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Abstract

Biomedical named entity recognition and entity linking are important building blocks for various clinical
applications and downstream NLP tasks. In the clinical domain, language resources for developing entity
linking solutions are scarce: only a few datasets have been annotated on the level of concepts and the ma-
jority of concept aliases in target ontologies are only available in English. In such a resource-constrained
setting, pre-training and cross-lingual transfer are promising approaches to improve performance of
entity linking systems. In this paper, we describe our contribution to the BioASQ DisTEMIST shared task.
The goal of the task is to extract disease mentions from Spanish clinical case reports and map them to
concepts in SNOMED CT. Our system comprises a Transformer-based named entity recognition model,
a hybrid candidate generation approach, and a rule-based reranking step. For candidate generation, we
employ an ensemble of 1) a TF-IDF vectorizer based on character n-grams and 2) a cross-lingual SapBERT
model. Our best run for the entity linking subtrack achieves a micro-averaged F1 score of 0.566, which is
the best score across all submissions in this track. A detailed analysis of system performance highlights
the importance of task-specific entity ranking and the benefits of cross-lingual candidate retrieval.
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1. Introduction

Extraction of structured metadata from text documents through named entity recognition (NER)
and entity linking (EL) are the basis for many downstream NLP components and applications,
such as relationship extraction, semantic indexing, or information retrieval. Particularly rich
ontologies such as SNOMED CT have been developed to model the clinical domain [1], where
they are enabling semantic interoperability between software systems and support a variety of
clinical applications [2, 3].

While the richness of clinical ontologies opens up the potential for fine-grained semantic
annotation of free-text documents, it poses challenges for systems that aim to perform this
annotation automatically. Choosing the correct mapping from textual mentions to one or more
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concepts in an ontology is highly context-specific, therefore often ambiguous, and can depend
on the respective application domain in subtle ways. Moreover, EL is inherently a low-resourced
task along multiple dimensions. Firstly, even the largest annotated corpora cover only a very
small subset of the concepts in common biomedical terminologies, such as the Unified Medical
Language System (UMLS) [4, 5]. Secondly, the vast majority of terms in these ontologies are
only available in English, e.g., around 70% of terms in the Unified UMLS metathesaurus come
from the English language, around 11% from Spanish, and less than 3% from each of the other
included languages1. For the SNOMED CT ontology, which is part of the UMLS, translation into
different national languages is an ongoing effort that has to date not been completed for many
countries like Germany. Corpora annotated on the level of entity mentions and their mapping
to concepts for languages other than English are therefore scarce and immensely valuable to
drive progress in the field of biomedical EL [6, 7, 8, 9, 10].

1.1. Related Work

Throughout this work, we follow the terminology and general architecture for EL systems
proposed Sevgili et al. [11] and distinguish components for Mention Detection, Candidate Gener-
ation, and Entity Ranking. In their work, the authors particularly review neural approaches for
EL, which have recently received increased attention by the research community. Nevertheless,
many tools used by practitioners are based on rule-based and non-neural statistical approaches,
which still provide competitive baselines on benchmark datasets [12, 13, 14, 15, 16].

While neural systems with dense entity retrieval have been proposed [17, 18], other systems
are hybrid in the sense that they include non-neural components for candidate generation, often
based on TF-IDF scores (or variants thereof) calculated from surface forms of mentions and
concept aliases [19, 20, 21, 22, 23]. Other neural components can improve existing non-neural
EL systems, e.g., by filtering candidate sets based on semantic type prediction [24].

1.2. Contribution and Outline

In this work, we describe our contribution to the DisTEMIST shared task. The goal of the task
is to extract disease mentions (subtrack 1) from Spanish-language clinical case reports and link
them to SNOMED CT codes (subtrack 2). We propose a hybrid EL system, outlined in Figure 1,
which makes use of:

• a standard Transformer-based NER pipeline for mention detection
• an ensemble of two complementary candidate generation approaches
• a rule-based reranker that is specifically adapted to the DisTEMIST datasets

The remainder of this work is structured as follows: in section 2, we provide an overview of
the used datasets and generated dictionaries. In section 3, we share a detailed description of the
components in our system and the methods used to adapt its parameters to annotated datasets.
In section 4, we describe the results of our approach in the context of the DisTEMIST shared
task. Our findings, limitations, and potential improvements are discussed in section 5, followed
by a conclusion and outlook in section 6.

