
Experiments to Evaluate Probabilistic Models
for Automatic Stemmer Generation

and Query Word Translation

Giorgio M. Di Nunzio, Nicola Ferro, Massimo Melucci, and Nicola Orio

Department of Information Engineering,
University of Padova,

Via Gradenigo, 6/a – 35031 Padova – Italy
{dinunzio,nf76,melo,orio}@dei.unipd.it

Abstract. The paper describes statistical methods and experiments for
stemming and for the translation of query words used in the monolin-
gual and bilingual tracks in CLEF 2003. While there is still room for im-
provement in the method proposed for the bilingual track, the approach
adopted for the monolingual track makes it possible to generate stem-
mers which learn directly how to stem the words in a document from a
training word list extracted from the document collection, with no need
for language-dependent knowledge. The experiments suggest that sta-
tistical approaches to stemming are as effective as classical algorithms
which encapsulate predefined linguistic rules.

1 Introduction

The Information Management Systems (IMS)1 research group of the Department
of Information Engineering of the University of Padova participated in the CLEF
monolingual track in 2002 for the first time; on that occasion experiments on
graph-based stemming algorithms for Italian were specifically carried out. The
graph-based stemmer generator proposed achieved a retrieval effectiveness com-
parable to that of Porter’s stemmers.

The spectrum of languages covered has been increased to five and the the-
oretical framework underlying the stemmer generator has been redefined this
year. Although our approach has shifted from a graph-based to a probabilis-
tic framework, the characterizing notion of mutual reinforcement between stems
and derivation has been preserved. A new approach to stemmer generation based
on Hidden Markov Models has also been experimented and has achieved good
results.

2 Monolingual Track

Our approach to monolingual retrieval is focused on the development of stem-
ming algorithms for five languages – i.e., Dutch, French, German, Italian, and

1 http://www.dei.unipd.it/~ims

C. Peters et al. (Eds.): CLEF 2003, LNCS 3237, pp. 220–235, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://www.dei.unipd.it/~ims

Experiments to Evaluate Probabilistic Models 221

Spanish – that have been used as a testbed. Our aim has been to develop al-
gorithms which do not exploit any linguistic knowledge about the morphology
of a given language and the rules to form word derivations. To this end, the
assumption was that the parameters of a statistical model can be inferred from
the set of words of a given language and that they can be applied for stemming
words. Two different approaches have been tested. A probabilistic framework for
the notion of mutual reinforcement between stems and derivation is presented
in Section 2.1, whereas a framework based on Hidden Markov Models (HMMs)
is presented in Section 2.2.

2.1 A Probabilistic Framework for Stemmer Generation

The Stemming Program for Language Independent Tasks (SPLIT) is a language
independent stemming procedure which was originally proposed in [1, 2] to au-
tomatically generate stemmers for some European languages. SPLIT is based on
a suffix stripping paradigm and assumes that the stem of a word can be found
by splitting the word and holding the first part as a candidate stem. Therefore,
the problem of word stemming is reduced to the problem of finding the right
split for the word. A probabilistic framework for SPLIT has been designed and
experimented and the following results have been obtained:

– a technique based on the concept of mutual reinforcement between stems
and derivations to estimate the probabilities of the framework;

– an algorithm that implements this technique and that generates a stemmer
for a given language.

Probabilistic Framework. Given a finite collection W of words, a word w ∈
W of length n can be split into n − 1 possible parts so that no empty substring
is generated. Therefore each split is associated with a pair of substrings called
prefix and suffix respectively. The concatenation of these substrings form the
word w. In our probabilistic framework it is assumed that the prefix-suffix pairs
are not equiprobable, but that the concatenation of a stem with a derivation is a
more probable event than the concatenation of two generic prefixes and suffixes.

Thus a maximum likelihood criterion to identify the most probable pair of
sub–strings, i.e. the stem and derivation, can be employed as shown in Figure 1.
Let U be the set of substrings generated after splitting every word w ∈ W of
a given language into all the possible prefix-suffix pairs. If x ∈ U and y ∈ U
are the prefix and the suffix of the word w respectively, then w = xy. Let
Ω(w) = {(x, y) ∈ U × U : w = xy} be the set of all the prefix-suffix pairs which
form a given word w. Thus the pair (x, y)∗ which is the most probable split of a
given word w can be found as follows:

(x, y)∗ = arg max
Ω(w)

Pr(x, y) . (1)

Mutual Reinforcement Model. A mutual reinforcement relationship exists
among substrings of a language and can be stated as follows:

222 G.M. Di Nunzio et al.

Fig. 1. Choice of the (stem, derivation) pair of a word within the probabilistic frame-
work

Stems are prefixes that are more likely to be completed by derivations,
and derivations are suffixes that are more likely to complete stems.

