized 2-level hierarchy that closely resembles the I/O model: the fastest level
is now called thecache, while the slowest one is called themain memory. The processor can only work
on data that reside in the fastest level, which has finite sizeM . The main difference with the I/O model is
that data movements are automatically performed by a hardware circuit which is “magically” supposed to
always make the best possible choice: when a cache miss occurs, in fact, the block ofB cache cells that is
overwritten is the one whose next access is furthest in the future∗. The performance measure of an algorithm
is thecache complexityQ(n;M ;B), i.e. the worst-case number of block transfers the algorithm needs when
the input size isn. Note that the cache line sizeB is not known to the algorithm, therefore the algorithm
designer must prove a bound that is valid for any value ofB. Once achieved, this daunting task goes not
without reward: [19], in fact, demonstrates that an algorithm with optimal cache complexity on the ideal
model is also optimal on a more feasible model with multiple levels of cache – regardless of the cache line
size at each level – and a realistic LRU (Least Recently Used) cache line replacement policy.

3 Data Structures

The core of this survey are B-trees, string B-trees, suffix trees and suffix arrays. Before describing them,
anyway, we need to introduce some basic data structures: tries, PATRICIA tries and inverted files.

3.1 Tries

A trie [14, 18] TS is a tree that is used to store a setS of strings over an alphabetΣ; “trie” is a substring
of the word “retrieval”. Each edge of the tree is marked with a single symbol ofΣ, and there is a one-
to-one correspondence between the strings inS and the paths from the root ofTS to a leaf. If two strings
x, y ∈ S are such thatx = zv andy = zw (i.e. x andy have a common prefix), then on the tree they share
the part of the path corresponding to substringz. A string can be extracted from the tree by following the
corresponding path from the root to a leaf; all strings inS can be recovered through a depth-first visit of

∗This behavior plainly implies a fully associative cache.
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the tree. IfTS resides in a flat memory, the question of whetherx belongs toS can be answered inΘ(|x|)
time. Note that the maximum outdegree of a node inTS is |Σ|, which can be very high (or even unbounded
if |Σ| is infinite); to make things worse, ifS is small then the outdegree of many nodes will be much lower
than the maximum, or even one. These properties make it difficult to efficiently pack the tree into memory.
If |Σ| is small then linked lists are probably the best choice: if the memory is flat,insert anddelete
operations of a stringx both take timeO (|Σ| · |x|). Anyway, space efficiency has an impact on performance
if the memory is hierarchical, since elements which are neighbors in a list may be far spaced in memory.
In the worst case each pointer jumping towards the successor of a node may incur a cache miss/page fault,
thus giving an I/O complexity ofO (|Σ| · |x|) for insert ,delete andsearch operations. Note that the
potential impact on performance is higher if the trie is updated dynamically, since nodes are typically more
scattered in memory.

A compacted trieis a compressed representation of a trie. A compacted trie can be obtained from the
corresponding regular trieTS by collapsing each sequence of nodes with less than two successors into a
single node; the edge entering the new node is labeled with the substringw associated with the path in
TS that has just been collapsed. In a compacted trie every node is branching, therefore the trie can be
packed in memory more easily; moreover, there is less potential node scatter since at least substrings like
w are now stored in consecutive memory locations. However, update operations now take more time since
some nodes may need to be split (because of aninsert operation) or collapsed (delete ) to enforce the
“compactness” property; what’s more, different nodes now have different sizes.

A PATRICIA trie[25] is an even more compact representation of a trie, although this time compression
involves a loss of information; PATRICIA stands for “Practical Algorithm To Retrieve Information Coded
In Alphanumeric”. A PATRICIA triePS can be obtained by taking the corresponding compacted trie and
substituting each substring with a pair(i, a): i is the length of the substring, anda is its first character (also
referred to asbranching character). If Σ is finite-size (as it is in practical applications) then each edge of
PS requires constant space; since each string inS can contribute at most one edge to the trie, this implies
thatS can be indexed inO (|S|) space by means of a PATRICIA trie. Note, anyway, that many substrings
may match the same pair(i, a), therefore the trie only offer partial information about the substrings.

3.2 Inverted files

Another old and simple data structure is theinverted file[21]. An inverted file is created by processing a set
S of strings to produce anindex fileand apostings file. The index file is a lexicographically sorted list of all
the substrings of the elements inS that are considered “relevant”, which are also namedkeywords. Following
any keywordx in the index there is a pointer to a suitable location in the postings file that contains a list of
all the occurrences ofx in S. The set of keywords is typically a small subset of all the possible substrings,
therefore the size of the index file is usually limited and it can fit into main memory. On the contrary, the
postings file may be very large and it often resides in secondary storage. If the above hypotheses (index file
in main memory, postings file in secondary memory) is true andx is a keyword, then the list of all thek
occurrences ofx can be retrieved in optimal timeO (log x + k/B). An inverted file is thus more powerful
than a trie for keywords, but it does not contain any information for all the substrings that are not keywords.
Inverted files are mainly used in natural language processing applications, and more generally in all those
situations in which the the set of used words is a small fraction of the set of possible words.

3.3 B-trees

B-trees [8] are one of the canonical data structures for string analysis that were designed with external
memory in mind. A B-treeT is a search tree built on a setS of keys; the keys are fixed-size, and they may
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be tokens for bigger data structures (such as strings over an alphabetΣ) that reside elsewhere.T satisfies
the following properties.

