
University of Padova - DEI
Course “Introduction to Natural Language Processing”, Academic Year 2002-2003

Term paper
Fast Matrix Multiplication

PhD Student: Carlo Fantozzi, XVI ciclo

1 Introduction and Contents

This term paper illustrates some results concerning the fast multiplication ofn × n matrices: we use
the adjective “fast” as a synonym of “in time asymptotically lower thann3”. This subject is relevant to
natural language processing since, in 1975, Valiant showed [27] that Boolean matrix multiplication can
be used to parse context-free grammars (or CFGs, for short): as a consequence, a fast boolean matrix
multiplication algorithm yields a fast CFG parsing algorithm. Indeed, Valiant’s algorithm parses a string
of lengthn in time proportional toTBOOL(n), i.e. the time required to multiply twon × n boolean
matrices. Although impractical because of its high constants, Valiant’s algorithm is the asymptotically
fastest CFG parsing solution known to date. A simpler (hence nearer to practicality) version of Valiant’s
algorithm has been devised by Rytter [20].

One might hope to find a fast, practical parsing scheme which do not rely on matrix multiplica-
tion: however, some results seem to suggest that this is a hard quest. Satta has demonstrated [21] that
tree-adjoining grammar(TAG) parsing can be reduced to boolean matrix multiplication. Subsequently,
Lee has proved [18] that any CFG parser running in timeO

(
gn3−ε

)
, with g the size of the context-free

grammar, can be converted into anO
(
m3−ε/3

)
boolean matrix multiplication algorithm∗; the constants

involved in the translation process are small. Since canonical parsing schemes exhibit a linear depen-
dence ong, it can be reasonably stated that fast, practical CFG parsing algorithms can be translated into
fast matrix multiplication algorithms. These reductions of matrix multiplication to parsing, together with
the fact that extensive research has failed to discover a practical fast algorithm for matrix multiplication,
provide evidence of the difficulty of finding a practical, sub-cubic parsing scheme.

The contents of this term paper are as follows.

• In Section 2 we first survey available solutions for multiplying arbitrary (i.e., non-boolean) ma-
trices. In particular, we focus our attention on the well-knownO

(
nlog 7

)
algorithm of Strassen,

which is regarded as the only sub-cubic solution of practical relevance for the problem under con-
sideration. We give an upper bound on the constant hidden by the big-oh notation, and we also
hint at some design issues that must be faced in real-world implementations of the algorithm.

• In Section 3 we introduce the problem of boolean matrix multiplication, and we point out the
differences with the problem of multiplying arbitrary matrices. We also sketch a way of computing
the product of boolean matrices by making use of an algorithm for arbitrary matrices.

• In Section 4 we show how, given an algorithmA for the multiplication ofn× n matrices defined
over aring, a randomized algorithm can be devised which multiplies boolean matrices by making
use ofA and with a logarithmic slowdown with respect toA. This result is basically a solution
of Exercise 31-1 in [10]; we remark that the section on boolean matrix multiplication has been
completely removed in the second edition of the book.

∗Context-free languages are a proper subset of the languages generated by TAGs; however, Satta’s reduction explicitly
relies on TAG properties that allow non-context-free languages to be generated, hence it cannot be applied to CFG parsing.

1

• In Section 5 we mainly focus on a problem which is related to matrix multiplication, namely
matrix multiplication checking. A matrix multiplication checker takes as input three square ma-
tricesA, B, andC and reveals whether or notC is the product ofA andB. The relevance of
this problem to natural language processing is due to the fact that Harrison and Havel provide
[14, 15] a reduction of boolean matrix checking to context-free recognition. In the same section,
we also give some bibliographical notes on two further problems:matrix multiplication witnesses
andtransitive closure.

2 Fast Matrix Multiplication

The standard algorithm for multiplying twon × n matrices requires exactlyn3 multiplications and
n2(n− 1) additions, for a total of2n3 − n2 scalar arithmetic operations. The first and most famous fast
algorithm for matrix multiplication (or MM, for short) is certainly the one due to Strassen [23], which
requires onlyO

(
nlog 7

)
= O

(
n2.808

)
operations. Strassen’s algorithm is based on a nontrivial way of

multiplying 2 × 2 matrices using7 (instead of8) multiplications at the price of increasing the number
of additions from4 to 18; some of the additions are actually subtractions, so the algorithm works for
matrices defined over aring†; see Section 3 for a formal definition of what a ring is.