Figure 2 gives an intuitive view of the mutual reinforcement relationship
where, for the sake of clarity, only a small subset of prefixes and suffixes are
reported. On the left of the figure a community of stems and derivations is shown.
In the example shown comput is probably a stem because it refers to substrings
which are in turn used to create other words: ation and er are referred to by
comput and are used to create compilation or reader. On the right of the figure,
a community of generic suffixes is depicted for prefix c; the prefix c is not likely
to be a stem, because it forms words with suffixes, e.g. omputer or ompilation,
that are not suffixes of any other words. This sort of coupled frequent usage allows

read

ation comput er

ability

c omputation

ompiled

accus

compil

ed

ompilation

omputer

Fig. 2. Example of mutual reinforcement relationship

us to estimate the prefix and suffix probability distribution which is necessary to
compute the probability distribution of the pairs so as to apply the probabilistic
framework.

Experiments to Evaluate Probabilistic Models 223

The mutual reinforcement relationship can be expressed as follows:

Pr(x) =
∑

y∈Y

Pr(x, y) =
∑

y∈Y

Pr(x | y) Pr(y) ,

Pr(y) =
∑

x∈X

Pr(x, y) =
∑

x∈X

Pr(y | x) Pr(x) ,
(2)

where:

– Pr(x) is the probability that x is a good prefix, that is a prefix candidate to
be a stem. Similarly Pr(y) is the probability that y is a good suffix, that is
a suffix candidate to be a derivation;

– Pr(y | x) is the conditional probability that a word ends with the suffix y
given that it begins with the prefix x;

– Pr(x | y) is the conditional probability that a word begins with the prefix x
given that it ends with the suffix y;

– X ⊆ U is the set of all the prefixes and Y ⊆ U is the set of all the suffixes.

The SPLIT Algorithm. Figure 3 shows the architecture of the SPLIT algo-
rithm described below:

Stem/Derivation

Estimator

Prefix/Suffix

Estimator

(prefix, suffix)

collection

word

collection (stem, derivation)

SPLIT Stemmer

word

Fig. 3. Architecture of the SPLIT algorithm

– Prefix/Suffix Estimation is a global step which tries to infer some knowledge
about the language by estimating the distribution of prefixes and suffixes,
according to (2). It is a global step because it concerns the whole set U
and not a word in particular. This step uses the following estimations of the
probabilities:

• Pr(x | y) = 1
|P (y)| , where P (y) = {x ∈ U : ∃w ∈ W, w = xy} and |P (y)|

is the number of words which end with suffix y;
• Pr(y | x) = 1

|S(x)| , where S(x) = {y ∈ U : ∃w ∈ W, w = xy} and |S(x)|
is the number of words which begin with prefix x.

224 G.M. Di Nunzio et al.

The algorithm iteratively computes:

Pr(t)(x) =
∑

y∈Y

Pr(x | y)Pr(t−1)(y) ,

Pr(t)(y) =
∑

x∈X

Pr(y | x)Pr(t)(x) ,

for t = 0, 1, 2, . . . , where Pr(0)(y) is a vector of uniform probabilities.
– Stem/Derivation Estimation is a local step, which tries to distinguish among

all the pairs which lead to the same word, according to (1). It is a local step,
because it concerns a particular word. Equation (1) is solved by considering
two different cases:
1. Pr(x, y) = Pr(x) Pr(y | x),
2. Pr(x, y) = Pr(x) Pr(y).

Case 1 takes into account the possible stochastic dependence between x
and y. On the other hand, case 2 considers x and y as independent events,
because Pr(x) and Pr(y) have absorbed some knowledge about the morphol-
ogy of the language through their estimation by (2), which already took into
account the dependence between x and y.

In addition a little linguistic knowledge is injected by inserting a heuristic
rule which forces the length of the prefix to be at least α characters and the
length of the suffix to be at most β characters.

The CLEF 2002 collection has been used to train the algorithm and to
set appropriate values for all the parameters. Once training was finished, the
following parameters were chosen because they gave the best performances
in each language:

• Dutch: case 2 with α = 4, β = 4;
• French: case 1 with α = 1, β = 3;
• German: case 2 with α = 4, β = 4;
• Italian: case 1 with α = 1, β = 3;
• Spanish: case 2 with α = 3, β = 3.