1. Every nodev contains a certain numberN(v) of keys, namedk1(v), k2(v), . . . , kN(v)(v), that are
stored in lexicographic order.

2. Considered as a whole, the leaves store all the keys inS.

3. Every nonleaf nodeu also containsN(u) + 1 pointersc1(u), c2(u), . . . , cN(u)+1 to its children.

4. All the leaves have the same depthh, which is also the height of the tree.

5. The keys of nodeu partition the keys of the subtrees rooted atu into non-overlapping ranges. In other
words, ifk is a key that is stored into the subtree associated withcj(u) thenkj−1(u) ≤ k ≤ kj(u).

A B-tree isbalancedin the sense that no internal node can have “too many” or “too few” leaves: to be
precise,b − 1 ≤ N(u) ≤ 2b − 1 for every nonleaf nodeu ∈ T . The parameterb can be tuned for
performance; a straightforward optimization rule is to putb = B/2, whereB is the disk block size of the
I/O model. In this way, a node ofT can fit into a disk block, thus being accessed efficiently. Several other
balancing rules have been defined, giving rise to as many B-tree variants. Here we name two of them.

• Weight-balanced B-trees[7]: the weight of a nodev is required to bew(v) = Θ
(
bck
)
, whereb andc

are tuning parameters andk is the height of the subtree rooted atv. The weight ofv is defined to be the
number of elements in the leaves of the subtree rooted atv. For such B-trees, the trivial optimization
rule setsb = Θ(B) andc such thatw(v) ≤ B for any nodev.

• Level-balanced B-trees[1]: the balancing constraint is on the number of nodes on each level of the
tree; such a number is a decreasing function of the level. (We do not put a formal definition here.)

Regardless of the variant we are considering, an update operation (insertion or deletion of a key) may cause
a violation of the balancing rule, thus forcing a partial rebuild of the tree. For example, the operation
insert( x) is performed by traversing the tree until the leafv is reached which contains the biggest key
y ≤ x; if v has available space (according to the balancing rule) thenx is added to it, otherwise a new
leaf v′ is created and the keys are redistributed betweenv andv′ so that both of them contain the minimum
prescribed number of keys. The creation ofv′ forces to add a new key/pointer pair in the predecessor ofv,
which in turn may result in another violation of the balancing rule; the restructuring thus propagates towards
the root of the tree, and may reach the root in the worst case. Anyway, each level of the tree requires only
a constant number of potential I/O operations, thereforeinsert( x) takesO (h) I/Os. The analysis for
delete( x) is analogous – although this time merging of nodes is what propagates towards the root – and
leads to the same I/O complexity bound. Finally, an update operation likeupdate( x, y) can be regarded
as adelete( x) followed by aninsert( y) .

Consider now the “nice case” in which the strings to be indexed are short and asymptotically have all
the same length. In this case the strings can be directly used as keys, and the corresponding B-treeT can be
stored usingΘ(N/B) disk blocks, whereN is the total length of the strings. Such a bound is clearly optimal.
insert anddelete operations both take timeO (logB N). The tree itself can be built throughinsert
operations, but this strategy leads to a suboptimal I/O complexity ofO (N logB N). The tree construction
can be performed more efficiently by first sorting the keys in external memory and then building the tree
level after level, from the leaves up; this strategy requiresO

(
(N/B) logM/B(N/B)

)
I/O operations, which

turns out to be optimal because of the sorting bound of Aggarwal and Vitter [4]. (Remember our observation
in Section 2.1, and consider that the keys are stored in sorted order inside the B-tree.) Most of all,T can
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now be used to efficiently address a certain number of query types on the strings; three of them are defined
below [17].

1. prefix-search( K) : retrieve, in lexicographic order, all the strings that haveK as a prefix.

2. range-query( K1, K2) : retrieve, in lexicographic order, all the strings which have a prefix be-
tweenK1 andK2.

3. substring-search( K) : retrieve, in lexicographic order, all the strings that includeK as a
substring.

Problems 1 and 2 can be solved through a suitable traversal of the B-tree in I/O timeO (logB N + k/B),
wherek is the number of strings inS matching the query.range-query( K1, K2) implies two traversals
of the tree (from the root to a leaf) to find the leavesL1, L2 associated withK1 andK2, then the answer
to the query is retrieved by reading the elements in the leaves betweenL1 andL2. The I/O time mentioned
above can be proved to be optimal in the comparison model. On the contrary, a plain B-tree is not suited
to solve Problem 3. Note that this very problem takes I/O timeO

(
h/
√
|K|+ log|K| N

)
if the index is a

PATRICIA trie built on the set of all the suffixes of the strings inS [12]; h is the height of the trie.
Things are quite different if the keys have different lengths, and above all if they are “long”, or have

unbounded length. In this case, it is extremely inadvisable to use the strings ofS as keys to traverse the
tree: variations in length lead to a different number of keys inside each disk block, which clashes with the
balanced structure of the tree. The problem of building an external memory index structure for a set of
arbitrary strings has been addressed by Ferragina and Grossi [17] with thestring B-tree.