If n ≥ 2 is even, the algorithm of Strassen can be easily presented in the following, recursive fashion.
The productC = AB can be decomposed as

C =
[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
.

The four submatrices contained inC can be computed by first calculating the7 auxiliary submatrices

P1 = (A11 + A22)(B11 + B22),
P2 = (A21 + A22)B11,
P3 = A11(B12 −B22),
P4 = A22(B21 −B11),
P5 = (A11 + A12)B22,
P6 = (A21 −A11)(B11 + B12),
P7 = (A12 −A22)(B21 + B22),

and then by appropriately combining the auxiliary submatrices to obtain the final result:

C =
[

C11 C12

C21 C22

]
=

[
P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 − P2 + P3 + P6

]
.

Due to the recursive nature of the algorithm, its running timeTSTRAS(n), measured in terms of arith-
metic operations, is given by a recurrence equation. Under the hypothesis thatn is a power of2, such
equation is simply

TSTRAS(n) =
{

7TSTRAS(n/2) + 18(n/2)2 for n > 2,
25 for n = 2,

Our calculations show thatTSTRAS(n) ≤ 7nlog 7. Quoting Strassen himself, [16] gives the following,
tighter bound:

TSTRAS(n) ≤ 4.7nlog 7.

These bounds show that the constant hidden by the big-oh notation is quite low.

†For the sake of completeness, we add that Strassen’s algorithm does not require multiplication to be commutative.

2

The results of Strassen’s work started a competition among researchers to find faster and faster solu-
tions for matrix multiplication. An historical account of the progresses made on the subject can be found
in [24]; [18] has a graph plotting the exponentω of the best available matrix multiplication algorithm as
it decreases from3 (before 1969) to 2.376 (from 1987 [8] to now). The fastest MM algorithm currently
known, which exhibits time complexityO

(
n2.376

)
, is due to Coppersmith and Winograd [9]. It must be

remarked that the constants involved in algorithms improving on Strassen’s result are very large: as is
often the case in Computer Science, the asymptotically faster an algorithm is, the larger the constants.
As a practical consequence, these fast MM algorithms are only of theoretical interest.

As for Strassen’s algorithm itself, its practicality needs some consideration. The algorithm can
be applied in a straightforward fashion ifn is a power of2, but a real-world implementation must
efficiently handle matrices of arbitrary size: in this scenario, nontrivial design issues arise. In dealing
with such issues, the number of arithmetic operations performed does not give a good predictor of actual
performance [16]: as a consequence, optimal design choices depend on the platform for which the
algorithm is being tuned. Among design choices, the most significant is probably the one of the so-
called “cutoff point”, i.e. the matrix sizen at which the overhead due to Strassen’s algorithm makes it
convenient to truncate the recursion and switch to a trivial,O

(
n3

)
solution. Empirical studies [5, 16, 25]

show that the cutoff point is between 64 and 128 depending on the platform, hence we can say that
Strassen’s algorithm offers a clear performance advantage ifn > 100.

For the sake of completeness, we note that a bibliographical search for randomized MM algorithms
yielded no results.

3 Boolean Matrix Multiplication

In this section we analyze the problem of multiplying twon × n boolean matricesA andB, so as to
determineC = AB. We call this theboolean matrix multiplicationproblem, or BMM for short. We
recall that the elements of boolean matrices belong to the finite set{0, 1}; the productAB is performed
as for matrices of real numbers, provided the familiar sum and product operators are replaced by the
OR operator and the AND operator, respectively. As a consequence, the generic elementcij of C,
1 ≤ i, j ≤ n, is given by

cij =
n∨

k=1

(aik ∧ bkj).

The AND and OR operators are denoted with the usual symbols∧ and∨. The following facts can be
proved.

• The5-tupleQ
∆= {{0, 1},∨,∧, 0, 1} is aquasiring.

• Matrices over aring form a ring.

• Matrices over a quasiring form a quasiring, hence boolean matrices are defined over a quasiring.