2.2 An Approach Based on Hidden Markov Models for Stemmer
Generation

Another statistical approach to stemming based on Hidden Markov Models
(HMM) [3] has been experimented. HMMs are finite-state automata where tran-
sitions between states are ruled by probability functions. At each transition, the
new state emits a symbol with a given probability. HMMs are called hidden be-
cause states cannot be directly observed; what is observed are only the symbols
they emit. For each state the parameters that completely define an HMM are the
probabilities of being the initial and the final state, the transition probabilities
to any other state, and the probability that a given symbol is emitted.

Experiments to Evaluate Probabilistic Models 225

HMMs as Word Generators. HMMs are particularly useful to model pro-
cesses that are generally unknown but that can be observed through a sequence
of symbols. For instance, the sequence of letters that forms a word in a given
language can be considered as a sequence of symbols emitted by an HMM. The
HMM starts in an initial state and performs a sequence of transitions between
states by emitting a new letter at each transition until it stops at a final state. In
general, several state sequences, or paths, can correspond to a single word. It is
possible to compute the probability of each path, and hence to compute the most
probable path corresponding to a word. This problem is normally addressed as
decoding, for which an efficient algorithm exists: the Viterbi decoding.

In order to apply HMMs to the stemming problem, a sequence of letters
that forms a word can be considered as the result of a concatenation of two
subsequences of letters, a prefix and a suffix, as in the approach carried out for
the SPLIT algorithm. A way to model this process is through an HMM where
states are divided into two disjoint sets: states in the stem-set generate the first
part of the word and states in the suffix-set can generate the last part, if the
word has a suffix. For many languages, there are some assumptions that can be
made on the model:

– an initial state belongs only to the stem-set, i.e. a word always starts with a
stem;

– the transitions from states of the suffix-set to states of the stem-set have
always a null probability, i.e. a word can be only a concatenation of a stem
and a suffix;

– a final state belongs to both sets, i.e. a stem can have a number of different
derivations, but it may also have no suffix.

A general HMM topology that fulfills these conditions is depicted in
Figure 4. Once a complete HMM is available for a given language, stemming can

Fig. 4. HMM topology with the stem-set and the suffix-set highlighted

be straightforwardly carried out considering a word as a sequence of symbols
emitted by the HMM. As a first step, the most probable path that corresponds
to the observed word is computed using decoding. Then the analysis of this path
highlights the transition from a state of the stem-set to a state of the suffix-set.
We call this transition the breakpoint. If there is no breakpoint then the word
has no suffix, otherwise the sequence of letters observed before the breakpoint
is taken as the stem and the one observed after is taken as the suffix.

226 G.M. Di Nunzio et al.

Training the HMM. The proposed topology defines the number of states, the
labels indicating the sets to which the states belong, the initial and final states,
and the allowable transitions. Yet all the probability functions that constitute
the HMM parameters need to be computed. The computation of these parame-
ters is normally achieved through training, which is based on the Baum-Welch
expectation-maximization (EM) algorithm. As in the case of SPLIT, our goal is
to develop fully automatic stemmers that do not require previous manual work.
This means that we consider that neither a formalization of morphological rules
nor a training set of manually stemmed words are available.

We propose performing an unsupervised training of the HMM using only a
sample of the words of the considered language. The training set can be built at
random from documents that are available at indexing time. It can be noted that
an unsupervised training does not guarantee that the breakpoint of the most prob-
able path has a direct relationship with the stem and the suffix of a given word. In
order to create such a relationship, the injection of some more knowledge about
the general rules for word inflection is proposed. Thus it has been reasonably as-
sumed that the number of different suffixes for each language is limited compared
to the number of different stems. Suffixes are a set of letter sequences that can
be modeled by chains of states of the HMM. This assumption suggests a partic-
ular topology for the states in the suffix-set, which can be made by a number of
state chains with different lengths, where transitions from the stem-set are allowed
only to the first state of each chain; the transition from one state to the next has
probability one: each chain terminates with a final state. The maximum length of
state chains gives the maximum length of a possible suffix. Analogously, also the
stem-set topology can be modeled by a number of state chains, with the difference
that a state can have non-zero self-transition probability. The minimum length of
a chain gives the minimum length of a stem. Some examples of topologies for the
suffix-set are depicted in Figure 5, where the maximum length of a suffix is set to
four letters, and the minimum length of a stem is set to three letters.