As its name suggests, the string B-tree is a B-tree variant that embodies sophisticated data structures for
the management of variable-sized strings. First of all, the key for an arbitrary string inS is now apointerto
the disk block containing the first symbol of the string; for all practical purposes, the keys can be therefore
considered of equal length. The strings ofS are packed one after the other into consecutive disk blocks;
different strings are separated by a special character not belonging toΣ, so that the beginning of each string
can be correctly identified. The strings are stored in no particular order (i.e. they are not sorted) but each
stringx occupies consecutive memory blocks, so that the position of thi-th character ofx can be determined
through a constant number of arithmetic operations. Observe that adding a new stringy to S is just a matter
of attaching it at the tail of the sequence of previously-stored strings. It is essential to note that the new keys
are small, but they do not give any hint about the lexicographic order of the strings: in other words, string
x may be lexicographically bigger than stringy although the key forx is smaller than the one fory. This
observation shows that some information other than the keys must be stored in the nodes of the tree. To
begin with, the tree is trivially modified as follows.

1. Each leaf node is augmented with pointers to its predecessor and successor leaves, so that the leaves
form a bidirectional list.

2. The keys in each node are sorted according to the lexicographic order of the strings they refer to.

3. An internal node stores both the smallest (leftmost) and the biggest (rightmost) key of all its descen-
dants.

Secondly, the keys in a nonleaf node are not stored in a plain array: instead, they are stored by means of
a PATRICIA trie (see Section 3.1) built on the strings associated with the node. In a way, the properties
of the trie make it possible to packΘ(B) arbitrary-lengthstrings into aB-sized disk block, like the plain
B-tree did for fixed-length strings. The trie, however, contains only partial information about the strings,
namely the information associated with the branching characters. Consider, for example, an instance of
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prefix-search( K) with K = abracadabra: among other activities, the string B-tree must be tra-
versed from the root to a leaf to determine the first string inS whose prefix isabracadabra . Consider
the root node, and suppose an edge departing from the root of the associated trie is labelled with(a, 4):
the searching algorithm then follows this edge, reaching an internal nodev of the trie. Suppose now that
v has only two outgoing edges, marked with(a, 3) and(b, 4): since the fifth character of our prefix is ac ,
the trie does not contain enough information to perform any further branch. Anyway, Ferragina and Grossi
demonstrate that “things cannot go really bad”, in the sense that

• if the downward branching process leads to a leafl of the PATRICIA trie, thenl contains one of the
strings (not necessarily the first!) which share the longest common prefix withK;

• if the downward branching process stops on an internal nodev, then the property above is still satisfied
by choosing asl any leaf in the subtrie rooted atv.

Exploiting this property, the search for a string/prefixx in the PATRICIA trie can be performed as follows
(blind search).

1. Trace a downward path using the branching characters as long as possible. If the branching ends on
a leafl then the phase is over, otherwise choosel as an arbitrary leaf in the subtrie of the last nodev
traversed.

2. Load the string associated withl and compare it withx to determine the longest common prefixx′ it
actually shares withx.

3. Use|x′| to find the shallowest ancestoru of l whose associated strings have a prefix not lexicographi-
cally smaller thanx′ (it is the shallowest ancestor whose label from the root is more than|x′| characters
long).

4. Using the first mismatching character afterx′ as a key, descend in the subtrie rooted atu until a leaf
is reached: the string in such a leaf is the desired answer to the search problem.

The entire PATRICIA trie is stored in a single memory block, therefore it can be taken to main memory in a
single I/O operation; the comparison with the string associated with leafl (Step 2) may be more expensive
since it requiresd|x|/Be disk I/Os. The main drawback of the above procedure is that a distinct trie scanning
and string comparison is requiredevery timea B-tree node is traversed, which leads toO ((|K|/B + 1)h)
I/O operations to visit the B-tree duringprefix-search( K) . Ferragina and Grossi show that it is
possible to do better than this by observing thatK is re-examined from the beginning at each level of the
B-tree, while this is not necessary since each new level “freezes” an increasingly long prefix ofK. In other
words, every time we move from nodeu to nodev in the tree a certain number of available strings (i.e. those
that are stored in the subtree rooted atu but not in the subtree rooted atv) is discarded, and the remaining
strings share a longer prefix withK. Leveraging on this observation, [17] devises an improved trie search
procedure which takes the length` of the “frozen” prefix as an input, so that only the characters in positions
` + 1, ` + 2, . . . need to be examined during Step 2 of the procedure. The total I/O cost of a string B-tree
traversal is therefore reduced toO (|K|/B + |S|). Using such an efficient traversal strategy, the following
I/O bounds can be proved. We recall thatk is the number of strings inS that match a query, andN is the
total length of the strings inS.

• A stringx can be added or deleted from the string B-tree usingO (|x|/B + logB |S|) worst-case disk
accesses.

• The construction of the string B-tree takesO (N log N) worst-case disk accesses.
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• prefix-search( K) takesO ((|K|+ k)/B + logB |S|) worst-case disk accesses.

• range-query( K1, K2) takesO ((|K1|+ |K2|+ k)/B + logB |S|) worst-case disk accesses.

• substring-search( K) takesO ((|K|+ k)/B + logB N) worst-case disk accesses.

The last operation is performed through aprefix-search( K) query using a B-tree built on the set
SUF(S) of the suffixes of the strings inS; the equality|SUF(S)| = N clearly holds.