Since there is a bit of confusion in the literature about the terms “quasiring” and “semiring”, we hereby
include a full definition of a quasiring. A5-tuple(S,⊕,�, 0̄, 1̄) is a quasiring if it satisfies the following
properties.

1. If a ∈ S andb ∈ S, thena⊕b ∈ S. a⊕(b⊕c) = (a⊕b)⊕c for all a, b, c ∈ S. a⊕ 0̄ = 0̄⊕a = a
for all a ∈ S. (We say that(S,⊕, 0̄) is amonoid.)

2. a� 0̄ = 0̄� a = 0̄ for all a ∈ S. (We say that̄0 is anannihilator.)

3. a⊕ b = b⊕ a for all a, b ∈ S. (We say that the⊕ operator iscommutative.)

3

x y x ∧ y x ∨ y x⊕ y

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 1: Truth tables of the AND, OR and XOR operators.

4. a� (b⊕ c) = (a� b)⊕ (a� c) for all a, b, c ∈ S. (We say that the� operatordistributesover⊕.)

A quasiring(S,⊕,�, 0̄, 1̄) is a ring if every elementa ∈ S admits anadditive inverse, i.e. an element
ā ∈ S such thata ⊕ ā = ā ⊕ a = 0̄. We explicitly note that1 does not have an additive inverse inQ,
thereforeQ is a quasiring but not a ring.

The asymptotically fastest way known to perform BMM is to rely on algorithms for multiplying
arbitrary, dense matrices. According to [18], the fastest algorithms that do not follow this idea are the
so-called “four Russians” algorithm [4], with a worst-case running time ofO

(
n3/ log n

)
, and its variant

due to Rytter [19], which uses compression to reduce the running time toO
(
n3/ log2 n

)
. As it can

be seen, the asymptotic performance of these algorithms is really poor if compared to that of the fast
MM strategies we cited in Section 2: indeed, these algorithms are asymptotically slower than Strassen’s,
which is also considered practical.

It must be noticed that many fast matrix multiplication algorithms work for matrices defined over the
set of natural or real numbers, which silently implies that the matrices are defined over a ring or afield.
However, these algorithms can be employed to solve the BMM problem by making use of the following,
straightforward procedure.

LetA be an algorithm for multiplying matrices over a ringR
By making use ofA, calculate the productC ′ of A and B overR
for i← 1 to n

for j ← 1 to n
if c′ij = 0 then cij ← 0 elsecij ← 1

An often neglected point in this procedure is the analysis of the space which is required to storeC ′ and
the auxiliary data structures possibly needed byA. It is easy to see that0 ≤ c′ij ≤ n, hencelog n bits
suffice to store a single element ofC ′: since we are dealing withn × n matrices, we can reasonably
suppose that a memory word has at leastlog n bits. However, nothing can be saida priori concerning
the intermediate results generated byA: large intermediate values may require many machine words
to be stored or raise numerical stability issues, thus hampering the practicality of the whole procedure.
Modular arithmetic can be used to keep intermediate results within given bounds: for example, in [12]
it is shown how Strassen’s algorithm can be adapted to BMM by performing all computations modulo
n + 1.

4 Shamir’s Boolean Matrix Multiplication Algorithm

Let us denote with⊕ the eXclusive OR (XOR) operator. The5-tuple

R
∆= {{0, 1},⊕,∧, 0, 1}

is a ring: in fact,

4

a b c a⊕ (b⊕ c) (a⊕ b)⊕ c

0 0 0 0⊕ 0 = 0 0⊕ 0 = 0
0 0 1 0⊕ 1 = 1 0⊕ 1 = 1
0 1 0 0⊕ 1 = 1 1⊕ 0 = 1
0 1 1 0⊕ 0 = 0 1⊕ 1 = 0
1 0 0 1⊕ 0 = 1 1⊕ 0 = 1
1 0 1 1⊕ 1 = 0 1⊕ 1 = 0
1 1 0 1⊕ 1 = 0 0⊕ 0 = 0
1 1 1 1⊕ 0 = 1 0⊕ 1 = 1

Table 2: The XOR operator is associative.

1. Table 1 trivially demonstrates thatR is closed under⊕ and that0 is an identity for⊕. Furthermore,
⊕ is associative, as proved by Table 2. Consequently,(R,⊕, 0) is a monoid.