1https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html
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Figure 1: Overview of our entity linking system. As a first step, disease mentions are extracted by a

Tranformer-based NER pipeline, the output of which are the predictions for DisTEMIST subtrack 1. Two

candidate generators are used to retrieve candidate concepts for these mentions from two different

dictionaries. The candidate lists are combined using individual weights for their predictions, filtered by

a confidence threshold, and reranked to produce the final output for subtrack 2.

2. Materials

In this section, we describe the datasets provided in the DisTEMIST shared task and the
dictionaries we use for retrieving concepts in our EL system.

2.1. DisTEMIST Datasets

The dataset available for training consists of 750 Spanish-language clinical case reports from
a variety of medical specialties. All of these cases have been manually annotated by medical
experts with mentions of diseases. For 584 documents, these mentions have also been annotated
with concept IDs from a subset of SNOMED CT. 250 additional documents were annotated in
the same manner and served as a held-out test set for the evaluation of participating systems.
A detailed overview of the corpus is given by Miranda-Escalada et al. [25]. Furthermore,
translations of the data and annotations into 6 different languages have been provided, although
we do have not made use of these multi-lingual resources in the development of our system.



2.2. Dictionaries

For the DisTEMIST shared task, a dictionary (gazetteer) of relevant concepts and Spanish
terms is provided, containing 111,179 distinct concepts with 147,280 aliases. As the number of
aliases is relatively low compared to the number of concepts (most concepts only have a single
alias), we assume that there are many surface forms of concepts not covered by the gazetteer.
Therefore, we extend the set of available synonyms by means of the UMLS metathesaurus
(release 2021AB), mapping SNOMED CT concepts to other terminologies, including the US
version of SNOMED CT. We retain only such concepts in the UMLS metathesaurus, which are
present in the DisTEMIST gazetteer, as only these are considered for evaluation in the shared
task. Thus, we obtain a multilingual dictionary and extend the set of available synonyms more
than 16-fold to 2,416,514 in a variety of languages beyond Spanish (the vast majority is English).

3. Methods

In this section, we describe our EL system and procedures for choosing its (hyper-)parameters.

3.1. Mention Detection

For recognizing mentions of diseases, we employ an NER approach implemented with
Hugging Face Transformers, consisting of a BERT-based encoder followed by a to-
ken classification head [26]. The encoder has been initialized with weights from the
PlanTL-GOB-ES/roberta-base-biomedical-clinical-es checkpoint, which was ob-
tained by pre-training a RoBERTa model on a large unlabeled corpus of Spanish biomedical-
clinical documents [27, 28]. The overall experimental setup is based on the Hydra framework
and has been adapted from our earlier work on German-language clinical NER in the context of
the GGPOnc project [29, 30].

3.1.1. Pre- and Post-Processing

To use a token-based NER implementation with the DisTEMIST datasets, we split the documents
into sentences and tokens using the general-domain spaCy model es_core_news_md [31].
Sentence splitting is necessary, as the NER model’s input layer size is fixed to a constant number
of subword tokens. We align the entity offsets given in the training dataset to individual tokens
and convert them into IOB-encoded class labels. This procedure is performed in reverse for
producing the offset-based submission format of the DisTEMIST shared task.

As the NER pipeline systematically produces artifacts concerning entity boundaries on the
test set, we apply some simple cleanup steps. A substantial number of detected entities contain
line breaks (mostly at the end), which does not occur in the training set and hurts entity linking
performance. We therefore adjust the boundaries of such entities, retaining all characters up
until the first line break. Moreover, when entities end with one or more non-word character
(regular expression \W), these characters are also cropped.