The efficiency of B-trees as indexing structures has also been investigated in the context of multi-level
memory hierarchies. To be precise, the model that has been adopted in such studies providesk > 2 levels
of memory; a data movement from leveli to level+1, 1 ≤ i < k, takes place in blocks of sizeBi, therefore
each pair(Li, Li+1) of adjacent levels is similar to a standard, 2-level I/O model. A trivial adaptation to such
a memory hierarchy [9] is to build a B-tree in which the nodes stored in levelL1 have sizeΘ(B1), the nodes
residing inL2 have sizeΘ(B2) and so on. Anyway, the above strategy is asymptotically efficient only if
B1 ≥ B2 ≥ . . . ≥ Bk−1, and even in this case the multilevel structure of the tree complicates the handling
of insert anddelete operations. What’s more, the tree must be rebuilt if any level of the hierarchy
changes. Anyway, it has been proved in the literature that a more sophisticated adaptation process leads to
cache-oblivious B-trees, i.e. trees which guarantee good performances regardless of the parameters of the
memory hierarchy. Indeed, on the the ideal cache model of Frigo et al. (see Section 2.2) cache-oblivious
B-trees exhibit the same number of memory transfers of a plain B-tree in the I/O model when considering
common operations such asinsert( x) , delete( x) or prefix-search( K) .

Cache-oblivious B-trees were introduced by Bender et al. [9]. To achieve obliviousness, the authors
must store the nodes of the B-tree in a particular order, ensuring that any possible subtree is located in a
contiguous block of memory. Moreover, data inside each node must be packed densely enough to guarantee
that the cache is exploited efficiently, although not too densely since this makes update operation extremely
expensive. As a matter of fact, the cost of update operations appears as the sheer difficulty of the whole
procedure, therefore Bender et al. take the necessary precautions to maintain it within reasonable bounds.
First of all, the balancing rule of the standard B-tree is too “weak”: update operations may violate it too
frequently. As a consequence, the authors use a weight-balanced B-tree [7] described by the following rule:
the weightw(v) of a nonroot nodev at heightk satisfy the inequalities

dk−1

2
≤ w(v) ≤ 2dk−1,

with w(v) − dh−1/2 = Θ
(
dk
)

and2dk−1 − w(v) = Θ
(
dk
)
. The parameterd (referred to as thebranch-

ing parameter) must be an integer greater than4 and can be chosen by the programmer. The above rule
guarantees that if a nonroot nodev at heightk has jus been rebalanced, then the B-tree must incurΩ

(
dk
)

update operations beforev needs to be rebalanced again. In turn, this ensures a low amortized cost for up-
date operations. The rule also imposes a constraint on the number of descendants each node can have: to be
precise, the root has between 2 and4d children and all the other nodes have betweend/4 and4d children.
For efficiency reasons, every leaf of the tree is also augmented with a pointer to its right sibling.

Secondly, the weight-balanced B-tree is placed into memory according to the following rule (van Emde
Boas layout[26]). Let h be the height of the tree and leth̄ be the smallest power of two greater thanh/2:

1. recursively place into memory the topmosth − h̄ levels of the tree (these levels are also given the
name oftop subtree);

2. when the above placement is complete, lay recursively in memory the subtrees corresponding to the
remainingh̄ levels of the tree (thebottom subtrees), in “left to right order” (i.e. the subtrees whose
leaves are lexicographically smaller come first).
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It can be proved that, with this placement rule, a search in the weight-balanced B-tree† requires at most
O (logB N) memory transfers regardless of the cache block sizeB.

Finally, we have already observed that the exact placement of the data into memory must reserve some
(but not too much) empty space to deal with futureinsert operations. Moving from the ideas of [22], data
are stored so as to satisfy the following two guidelines.

• Any set ofk contiguous data is stored inO (k) contiguous memory cells, therefore the data can be
read usingO (k/B) memory transfers.

• Inserting or deleting a new datum usesO
(
log2 N/B

)
amortized memory transfers.

The cost of insertions (and deletions) is due to the fact that, if the data become too densely (too loosely)
packed, then the data are moved and spread out evenly in a bigger (smaller) memory segment.

Let now examine the performance of the cache-oblivious B-tree as an indexing structure. Sincek con-
tiguous keys occupyO (k) memory cells and the search for a key in the tree takesO (logB N) memory
transfers, it is straightforward to conclude that an instance ofprefix-search( K) can be completed
with O (logB N + k/B) memory transfers in the worst case. The analysis forinsert anddelete opera-
tions is much more tricky since many different costs must be taken into account. For example, the worst-case
cost of executinginsert( x) has four components. (The components fordelete( x) are analogous so
we will only focus on insertions in this survey paper.)