2. 0 is an annihilator with respect to the AND operation (see Table 1).

3. The⊕ operator is commutative: the proof is, once again, obtained by inspecting Table 1.

4. The∧ operator distributes over⊕, that is,a∧(b⊕c) = a∧b⊕a∧c. Since the set of numbers we are
considering contains only two elements, the easiest way to prove this fact is by direct inspection of
the8 possible combinations ofa, b andc: the results of such inspection are contained in Table 3.

a b c a ∧ (b⊕ c) a ∧ b⊕ a ∧ c

0 0 0 0 ∧ 0 = 0 0⊕ 0 = 0
0 0 1 0 ∧ 1 = 0 0⊕ 0 = 0
0 1 0 0 ∧ 1 = 0 0⊕ 0 = 0
0 1 1 0 ∧ 0 = 0 0⊕ 0 = 0
1 0 0 1 ∧ 0 = 0 0⊕ 0 = 0
1 0 1 1 ∧ 1 = 1 0⊕ 1 = 1
1 1 0 1 ∧ 1 = 1 1⊕ 0 = 1
1 1 1 1 ∧ 0 = 0 1⊕ 1 = 0

Table 3: The AND operator distributes over the XOR operator.

5. Every elementa ∈ R has anadditive inverse, that is, an element̄a ∈ R such thata⊕ā = ā⊕a = 0:
to be precise, the inverse of0 is 0 and the inverse of1 is 1. The proof of this statement is given,
once again, by Table 1.

By what we said in Section 3, we can immediately conclude that matrices defined overR form a ring,
therefore they can be multiplied by making use of any algorithmA for matrices defined over a ring.
We will now show how to solve the problem of multiplying twon × n boolean matricesA andB by
repeatedly applyingA.

Let aij ∈ {0, 1} be the element in rowi and columnj of matrixA; we will indicate the correspond-
ing elements ofB andC = AB asbij andcij , respectively. The first step of our strategy prescribes to
generateA′ from A using the randomized procedure that follows.

• If aij = 0, thena′ij = 0.

5

• If aij = 1, then leta′ij = 0 with probability 1/2 and leta′ij = 1 with probability 1/2. The
random choices for distinct matrix entries are independent.

OnceA′ has been built, it is possible to calculateC ′ ∆= A′B in the ringR by making use of algorithmA.
There is a strict correlation betweenC ′ and the matrix productC we are trying to calculate: as a matter
of fact, the following lemma can be proved.

Lemma 4.1 If cij = 0, thenc′ij = 0. If cij = 1, thenc′ij = 1 with probability no smaller than1/2.

Proof Elementcij of C can be expressed as

cij =
n∨

k=1

(aik ∧ bkj) = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ . . . ∨ (ain ∧ bnj), (1)

while elementc′ij of C ′ can be calculated as follows:

c′ij =
n⊕

k=1

(a′ik ∧ bkj) = (a′i1 ∧ b1j)⊕ (a′i2 ∧ b2j)⊕ . . .⊕ (a′in ∧ bnj). (2)

If cij = 0, then all the terms in parentheses that appear in Equation (1) are equal to zero: we will now
show that, in this case, all the terms in Equation (2) are zero as well, thus proving thatc′ij = 0. Consider
the generic term(aik ∧ bkj), with 1 ≤ k ≤ n: by the truth table of the AND operator, this term evaluates
to 0 if at least one ofaik andbkj is zero. Ifbkj = 0, we can immediately conclude thata′ik ∧ bkj = 0
in Equation (2). Instead, ifbkj 6= 0 then it must necessarily beaik = 0: in this case, the procedure that
was used to generateA′ ensures thata′ik = 0 with probability1, hencea′ik ∧ bkj = 0.