3.1.2. Training and Model Selection

For model selection and estimation of generalization performance, we split the dataset into a
training and validation set on the level of documents. For the validation set, we sample 117
documents (20%) from the 584 documents available in DisTEMIST subtrack 2. This validation
set is used for evaluating our models for both subtracks and not used during training or model
selection. The remaining 633 documents available for subtrack 1 are first split into sentences,
which are then randomly assigned to the training (10,069 sentences) and development set (1,727
sentences).

The NER model is trained for 100 epochs on the training set with a single Nvidia A40 GPU
(48 GB RAM). We keep the checkpoint that achieves the highest F1-score on the development
set. Using Hydra, we perform a grid search over the following hyperparameters: learning
rate, learning rate schedule, warmup ratio, label smoothing factor, and weight decay. The
hyperparameter search was carried out on a machine with six A40 GPUs, 128 AMD EPYC 7543
CPU cores, and 2 TB of main memory. The optimal hyperparameters are available as Hydra
configurations together with the project’s source code [32]

3.2. Entity Linking

The mentions detected as described in the previous section are independently linked to potential
SNOMED CT concepts. To this end, we employ two different candidate generation approaches
and combine their results in an ensemble. Following, the scores in the ranked list of candidate
concepts are adjusted based on a number of rules, resulting in the final reordered candidate list.
From this list, only the top result is considered for submission in the DisTEMIST shared task.

3.2.1. Candidate Generation

TF-IDF with character n-grams Our first candidate generation approach is based on the im-
plementation from scispaCy [16]. We have converted the (mono-lingual) DisTEMIST gazetteer
to the required format to rebuild the indices used by the candidate generator. Concepts and
aliases are encoded as TF-IDF vectors calculated over character 3-grams.

At prediction time, the same encoding is applied to mentions and an approximate nearest
neighbor search over concepts is applied to generate a ranked candidate list. We refer the
reader to Neumann et al. [16] for further details. Note that some improvements implemented
in scispaCy, such as abbreviation expansion or filtering based on available definitions in the
UMLS, were not applicable here.

Cross-lingual SapBERT To leverage the large set of multilingual concept aliases available
through the UMLS, we use the cross-lingual version of SapBERT to obtain representations of
mentions and candidate concepts from the multilingual UMLS-based dictionary in the same
embedding space [33]. SapBERT weights are obtained by a technique called self-alignment
pre-training (SAP), which allows to fine-tune BERT on synonyms from the UMLS. We apply
a simple nearest neighbor search over these embeddings for candidate generation, using the
normalized dot product as a distance metric.



For our experiments, we initialize the encoder from the checkpoint
cambridgeltl/SapBERT-UMLS-2020AB-all-lang-from-XLMR, available through
the Hugging Face Hub. Again, we refer the reader to Liu et al. [33] for details on the
pre-training method.

Ensemble To leverage the individual strengths of each candidate generator, we combine
their predictions using the following approach: for each candidate generator, a threshold in the
interval [0.0, 0.1] is used to filter concepts with scores below this threshold. Moreover, each
candidate generator is assigned a weight in the range [0.0, 0.1], which is multiplied with each
score. The resulting candidate lists are merged, sorted by the weighted score. Thresholds and
weights are hyperparameters that need to be chosen by the user or can be derived automatically
as described in subsubsection 3.2.3. Note that the number of generators is not fixed to two, and
the same approach is applicable in the presence of more candidate generators.

3.2.2. Entity Ranking

The candidate rankings resulting from the aforementioned steps are based on generic approaches
with limited possibilities to adapt the ranking with respect to human-labeled data and their
specific annotation policies. We therefore implement a set of rules to reorder the candidate lists:

• Semantic typesWe define weights𝑤𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 , 𝑤𝑓𝑖𝑛𝑑𝑖𝑛𝑔 and𝑤𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐_𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 in the
range [0.0, 1.5] for the semantic types (according to the DisTEMIST gazetteer) covering
the vast majority of concepts in the DisTEMIST training data. The score for each concept
belonging to these semantic types is multiplied by the respective weight.