1. The cost of searching forx in the cache-oblivious B-tree.

2. The cost of re-packing the data in the leaf node wherex is stored.

3. The cost of updating the pointers to any nodes moved as a consequence of the re-packing.

4. The cost of the node-restructuring activities that are needed to enforce the B-tree balancing property.

Costs 1 and 2 can be easily found to beO (logB N) andO
(
log2 N/B

)
, respectively. To determine cost

3, [9] is forced to distinguish betweenlocal and long-distancenodes. Intuitively, a nodev is local if its
parent and children are within distanceB in memory (thus probably residing in the same cache block of
v), otherwise it is long-distance. Clearly, the pointer updating process is much more expensive for long
distance nodes since many memory blocks must be accessed to take its “family” into cache. The memory
layout must then ensure that long-distance nodes are sufficiently far from one another, so that each node
movement involves only a small fraction of them: to do so, a certain amount ofbuffer (dummy)nodesis
stuffed around long-distance nodes. The problem is complicated by the fact that the cache block sizeB is
unknown, so it is impossible to pick out exactly all the long distance nodes: as a consequence, each node
that simplymaybe long-distance must be treated as such. Bender et al. demonstrate that the root of each
top/bottom subtree and the leaves of any bottom subtree may all be long-distance; as a whole, a fraction
O
(
1/
√

B
)

of the nodes of the B-tree may be long-distance. To separate them,dk−1/k buffer nodes are
added before and after each top subtreeA, wherek is the height of the root of the subtree. It can be proved
that, after the insertion of dummy nodes,

• the overall memory space occupied by the B-tree is stillΘ(N);

• any intervalI of memory containsO
(
1 + log B√

B
|I|
)

long-distance nodes.

†Indeed, the property is valid for all the trees in which the outdegree of the nodes isO (1) and greater than 1.
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These properties allow [9] to conclude that the cost of updating the pointers isO
(
1 + log B√

B
log2 N

)
memory

accesses.
The last cost we must evaluate is Cost 4, due to the restructuring of the B-tree to enforce the balancing

property. For aninsert( x) operation, the restructuring is managed as follows.

1. Ascending the tree from the leaf wherex has been inserted, find the first ancestoru that violates the
balancing property.

2. Letv1, . . . , vk be the children ofu. Find the biggest integerk′ such that the total weight ofv1, . . . , vk′

is at mostdw(v)/2e.

3. Split u into two nodesu1 andu2. Update pointers so thatv1, . . . , vk′ are children ofu1 andvk′+1,
. . ., vk are children ofu2.

(A delete operation is dealt with in a similar way. The first ancestoru whose weight is too low is found and
merged with one of its sibling nodes: the weight of the new node may now be too high, in which case it is
split as described above.) After the tree has been restructured, some more memory operations are required
to repair the van Emde Boas layout and to put a sufficient number of buffer nodes near every potential
long-distance node; we omit the details here. As a whole, bothinsert anddelete operations require
O (log N/B) amortized memory transfers. By summing costs 1 to 4, we conclude that updating the B-tree
takes

O

(
1 + logB N +

log B√
B

log2 N

)
amortized memory transfers. This bound simplifies toO (logB N) if B = Ω

(
(log N)2(log log N)4

)
, which

is a mild assumption. Indeed the hypothesis onB can be even milder if the B-tree is stored in two separate
arrays: theleaf arraycontains the keys, logically grouped into blocks of sizeΘ(log N), and thetree array
stores the rest of the tree. The splitting is based on the idea that most memory update operations are con-
centrated near the leaves of the B-tree because of the balancing property, therefore it is advisable to pack
the leaves together in a separate array (note that in the plain van Emde Boas layout the leaves do not occupy
consecutive memory positions). After the splitting, only a fractionO (1/ log N) of the update operations

touches the tree array, and the amortized cost of an update is reduced toO
(
1 + logB N + log2 N/B

)
.

A recent paper of Brodal et al. [10] obtains the same memory access complexity of [9] through a
different data structure, which is plainly called thecache-oblivious search tree. This data structure makes
no use of B-trees; instead, it is obtained by performing the following operations.

1. Store the keys ofS in a dynamic, binary search treeT . The tree is not complete but it is balanced, so
that its height islog |S|+ O (1).

2. Embed the dynamic tree into a static, complete binary treeT ′ having the same height.

3. Store the static treeT ′ into memory using the van Emde Boas layout.

The embedding of a static tree into the van Emde Boas layout, which is implicit, makes it possible to calcu-
late the position of every node of the tree with simple arithmetics operations‡: in other words, no pointers
are necessary to link the nodes of the tree, and consequently no pointers need to be updated duringinsert
or delete operations. Moreover, the fact thatT is balanced makes it possible to storeT ′ usingO (N)
memory cells, which is optimal. Using these properties, it is easy to prove that the cache-oblivious search
tree supportsprefix-search( K) operations inO (logB N + k/B) worst-case memory transfers.

‡To be true, [10] uses a pre-computed vector of sizeO (log |S|) to speed up node jumping.
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As it is customary, anyway, the analysis of update operations is much more delicate, since it must
account for the cost of enforcing the properties of the data structure. The first property to enforce here is the
balancing of the dynamic treeT . To understand how this can be done, define thedensityof a nodev ∈ T
asρ(v) = w(v)/2H−d(v)+1, wherew(v) is the weight ofv in T , d(v) is the depth ofv (i.e. the number of
nodes on the simple path from the root tov) andH is the height of the complete binary treeT ′ that contains
T . In other words,ρ(v) is the ratio between the weight ofv in the dynamic tree and the “ideal” weight it
should have were the tree complete. Let us now consider aninsert( x) operation:H density thresholds
τ1, . . . , τH are defined according to the following rules:

1. 0 < τ1 < τ2 < . . . < τH = 1;

2. τ1 ≥ |S|/(2H − 1);

3. τi = τ1 + (i− 1)(1− τ1)(H − 1) for 1 < i < H.