If cij = 1, then one or more of the terms which appear in Equation (1) are equal to one, and all the
others are obviously equal to zero. By the proof for the casecij = 0, we can straightforwardly conclude
that if a term evaluates to zero in Equation (1), then the corresponding term in Equation (2) is also zero:
as a consequence, we will concentrate on the values ofk such thataik ∧ bkj = 1. For any such value,
it must necessarily beaik = bkj = 1, thusa′ik = 1 with probability1/2: by the truth table of the XOR
operator, the probability of havinga′ik ∧ bkj = 0 is therefore1/2. To sum things up, we can say that the
probability of havinga′ik ∧ bkj = 0 is 1 if aik ∧ bkj = 0, and it is1/2 otherwise. Now, the probability
of c′ij being1 is at least

1− P [a′ik ∧ bkj = 0 ∀k]− P [a′ik ∧ bkj = 1 ∀k],

which can be immediately rewritten as

1−
n∏

k=1

P [a′ik ∧ bkj = 0]−
n∏

k=1

(1− P [a′ik ∧ bkj = 0])

because the values assumed by then terms are not correlated. Unfortunately, to give an upper bound on
P [c′ij = 1] it is necessary to distinguish between two cases. If all the terms in Equation (1) evaluate to
1, then

P [a′ik ∧ bkj = 0 ∀k] = P [a′ik ∧ bkj = 1 ∀k] = 1/2n

and consequentlyP [c′ij = 1] ≥ 1 − 1/2n−1 ≥ 1/2. If at least one term in Equation (1) evaluates to0,
thenP [a′ik ∧ bkj = 1 ∀k] = 0 and

P [c′ij = 1] ≥ 1−
n∏

k=1

P [a′ik ∧ bkj = 0] = 1− 1/2m,

wherem ≥ 1 is the number of terms that evaluate to1 in Equation (1). Once again, we can therefore
conclude thatP [c′ij = 1] ≥ 1/2. �

6

The lemma shows that matrixC ′ gives useful information onC: in particular, ifc′ij = 1 then we can
immediately concludecij = 1, since, by Lemma 4.1, a value of0 in cij always yieldsc′ij = 0. The
interpretation ofC ′ is more complicated ifc′ij = 0. This event, in fact, can be explained in two different
ways:

1. cij = 0, which necessarily givesc′ij = 0;

2. cij = 1, which, by Lemma 4.1, givesc′ij = 0 with probability smaller than1/2.

In other words, ifc′ij = 0 there is a certain probability thatc′ij 6= cij ; however, a technique can be
devised to reduce this probability to arbitrarily small values through the repeated evaluation ofA′B
with ` different instances ofA′, namedA′

1, . . ., A′
`. This technique gives birth to Shamir’s algorithm,

whose pseudo-code is given in Figure 1. The SHAMIR-MULT algorithm calculates the desired product

SHAMIR-MULT(A, B)
C ← 0
for k ← 1 to `

GenerateA′
k

ComputeC ′
k = A′

kB by making use of algorithmA
Let c′(k)

ij be the element which occupies rowi and columnj of C ′
k

for i← 1 to n
for j ← 1 to n

if c
′(k)
ij = 1 then cij ← 1

return C

Figure 1: Shamir’s boolean matrix multiplication algorithm.

C of boolean matricesA andB; by what we said above,C may contain errors because noC ′
k gives

completely reliable information onC. We will now analyze the probability of making an error, and we
will show that such probability decreases with`. Consider the generic elementcij of C: it is easy to see

that the algorithm makes a mistake only if the true value ofcij is 1, while c
′(k)
ij never takes such value

for every1 ≤ k ≤ `. The probability that this happens is

P [cij is assigned a wrong value] = P [c′(k)
ij = 0 ∀k] =

∏̀
k=1

P [c′(k)
ij = 0] < 1/2`. (3)

The above result has been obtained by remembering that the matricesC ′
k are generated in independent

events, and by plugging in the probabilities stated in Lemma 4.1. Equation (3) gives the probability of
having an error at a specific position inside matrixC: the probability of having at least one error inC is
upper bounded by

n∑
i,j=1

P [cij is assigned a wrong value] < n2/2`,

therefore the probability ofC being correct is at least

1− n2/2`. (4)

We are finally ready to state the main result of this section.

Theorem 4.2 LetA be an algorithm that computes the product ofn × n dense matrices over a ring in
timeT (n). For any constantk > 0, there exists anO (T (n) log n) randomized algorithm that computes
the product of twon× n boolean matrices with probability at least1− 1/nk.

7

Proof Consider the boolean matrix multiplication algorithm of Figure 1, and let`
∆= d(2 + k) log ne.