• Agreement between candidate generators If the same concept occurs 𝑧 times in the
combined candidate list resulting from the ensemble, each score is multiplied by a factor
of 1 + 𝛽 · 𝑧, with 𝛽 taking values in the range [0.0, 1.0].

• Suppression status For each concept, we subtract the fraction of suppressed terms
for this concept according to the UMLS, multiplied by a factor 𝑤𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 in the range
[−1.5, 1.5].

• Preferred term status For each mention that matches the canonical name or preferred
term in the UMLS or DisTEMIST gazetteer, we apply a factor 𝑤𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 in the range
[0.0, 1.5].

These rules are tailored for the DisTEMIST challenge, but can be easily extended or adapted
for other datasets. All rules make use of hyperparameters (𝑤, 𝛽), which we choose as described
in subsubsection 3.2.3.

Training Set Lookup As a final post-processing step, we determine whether a mention
is exactly identical to one of the mentions in the DisTEMIST training data. If this is the
case, the concept annotated in the training set is set at the first position in the candidate list.
Conceptually, we thereby introduce another (exact) dictionary lookup with precedence above
all other candidate generators.



3.2.3. Model Selection

Our unsupervised candidate generation and rule-based reranking approaches do not require
training, but have a number of hyperparameters that can be tuned using given gold-standard
concept annotations. To this end, we use a Bayesian hyperparameter sweep provided through
the Weights & Biases platform, based on a Gaussian Process model, and optimize the parameters
to maximize F1 score on the training set [34]. The optimal hyperparameters found in this
manner are available together with the project’s source code [32].

Table 1

Results for subtrack 1 (entities). We report precision (P), recall (R), and F1 score for all four submitted

runs on the validation set (partial and strict evaluation) and final performance on the test data. We

submitted runs with two different hyperparameter settings, with and without post-processing.

Validation Set Test Set

Partial Match Strict Match (Submission)

P R F1 P R F1 P R F1

Hyperparameters 1 .862 .878 .870 .744 .758 .751 .730 .736 .733

Hyperparameters 2 .867 .865 .866 .746 .745 .745 .730 .726 .728

Hyperparameters 1 + Post-Processing .864 .878 .871 .756 .770 .763 .743 .748 .746

Hyperparameters 2 + Post-Processing .870 .865 .867 .758 .756 .757 .742 .737 .739

4. Results

In this section, we share the results of our system in the context of the DisTEMIST shared task.

4.1. Subtrack 1: Entities

The best run of our NER system achieved a micro-averaged F1 score of .7458 on the hold-out
test dataset, scoring overall second in this subtrack. Results for all NER runs are given in Table 1.
We submitted the results for two different hyperparameter settings that achieved the highest
scores on the development set. These settings mainly differ by optimization settings, such as the
learning rate schedule. Following prior work on biomedical entity linking [35, 24], we internally
use the neleval tool [36] to compute metrics in a strict and loose evaluation setting, where the
loose setting allows for partial matches weighted by the amount of overlap with the ground
truth. The metrics computed in the strict setting are identical to the micro-averaged scores used
for evaluation in the DisTEMIST shared task.

We note that the impact of post-processing is very small when allowing for partial matches,
as its role is mainly a correction of entity boundaries. With strict evaluation, post-processing
improves F1 scores by 1.1-1.3 pp. Furthermore, we observe that our performance estimate on
the validation set is slightly too optimistic when compared to the test set results. Although we
did not test statistical significance of the performance differences, our estimate of the overall
ranking of the four submitted runs is consistent with test set performance.