If the insertion ofx makes the height ofT increase toH + 1 (thus requiring a bigger complete tree for
the embedding) thenT is rebalanced. Letv be the node associated with the newly-inserted keyx: moving
up the tree, the nearest ancestoru of v is found satisfying the inequalityρ(u) ≤ τd(w). The j keys in
the subtree rooted atu are then sorted, then thedj/2e-th element in the sorted list is assigned tou, the
smallestb(j − 1)/2c elements are recursively assigned to the left subtree ofu and the remaining elements
are recursively stored in the right subtree.delete operations are dealt with similarly through a second
setγ1, . . . , γH of thresholds, with0 ≤ γH < γH−1 < . . . < γ1 < τ1. It can be proved that insertion and
deletions require

O

(
logB N +

log2 N

αB

)
amortized memory transfers, withα = min{γ1 − γH , 1− τ1}.

3.4 Suffix trees and suffix arrays

The suffix tree is one of the most common index structures that are used today to deal withunstructured
texts, i.e. texts which contain no known “words” or keys; genetic data may be considered among these texts.
A characteristic of an unstructured text is thatanypossible subsequence of the text is a candidate for a query,
so the number of possible queries is quite high (quadratic in the length of the text). A suffix tree efficiently
supports such queries, and it can be packed so that it does not take (asymptotically) more space than the text
itself.

Let S be the text, i.e. a string§ built on a specified alphabetΣ that may be finite or infinite, and letN be
the length ofS. The suffix treeTS for S is simply a compacted trie built on the set of stringsF = {x$ | x
is a suffix ofS and$ 6∈ Σ}; it it clearly |F | = N . The special character$ is added to ensure that each suffix
corresponds to a unique position in the text. In what follows, we will denote withσ(v) the string associated
with a path fromv to a leaf inTS ; moreover, we will use the notationS[i, j] to indicate the substring of
S composed by charactersS[i]S[i + 1] · · ·S[j]. The suffix tree can be built in less time and stored in less
space than an ordinary compacted trie because the elements ofF are not arbitrary strings: instead they
are all prefixes of a single string. This fact makes it possible to prove some strong properties that can be
exploited in the construction of the tree; here we cite only two of them, which are used by the algorithms in
the rest of the section.

§As usual, multiple strings can be indexed by laying them one after the other, with just one special character in the middle to
mark the beginning of each new string.
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• Property 1.If LCP(x, y) is the longest common prefix of stringsx, y ∈ F andLCA(u, v) is the least
common ancestor of nodesu, v ∈ TS , thenLCP(σ(u), σ(v)) = |σ(LCA(u, v))|.

• Property 2.Let x be an arbitrary string inF , and leta be an arbitrary character from alphabetΣ. If
there is a nodeu in TS such thatσ(u) = ax, then there also exist a nodev ∈ TS such thatσ(v) = x.

The second property suggest to augment the tree with the so-calledsuffix links, i.e. additional pointers from
the node associated withax to the node associated withx. Since each node ofTS has exactly one outgoing
suffix link, the introduction of suffix links increases the memory space requirement ofTS only by a constant
factor. In a flat-memory model, a suffix tree augmented with suffix links can be constructed inΘ(N) time
if Σ has finite cardinality, orΘ(N log N) time if Σ is unbounded (several algorithms exist; the classical
reference is [24]). A suffix tree contain a sorted set of strings, therefore the computational complexity of
sorting is a lower bound to the complexity of suffix tree construction: as a consequence, anyO (N log N)
algorithm is optimal in the comparison model. The same line of reasoning holds if the I/O complexity of
sorting is considered. Recently, Farach-Colton et al. have developed an external-memory algorithm to build
TS in sorting I/O complexity [16], which is optimal in the I/O model of computation. The algorithm is based
on the following divide-and-conquer strategy.

1. Theodd treeTo of TS is recursively built. The odd tree is the compacted trie built on the suffixes of
S that start in odd positions.

2. Theeven treeTe of TS is recursively built.

3. To andTe are merged to getTS .

A deterministic construction of the odd and even trees is detailed in [15]. The idea to buildTo is to sort
theN/2 pairs of consecutive characters of the form(S[2i − 1], S[2i]) and eliminate the duplicates in the
sorted list. The compacted list is used to build a new stringS′ over alphabet{1, 2, . . . , N/2}: S′[i] is the
rank of(S[2i − 1], S[2i]) in the compacted list. After that, the suffix treeTS′ for S′ is recursively built. A
key property ofTS′ is that there is an injective map from the internal nodes ofTS′ at leveli and the internal
nodes ofTo at level2i: exploiting this mapping,To can be obtained fromTS′ in sorting I/O complexity.
OnceTo is known, the even treeTe can be calculated from it: this is possible because each even prefix is
just a suitable odd prefix with an extra character attached at its head. The lexicographic order of the leaves
of Te is determined by taking the lexicographically sorted list of the leaves ofTo (which, in turn, is given by
an inorder visit ofTo), then sorting it usingS[2i − 2] as the key for the leaf associated with the odd prefix
S[2i−1, N ]; a stable sorting algorithm must be used. After that, the length of the longest common prefix for
each pair of adjacent leaves inTe is computed by taking advantage of Property 1 of suffix trees (see above).
Finally, the even treeTe is reconstructed from the sorted list of its leaves and the information about longest
common prefixes.