The generation ofA′
k for a fixedk, and the subsequent inspection ofC ′

k, takes timeΘ
(
n2

)
, while the

calculation ofC ′
k clearly requires timeT (n). SinceT (n) = Ω

(
n2

)
and there arè matrices to generate

and check, the running time of the algorithm in Figure 1 is

O
((

n2 + T (n)
)
`
)

= O (T (n)(2 + k) log n) = O (T (n) log n) .

The probability of the solution being correct is given by Equation (4) and is

1− n2

2`
≥ 1− n2

n2+k
= 1− 1

nk
.

�

For example, ifA is the well-known algorithm of Strassen, thenT (n) = O
(
nlog7

)
and SHAMIR-MULT

gives anO
(
nlog7 log n

)
BMM algorithm.

5 Matrix Multiplication Checking and More

Up to now we have examined solutions to the problem of determining the productC = AB of square
matricesA andB. In this section, we will shift our attention to the problem ofmatrix multiplication
checking: A, B andC are given, and our aim is to verify whetherC = AB. A naive solution to this
problem calculatesC ′ = AB, then comparesC ′ with C; the speed and practicality of this approach
entirely depend on the matrix multiplication algorithm which is adopted. To the best of our knowledge,
this is the best deterministic solution available to date.

Randomized solutions exist that can do asymptotically better. In 1979, Freivalds proposed [13]
a randomized algorithm that performsn × n matrix multiplication checking in timeO

(
n2

)
. In this

section, we describe and analyze the following, generalized version of Freivalds’ algorithm [7].

MULT-CHECK(A, B, C)
1. Randomly choose a vectorv from a finite setS of test vectors.
2. ComputeABv.
3. ComputeCv.
4. if ABv = Cv then return “C is the product ofA andB”
5. else return “C is not the product ofA andB”.

Since the matrix-vector product is associative, Step2 can be performed by calculatingA(Bv). As a
consequence, the above algorithm requires at most3n2 multiplications and3n(n− 1) additions.

As it can be easily seen, the solution returned by Freivalds’ algorithm may be incorrect. To be
precise, ifAB = C then the algorithm always returns the right answer; however, ifAB 6= C then
the algorithm returns a wrong answer with a certain probability. We will now give an upper bound on
the probability of error based on therank of the setS of test vectors; recall that the rank ofS is the
cardinality of the largest subsetS′ ⊆ S such that any linear combination of vectors inS′ gives a nonzero
result. Moreover, recall that the rank of a matrixM is the rank of the set generated by the columns of
M . Finally, in our analysis we will make use of the following

Fact 5.1 Given ann×m matrixM with entries from an integral domain,rank(M) < n if and only if
there is a nonzero vectorv such thatv>M = 0.

The following theorem proves‡ that the error rate of Freivalds’ algorithm depends onrank(S).

‡Note that the proof, found in [7], needs modifications to work with boolean matrices.

8

Theorem 5.2 Let S be the set of test vectors used in Freivalds’ algorithm. If every set ofk distinct
vectors inS has rankn, then the probability of error of the algorithm is at most(k − 1)/|S|.

Proof Consider the matrixM
∆= AB − C. It is straightforward to see that Freivalds’ algorithm returns

an incorrect answer only ifM 6= 0 andMv = 0, therefore the probability of errorp of the algorithm is

p =
|{v ∈ S |Mv = 0}|

|S|
.

To prove that the theorem holds, we will now show that there are no more thank− 1 vectors inS whose
product withM is 0. Suppose this assertion is not true: it is then possible to findk vectorsv1, . . ., vk

such thatMvi = 0 for 1 ≤ i ≤ k. Now, consider the matrix

V
∆=

 v1 v2 · · · vk

 .

SinceMV = 0 andM 6= 0, there exists a nonzero rowm of M such thatmV = 0. Therefore, by
Fact 5.1 we can conclude thatrank(V) < n, which contradicts the hypothesis that every set ofk vectors
taken fromS has rankn. �

In the original version of Freivalds’ algorithm,S is the set of vectors defined over{0, 1}: in other words,
v ∈ S if and only if v ∈ {0, 1}n. For this choice ofS, Theorem 5.2 immediately leads to the following

Corollary 5.3 For any constantk > 0, there exists anO
(
n2

)
randomized algorithm that verifies the

product of twon× n matrices with probability at least1− 1/2k.