After the redefinition of the suffix-set topology, the HMM can be trained by
performing the EM algorithm using a training set of words. Given the previous
assumption, it is likely that a letter sequence that corresponds to a suffix will be
frequently present in the training set. For this reason, the EM algorithm will give
a high probability that the letters of frequent suffixes are emitted to the states
in the suffix-set. For example the unique state of a suffix-set chain will emit the
last letter of each word with the highest probability, the states in a two-state
suffix-set chain will respectively emit the most frequent couple of final letters of
each word, and so on. Once the model has been trained the path that terminates
with the most frequent sequence is expected to have a high probability.

The STON Algorithm. An algorithm called STON has been developed to
test the methodology and the changes in retrieval effectiveness depending on
some of its parameters. STON needs an off-line training, while stemming can be
performed on-line for any new word. Once training has ended, STON receives
as input a sequence of letters corresponding to a word and gives as output the
position of the breakpoint. Hence, STON performs in two steps:

Experiments to Evaluate Probabilistic Models 227

Fig. 5. Three topologies of the HMM that have been tested

– Training/off-line: STON computes through the EM algorithm:

λ∗
L = arg max

λ

∏

w∈WL

Pr(w | λ)

given a set of words w ∈ WL taken from a collection of documents written
in a language L, and given an HMM with parameters λ which define the
number of states and the set of allowable transitions. This step needs to be
performed only once for each language, possibly using a sample of the words
of a document collection.

– Stemming/on-line: STON computes the most probable path q across the
states corresponding to wL by using the Viterbi decoding:

q∗ = arg max
q

Pr(q | wL, λL)

given a word wL written in language L and a trained model λL, Decoding
can be carried out also for words that were not part of the training set.
Once the most probable path q∗ is computed, the position of the breakpoint,
and hence the length of the stem, can be computed by a simple inspection
of the path, that is considering when the path enters the suffix-set.

3 Cross-Language Retrieval Using Mutual Reinforcement

Our approach to bilingual retrieval aimed at testing whether the notion of mutual
reinforcement relationship which has been successfully applied to stemming can
effectively work also in the context of keyword translation based on machine
readable dictionaries. It is assumed that any description of the context of a

228 G.M. Di Nunzio et al.

translation is absent in the dictionary. This way a dictionary is simply a list of
records and a record relates a source word to the list of possible target words
which are translations of the source.

One problem of dictionaries is the lack of entries for many words in the docu-
ment collection. The problem of missing translations is especially acute whenever
small or simple dictionaries are employed. If no translations are available for a
source word, a solution is to translate the words which are most closely related
to the source word. The set of words which are most related to another is called
context.

A context of a word can be built using collocates. A collocate of a word is one
that frequently occurs just before or just after the word in the documents of the
collections. If collocates are available, and a source word cannot be translated,
the translations of the collocates of the source word can be found. This way
a source word might not be directly translated, but could be connected to the
target language contexts which translate the context of the source word.

Thus translation is performed between source word contexts and target word
contexts rather than between single words. As context translations are uncertain
events, they have been modelled using a probability space.

Let Y be the set of target words, X be the set of source words, and D ⊆
X × Y be the dictionary. D is also the universe of the elementary events of the
probabilistic model. Let us define D′(r) = {(x, y) ∈ D | x = r} and D′′(t) =
{(x, y) ∈ D | y = t} as the subset of translations of r to any target word and
the subset of translations for which t is a target word respectively. The contexts
have been defined as subsets X(r) ⊆ X or Y (t) ⊆ Y depending on whether they
are of a source word or of a target word respectively.

A target context Y (t) is a translation of the source context X(r) if there is
(x, y) ∈ D such that x ∈ X(r) and y ∈ Y (t). Of course, there may be 0, 1, . . .
pairs (x, y) such that x ∈ X(r) and y ∈ Y (t) and then Y (t) is a translation of the
source context X(r) to different degrees. Intuitively, the degree to which Y (t)
is a translation of X(r) is directly proportional to the size of the set D(r, t) =
{(x, y) ∈ D, x ∈ X(r), y ∈ Y (t)} which is the set of translations found between
the words of the context of r and those of context of t.

Using this probabilistic model the best target context, i.e. the most probable
target context which is a translation of the source context can be found. The
selection of the best translation can be formalized by Pr(Y (t) translates X(r))
and is approximated by the conditional probability:

Pr(Y (t) translates X(r)) ≈ Pr(Y (t) | X(r)).

Given that the probability that Y (t) translates X(r) is directly related to
|D(r, t)|, the estimation formulas

Pr(Y (t) | X(r)) =
|D(r, t)|
|D′(r)| Pr(X(r) | Y (t)) =

|D(r, t)|
|D′′(t)|

can be defined. At search time, all the target contexts Y (t) corresponding to
each possible translation t of r are considered for each source query word r. As

Experiments to Evaluate Probabilistic Models 229

there may be several candidate translation contexts Y (t), a criterion to choose
which translation context should be used is necessary.