Let Tsuf(N) be the I/O complexity of building the suffix treeTS for a string of lengthN , and let
Tmerge(N) be the complexity of merging the odd and even trees ofTS . As a whole,Tsuf(N) obeys the
following recurrence relation:

Tsuf(N) = Tsuf(N/2) + αTsort(N) + Tmerge(N),

whereα is a suitable constant. All that remains to do is to determineTmerge(N). The merging phase is
the most technically complex part of the algorithm: structural properties of the suffix trees are exploited
to efficiently perform this step. The merging algorithm is based on the knowledge ofmerge nodesin both
the odd and the even tree;v is said to be a merge node if the node it gives birth to inTS has descendants
coming from bothTo andTe. Once merge nodes are known,TS can be built by simultaneously visiting the
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Euler tours ofTo andTe and undertaking appropriate measures every time a merge node is encountered; the
calculation of the Euler tours is the most expensive operation of this process, and it can be done in sorting
I/O complexity [11]. In turn, merge nodes are located with the aid ofanchor nodesandside trees. A node
vo ∈ To is an anchor node if it has a “twin” nodeve ∈ Te such thatσ(vo) = σ(ve); anchor nodes clearly
exist in pairs. A side tree is a maximal subtree ofTo (or of Te) that contains no anchor nodes. All anchor
nodes and their ancestors are merge nodes, but only some of their descendants have the same property: to
be precise, the descendants of anchor nodes which are also merge nodes form paths (calledzippers) inside
the side trees. Farach-Colton et al. demonstrate that both anchor nodes and zippers can be located in sorting
I/O complexity: as a consequence, we can conclude thatTmerge(N) = O (Tsort(N)) and the whole suffix
treeTS can be built in sorting I/O complexity.

Although the algorithm of [16] is asymptotically optimal, it is unpractical because of the constant hidden
by the big-oh notation; what’s more, the building of the tree requires a large amount of working space to store
auxiliary data structures. As a matter of fact, all known practical algorithm for suffix tree construction still
exhibit aΘ

(
N2
)

worst-case I/O complexity, and they typically require between16N and26N memory cells
to accomplish their task [12, 13]. Since these space/time complexities are often unacceptable in practice,
more compact (albeit less powerful) indexing structures have been developed. Among such structures, the
most famous one is undoubtedly thesuffix array.

The suffix array [23] is usually regarded as a “simplified version” of a suffix tree, and this is the reason
why we describe it in this section; anyway, a suffix array can be defined for a generic trie [16]. The suffix
arraySAT of a trieT is a pair of arrays: thesort arrayAT and thelongest common prefix arrayLCPT ;
AT [i] points to thei-th leaf ofT in the lexicographic order, andLCPT is the length of the longest common
prefix of the strings associated with leavesi and i + 1, again according to the lexicographic order. IfT
is a suffix tree, then the corresponding suffix arraySAT is usually stored through the sort array alone. In
other words, the suffix array of a suffix treeTS is a single arrayATS

containing the lexicographically sorted
sequence of the suffixes ofS: ATS

[i] is an integer that indicates the starting position of thei-th suffix inside
stringS. If N = |S| ≤ 232, which is true in most practical cases, thenATS

occupies4N bytes, i.e. four
times less than a typical suffix tree. The suffix array can be used to performprefix-search( K) . Let
imin = min{i | the suffixS[i] is not lexicographically smaller thanK}, and letimax = max{i | the suffix
S[i] is not lexicographically bigger thanK}; the values ofimin andimax are determined through a binary
search in the array, then the suffixesS[imin], S[imin + 1], . . . , S[imax] are produced in output as the result of
the query. The I/O complexity of this algorithm isO ((|K|/B) log N + k/B), wherek = imax − imin + 1
is the number of results to the query.

It remains to be seen how much time does it take to build a suffix array. A thorough work in this sense has
been done by Crauser and Ferragina [13], who analyzed six different algorithms for suffix array construction
from both a theoretical and experimental point of view; in this paper, anyway, we will survey only three of
them, since the other three offer inferior performances from both points of view. Crauser and Ferragina use
the I/O model for their theoretical study, but they choose to perform a separate accounting of bulk I/Os and
random I/Os. We have abulk I/Owhen a sequence of at least two contiguous disk pages is accessed; instead,
a random I/Ois any single-page disk access which is not part of a bulk I/O. This distinction is motivated by
current disk technology: in a modern hard disk, in fact, the access time is nearly completely due to the time
required to move the disk head and position it accurately over the desired track; once the head is in place, the
high rotational speed of the disk and the high areal density of the tracks make it possible to read consecutive
blocks very quickly. As a consequence, [13] suggests that bulk I/Os must be considered less expensive than
random I/Os: algorithmA1 may perform a higher number of I/Os than algorithmA2, but if the fraction of
random I/Os is higher forA1 then it may prove the faster algorithm in practice. The experimental part of
[13] proves this observation is well founded.