Proof (sketch) LetS = {v | v ∈ {0, 1}n} be the set of test vectors as defined in the original formulation
of Freivalds’ algorithm: any subsetS′ ⊂ S with |S′| = 2n−1 + 1 has rankn (there are simply too many
vectors inS′ to be contained in a space of dimensionn − 1), therefore we can apply Theorem 5.2 with
k = 2n−1 + 1 and|S| = 2n, and conclude that the probability of error is at most1/2. The error rate
stated in the corollary is obtained by iterating Freivalds’ algorithmk times; the running time is trivially
obtained by observing that each iteration requiresO

(
n2

)
arithmetic operations and comparisons.�

Since 1979, the researchers have focused on reducing the cardinality of setS, therefore reducing the
number of random bits required by the algorithm. As we have already said, the original formulation due
to Freivalds uses a set of test vectors whose cardinality is2n, thus requiringn random bits to choose an
element ofS. Alon et al. [1] give a test vector space of sizeO

(
n2

)
, which can be used to implement

Freivalds’ algorithm with only2 log n + O (1) random bits. The number of random bits is further
reduced tolog n + O (1) in [26]; however, this construction is limited to matrices defined overGF(2),
that is, over the finite field with arithmetic modulo2. Finally, in [17] the algorithm of Freivalds is further
modified so that exactlydlog ne + 1 random bits are enough to choose an element from the set of test
vectors.

As a final remark, we just cite two more problems which are related to boolean matrix multiplication
and, consequently, to natural language processing. The first problem is the computation ofwitnesses
for BMM: given two n × n boolean matrices, a witness for an elementcij ∈ C = AB is an integerk
such thataik = bkj = 1. Solving the problem of witnesses for given matricesA andB means finding
a witness (if one exists) for all pairs(i, j), 1 ≤ i, j ≤ n. Both randomized and deterministic solutions
exist for this problem, which is at least as difficult as BMM (it is straightforward to build a reduction):
see e.g. [2, 3, 22] for details.

9

The last problem we are willing to cite goes under the name oftransitive closure§. Given a directed
graphG = (V,E), whereV is the set of vertices andE is the set of edges, the transitive closure of
G is a graphG′ = (V,E′) such that, for allu, v ∈ V , (u, v) ∈ E′ if and only if there is a path inG
that connectsu to v. The relation between transitive closure and BMM is clear if the setsE andE′

are represented through adjacency matrices; as a matter of fact, the asymptotically fastest algorithms for
transitive closure rely on BMM as a primitive [6]. “Traditional” algorithms for transitive closure [10]
takeO (mn) time in the worst case. For transitive closure, see [4, 12]. Transitive closure has also been
studied for undirected graphs [22]; in recent years, research has been focused on dynamically changing
graphs [6, 11].

References

[1] Noga Alon, Oded Goldreich, Joan Hastad and René Peralta. Simple constructions of almostk-wise
independent random variables. InProceedings of the 31st Annual IEEE Symposium on Foundations
of Computer Science, pages 544–553, St. Louis, Missouri, October 1990.

[2] Noga Alon, Zvi Galil, Oded Margalit and Moni Naor. Witnesses for boolean matrix multiplications
and for shortest paths. InProceedings of the 33rd Annual IEEE Symposium on Foundations of
Computer Science, pages 417–426, Pittsburgh, Pennsylvania, October 1992.

[3] Noga Alon and Moni Naor. Derandomization, witnesses for boolean matrix multiplication and
construction of perfect hash functions.Algorithmica, 16(4–5): 434–449, 1996.

[4] V. L. Arlazarov, E. A. Dinic, M. M. Konrod and I. A. Faradzev. On economical constructions of
the transitive closure of an oriented graph.Soviet Mathematics Doklady, 11:1209-1210, 1970.

[5] David H. Bailey. Extra-high speed matrix multiplication on the Cray-2.SIAM Journal on Scientific
and Statistical Computing, 9(3):603–607, 1988.