Table 2

Isolated entity linking results with given gold-standard entity mentions. We report precision (P), recall

(R), and F1 score for all 5 submitted runs on the training and validations set. The training set has not

been used to train the entity linking models, but was used for model selection only. Results for the

complete system including lookup of codes in the training data are not reported for the training set, as

the performance would be (trivially) perfect

Training Set

(Gold Entities)

Validation Set

(Gold Entities)

P R F1 P R F1

n-gram TF-IDF (DisTEMIST gazetteer) .490 .463 .476 .428 .397 .412

SapBERT (DisTEMIST gazetteer + UMLS) .474 .454 .464 .457 .434 .445

Ensemble .590 .493 .537 .563 .457 .504

Ensemble + Reranking .667 .558 .608 .659 .534 .590

Ensemble + Reranking + Training Lookup - - - .766 .625 .688

4.2. Subtrack 2: Linking

The best run of the complete system for entity linking achieved a micro-averaged F1 score of
.566, which is the best performance across all submissions for DisTEMIST subtrack 2.

4.2.1. Isolated Entity Linking Performance

To understand the impact of our system’s components, we report the isolated entity linking
performance, i.e., with given ground truth entity mentions from the DisTEMIST training data,
separately in Table 2. Both candidate generation approaches achieve similar performance,
which is notably improved by merging their predictions in an ensemble. Consequent reranking
and in particular the lookup in the training set improve performance on the validation set by
more than 18pp. in total over the plain ensemble, highlighting the importance of task-specific
reranking. Although the hyperparameters used for the ensemble and candidate reranking have
been determined by optimization on the training set alone, the performance decrease on the
validation set is small, indicating good generalizability of our approach to unseen data.

4.2.2. Overall System Performance

For the DisTEMIST shared task, both mention detection and entity linking had to be addressed,
meaning that errors during mention detection would also impact entity linking performance.
The results for the combined system are shown in Table 3. The large drops in F1 score compared
to the results from Table 2 (up to 12.5 pp. in the strict evaluation setting for the best-performing
run) are expected due to imperfect mention detection. Throughout our participation in the
shared task, we used the strict evaluation metrics on the validation set (Table 3, column 6)
as a proxy for performance on unseen data. Indeed, these values are very close to the final
performance on the test set, with differences of < 0.4 pp. in precision, recall, and F1 score for
the best-performing run.



Table 3

Combined entity linking results with entity mentions predicted by the NER pipeline. We report precision

(P), recall (R), and F1 score for all 5 submitted runs on the validations set (partial and strict evaluation)

as well as final test set performance

Validation Set

(Predicted Entities)

Test Set

(Submission)

Partial Match Strict Match

P R F1 P R F1 P R F1

n-gram TF-IDF (DisTEMIST gazetteer) .369 .350 .359 .339 .322 .330 .358 .365 .361

SapBERT (DisTEMIST gazetteer + UMLS) .393 .379 .386 .365 .353 .359 .364 .374 .369

Ensemble .481 .398 .435 .447 .374 .408 .468 .389 .425

Ensemble + Reranking .566 .470 .513 .529 .443 .482 .543 .451 .493

Ensemble + Reranking + Training Lookup .653 .544 .593 .617 .517 .563 .621 .520 .566

5. Evaluation and Discussion

In this section, we discuss of findings and point to potential improvements of the system.

5.1. Candidate Generation Performance

As the evaluation metrics for the DisTEMIST shared task consider only a single concept, the
system is optimized to achieve a high F1 score for the first candidate, thus favoring a rather
aggressive suppression of candidates with lower scores. Indeed, the combination of ensembling
with reranking drastically improves precision, as shown in Table 2 and Table 3.

To understand the performance of our system, it is insightful to consider metrics for different
values of 𝑘, as shown in Figure 2. Ensembling, reranking, and training set lookup improve
precision for all values of 𝑘. Surprisingly, precision of SapBERT-based candidate generation is
always higher than the TF-IDF-based approach, although the latter focuses on a presumably
more relevant subset of terms given by the DisTEMIST gazetteer.

In terms of recall, the ensemble only slightly outperforms the individual linkers at 𝑘 = 1, with
only small gains in recall for 𝑘 > 1. In contrast, recall of the SapBERT model improves steadily
with increasing 𝑘. However, our candidate generators fail to retrieve all relevant concepts even
for large values of 𝑘, with recall for 𝑘 = 100 only reaching .780 for SapBERT and even lower
values after the ensembling step due to the application of thresholds. Therefore, we consider
increasing the recall during candidate generation an important direction for improving overall
system performance. Prior work has proposed strategies to achieve such improvements [37],
recover from poor candidate generation [23], or skip candidate generation altogether [35].