From a theoretical point of view, the fastest known algorithm for the construction of suffix arrays is
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the one proposed by Manber and Myers together with the suffix array itself [23]. The MM algorithm is
organized intodlog2 N + 1e stages. In the first stage, theN suffixes ofS are put into|Σ| distinct buckets
according to their first symbol; it is assumed that the buckets are arranged following the lexicographic order
of the symbols, so that after the first stage the suffixes are lexicographically sorted according to their first
symbol. In the subsequent stages, the content of the buckets is further partitioned by sorting (via radix
sort) according to an ever increasing number of symbols: to be precise, during stagei the suffixes are
lexicographically sorted according to the first2i symbols, therefore at the end of the stage the suffixes in
the same bucket exhibit a common prefix of length2i. After the last stage each bucket contains exactly
one suffix, soATS

is obtained by looking up the buckets in order. While this algorithmic idea is simple,
its time/space efficient implementation is not trivial; anyway, it can be proved that each sorting stage has
O (N) worst-case I/O complexity and uses4N extra space, hence the algorithm of Manber and Myers
requiresO (N log N) I/Os and8N overall space. The I/Os come from repeated sorting operations, and they
are all random.

The algorithm of Gonnet et al. [20] similarly takes an incremental approach to the construction of the
suffix array: during each step a new portionSAint of the array is calculated in internal memory, then it is
merged with the previously-built portionSAext which is stored in external memory. The stringS is loaded
into main memorym cells at a time, wherem = λM andλ < 1 is a constant that is chosen to ensure that all
necessary data structures fit into main memory; the GBS algorithm then requiresdN/me = Θ(N/M) steps
to complete. For ease of presentation we assume thatm dividesN evenly. During stepi, 1 ≤ i ≤ N/m,
substringS[(i − 1)m + 1, im] is taken into main memory, then the suffix arraySAint is generated which
contains only the suffixes beginning insideS[(i− 1)m + 1, im]; note that this may require further accesses
to disk since it may be necessary to knowS[im + 1, (i + 1)m] to perform the comparison of two suffixes
that begin in the current block ofS. WhenSAint is ready, it is merged withSAext with the help of a counter
arrayC that is built as follows:S is scanned from left to right andC[j] is incremented every time a suffix
S[i,N ] lexicographically lies betweenSAint[j − 1] andSAint[j]. With the help ofC the position of the
new suffixes ofSAint insideSAext can be easily determined, and the merging process then requires just a
scan ofSAext. It is not difficult to prove that at the end of stepi SAext is the lexicographically sorted set of
suffixesS[0, N ], S[1, N ], . . . , S[im,N ], thereforeSAext = ATS

when the last step is over. The theoretical
analysis of the GBS algorithm demonstrates that it requires8N memory cells andO

(
(N3 log M)/(MB)

)
I/Os in the worst case, which is completely unappealing if compared to the MM algorithm. Crauser and
Ferragina, anyway, make two crucial observations.

• Worst-case analysis is too pessimistic in this case: under very mild assumptions on the input stringS
(assumptions which are usually verified in practice) the I/O complexity of the algorithm is reduced to
O
(
N2/M2

)
.

• Nearly all I/Os are bulk because they are caused by scan operations.

For these reasons the conjecture is made that the GBS algorithm may still be efficient in practice. Indeed,
Crauser and Ferragina implemented the algorithms of both [23] and [20], and experimental evidence shows
that the GBS algorithm decidedly outperforms the one of Manber and Myers. As a matter of fact, the
MM algorithm is faster as long as all its data structures are contained in main memory, but when this is no
longer true the performance of theMM algorithm quickly declines because of random I/Os, and it becomes
unacceptable even for mildly sized problem instances. This result shows that the I/O model of computation,
which has been explicitly designed to model disks, may nonetheless lead to wrong conclusions.

Moving from the above observations, Crauser and Ferragina propose a new algorithm of their own,
which we will call theL-pieces algorithm. The name is justified by the fact thatL sorted arraysA1, A2,
. . ., AL are built instead of one; arrayAi stores the lexicographically ordered set of suffixes{S[i, N ], S[i +
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L,N ], S[i + 2L,N ], . . .}¶. Array AL is built first: the set of strings{S[L, 2L − 1], S[2L, 3L − 1], . . .} is
sorted, then each string is replaced by its rank in the sorted list, thus composing an auxiliary textS′. The
sort arrayATS′ for S′ is then built in internal memory, and the suffix array is finally obtained by setting
AL[i] = ATS′ [i] · L, 1 ≤ i ≤ N/L. OnceAL is known, the other sorted arrays can be quickly built
by observing that a suffixS[i + kL,N ] in Ai is the concatenation of characterS[i + kL] and the suffix
S[i + 1 + kL,N ] in Ai+1: consequently,Ai can be built fromAi+1 by sortingN/L pairs of the form
(S[i + kL],posi+1+kL), whereposj is the rank of suffixS[j,N ] in Ai+1.

By settingL = 4, Crauser and Ferragina obtain a suffix array construction algorithm that needs6N
memory cells of working space,O (sort(N) log N) random I/Os andO ((N/M) log(N/M)) bulk I/Os. In
other words, theL-pieces algorithm exhibits a better theoretical complexity than the GBS algorithm, and it
also proves to be somewhat faster in practice [13]; anyway, it must be remembered that the suffix array it
gives is split into pieces, which may or may not be acceptable depending on the application. In the most
favorable case, the query performance with such a structure is slowed down by a constant factorL.
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