[6] Surender Baswana, Sandeep Sen and Ramesh Hariharan. Improved decremental algorithms for
maintaining transitive closure and all-pairs shortest paths. InProceedings of the 34th Annual ACM
Conference on Theory of Computing, pages 117–123, Montreal, Canada, May 2002.

[7] Donald D. Chinn and Rakesh K. Sinha. Bounds on sample space size for matrix product verifica-
tion. Technical Report TR-92-12-01, University of Washington, Department of Computer Science
and Engineering, 1992.

[8] Don Coppersmith and Samuel Winograd. Matrix multiplication via arithmetic progression. InPro-
ceedings of the 19th Annual ACM Conference on Theory of Computing, pages 1–6, New York,
1987.

[9] Don Coppersmith and Samuel Winograd. Matrix multiplication via arithmetic progression.Journal
of Symbolic Computation, 9:251–280, 1990.

[10] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest.Introduction to Algorithms, 1st
edition. MIT Press, Cambridge, Massachusetts, 1990.

[11] Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic transitive closure: breaking through
the O

(
n2

)
barrier. InProceedings of the the 41st Annual IEEE Symposium on Foundations of

Computer Science, pages 381–389, Redondo Beach, California, November 2000.

§In some papers, it is also calledall pairs reachability.

10

[12] Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive closure. In
Proceedings of the 12th IEEE Symposium on Switching and Automata Theory, pages 129–131.
IEEE Computer Society, October 1971.

[13] Rusins Freivalds. Fast probabilistic algorithms. InProceedings of the 8th Symposium on Math-
ematical Foundations of Computer Science, LNCS 74, pages 57–69. Olomouc, Czechoslovakia,
September 1979.

[14] Michael A. Harrison and Ivan M. Havel. On the parsing of deterministic languages.Journal of the
ACM, 21(4):525–548, October 1974.

[15] Michael A. HarrisonIntroduction to Formal Language Theory.Addison-Wesley, Reading, Mas-
sachusetts, 1978.

[16] Steven Huss-Lederman, Elaine M. Jacobson, J. R. Johnson, Anna Tsao and Thomas Turnbull.
Strassen’s algorithm for matrix multiplication: modeling, analysis, and implementation. Technical
Report CCS-TR-96-147, Argonne National Laboratory, Center for Computing Sciences, Novem-
ber 1996.

[17] Tracy Kimbrel and Rakesh Kumar Sinha. A probabilistic algorithm for verifying matrix products
usingO

(
n2

)
time andlog2 n+O (1) random bits.Information Processing Letters, 45(2):107–110,

1993.

[18] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.Journal
of the ACM, 49(1):1–15, January 2002.

[19] Wojciech Rytter. Fast recognition of pushdown automaton and context-free languages.Information
and COntrol, 67(1–3):12–22, 1985.

[20] Wojciech Rytter. Context-free recognition via shortest paths computation: a version of Valiant’s
algorithm.Theoretical Computer Science, 143(2):343–352, 1995.

[21] Giorgio Satta. Tree adjoining grammar parsing and boolean matrix multiplication.Computational
Linguistics, 20(2):173–192, 1994.

[22] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.Journal
of Computer and System Sciences, 51(3):400-403, December 1995.

[23] Volker Strassen. Gaussian elimination is not optimal.Numerische Mathematik, 13:354–356, 1969.

[24] Volker Strassen.Handbook of Theoretical Computer Science, Volume A: Algorithms and Complex-
ity, chapter “Algebraic complexity theory”, pages 633–672. Elsevier and MIT Press, 1990.

[25] Mithuna S. Thottethodi, Siddhartha Chatterjee and Alvin L. Lebeck. Tuning Strassen’s matrix
multiplication for memory efficiency. InProceedings of SC98, Orlando, Florida, November 1998.
(Distributed on CD-ROM.)

[26] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and applica-
tions. In Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing, pages
213–223, Baltimore, Maryland, May 1990.

[27] Leslie G. Valiant. General context-free recognition in less than cubic time.Journal of Computer
and System Sciences, 10:308-315, 1975.

11

	Introduction and Contents
	Fast Matrix Multiplication
	Boolean Matrix Multiplication
	Shamir's Boolean Matrix Multiplication Algorithm
	Matrix Multiplication Checking and More