5.2. Choice of Candidate Generators and Dictionaries

The choice of candidate generators and particularly the underlying dictionaries are likely to
have a large impact on system performance. We did not explore this dimension in much detail,
and opted for only two candidate generators: one that is based on a very focused dictionary
and matching based on purely morphological features, as well as a cross-lingual approach with



Figure 2: Precision, recall and F1 scores measured on the validation set for different values of 𝑘 (number

of candidates)

a very large dictionary based on (learned) distributional semantics. It will be worthwhile to
explore other subsets of dictionaries and different approaches to candidate generation, e.g.,
BM25, which has been used in previous hybrid entity linking systems [38, 19]. In turn, these
might alleviate the rather poor candidate generation performance we described in the previous
section.

The adaptability of our system to other languages partially depends on the availability of
high quality dictionaries in these languages. While the cross-lingual linker based on SapBERT
should yield meaningful results for many languages with few or no synonyms in the UMLS, we
hypothesize that it still benefits from the relatively large number of Spanish terms in the UMLS.

5.3. Impact of Reranking

To gain more insights into the effects of our reranking approach, we show the proportion
of semantic types for the top predictions in Figure 3. Without reranking, the distribution of
semantic types of the ensemble differs considerably from the ground truth: only 75.0% of the
predicted codes have semantic type disorder vs. 85.6% in the gold standard, while 14.8% of
predicted concepts are of type morphologic abnormality vs. 3.7% in the gold standard. After
reranking, the distribution of codes predicted by the system becomes much closer to the true
distribution. When checking the system output manually, we regularly noticed ambiguity
between concepts of types disorders and morphologic abnormalities in SNOMED CT and assume
that annotators had a preference for concepts with type disorder. We therefore consider the
reranking of such ambiguous results to match the specifics of the annotation procedure as
an essential feature for good system performance. Prior work has demonstrated the positive
impact of semantic type prediction on entity linking performance, a component that could also
further improve the performance of our system [24].



Figure 3: Distribution of semantic types before and after reranking in comparison with the ground

truth (determined on the validation set)

5.4. Effective Use of Training Data

While our approach to entity linking is unsupervised in principle, we make use of the training
data for hyperparameter selection and as an additional lookup step at the end of the pipeline.
Although the latter results in a substantial performance increase for the DisTEMIST shared task,
it is arguably the least generalizable part of the pipeline. Recently, zero-shot and clustering-
based approaches for EL have gained popularity, which could potentially make better use of
ground truth annotations than we did [19, 17, 23]. However, these approaches usually assume
additional information about entities, such as descriptions, which are not provided as part of
the shared task, but can be gathered from other resources. In addition, the SapBERT model used
in our system can also be fine-tuned on task-specific labeled data, which has been shown to
improve performance on some benchmark datasets [18].

6. Conclusion and Outlook

In this work, we gave an overview of our EL system in the context of the DisTEMIST shared task
and analyzed how individual components contribute to its performance. While an ensemble of
general unsupervised candidate generators configured with task-specific dictionaries provides a
solid baseline, adaptations trough entity reranking and post-processing are crucial for improving
system performance.

For future work, we would like to investigate candidate generation approaches that yield a
better recall and reranking algorithms whose parameters can be learned from annotated data.
In addition, encoding of more contextual information to help disambiguate mentions will be a
natural extension that has been employed in previous work and is straightforward to implement
with modern, Transformer-based EL architectures. Although we have treated the problems of
NER and EL separately, there is an obvious interaction between these tasks, which could benefit
from modelling them jointly [11].

We believe that the findings from the shared task will be of great interest for other language



communities with scarce language resources in the clinical domain. To enable reproducibility
of our experimental results and future adaptations of our system, we make its source code and
configuration available on GitHub [32].
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