The idea is that the best translations of a source context are the ones which
are a translation of other source contexts and that can be conversely translated
back to one of the source contexts. This mutual reinforcement relationship be-
tween contexts states that the best target translations of a source context are
translated by the best source contexts, and viceversa. Thus the following mutual
definition is considered:

Pr(Y (t)) =
∑

X(r)

Pr(Y (t) | X(r)) Pr(X(r)) ,

Pr(X(r)) =
∑

Y (t)

Pr(X(r) | Y (t)) Pr(Y (t)) ,

where Pr(Y (t)) is the probability that Y (t) is a translation of a source context,
Pr(X(r)) is the probability that X(r) is a translation of a target context. The
most probable Y (t) has been taken as a translation of each query word b such
that a translation of a word in X(r) occurs in Y (t).

4 Experiments

The aim of the experiments for the monolingual track was to compare the re-
trieval effectiveness of the language independent stemmers, illustrated in the pre-
vious sections, with that of an algorithm based on a-priori linguistic knowledge
– we have chosen the widely used Porter’s stemmers. The hypothesis was that
the proposed probabilistic approaches generate stemmers that perform as effec-
tively as Porter’s stemmers. To evaluate stemming algorithms, the performances
of different IR systems have been compared by changing only the stemming
algorithms for different runs, all other things being equal.

Our aim was to test the following hypotheses:

H′: stemming does not hurt and can enhance the effectiveness of retrieval,
H′′: the proposed statistical stemmers perform as effectively as Porter’s ones.

Experiments were conducted for the following languages: Dutch, French,
German, Italian and Spanish. For each track four different stemming algorithms
were tested:

– No Stem: no stemming algorithm was applied;
– Porter: the stemming algorithms freely available at the Snowball Web site

edited by Martin Porter for different languages have been used;
– SPLIT: the stemming algorithm based on the notion of mutual reinforce-

ment has been used;
– STON: the stemming algorithm based on Hidden Markov models has been

used.

As regards the stop-words used in the experiments, i.e. words which have little
semantic meaning, the stop-lists available at http://www.unine.ch/info/clef/

http://www.unine.ch/info/clef/

230 G.M. Di Nunzio et al.

Table 1. Relevant retrieved document number (recall) for 2003 Topics

Algorithm Relevant Retrieved (Recall %)
Dutch French German Italian Spanish

No Stem 1,419 (89.98) 869 (91.86) 1,330 (72.88) 488 (60.32) 2,084 (88.01)
SPLIT 1,420 (90.04) 886 (93.66) 1,376 (75.40) 497 (61.43) 2,122 (89.61)
STON 1,386 (87.33) 891 (94.19) 1,384 (75.84) 503 (62.18) 2,148 (90.71)
Porter 1,416 (89.79) 911 (96.30) 1,434 (78.58) 492 (60.82) 2,202 (92.99)

Total Relevant Docs 1,577 946 1,825 809 2,368

have been used. These stop-lists are cross-linked by the CLEF consortium for
the participants of the CLEF campaigns. The details of the retrieval system used
for the experiments can be found in [4, 5].

For each language, the results over all the queries of the test collection have
been summarized. Table 1 compares the number of relevant retrieved documents
and the recall for the different algorithms under examination. Table 2 reports,
for each language, the average precision attained by the system with the con-
sidered stemming algorithms. Table 3 reports the exact R-precision attained by
the system, for each language. The exact R-precision is the precision after R
documents have been retrieved, where R is the number of relevant documents
for the topic.

In general stemming improves the recall. The Dutch language represents an
exception to this note, since both the STON and the Porter stemmer retrieve
less relevant documents than without any stemmer.

Note that for French, German, Italian and Spanish stemming positively af-
fects the precision, thus improving the overall performance of the system, since
the recall has also improved. Dutch stemming does not degrade the overall per-

Table 2. Average precision for 2003 Topics

Algorithm Average Precision (%)
Dutch French German Italian Spanish

No Stem 42.11 42.86 34.92 34.76 39.27
SPLIT 42.84 45.60 37.11 38.17 38.25
STON 42.57 45.67 36.68 34.66 40.56
Porter 43.49 45.87 37.88 35.53 43.42

Table 3. Exact R-precision for 2003 Topics

Algorithm Exact R-Precision (%)
Dutch French German Italian Spanish

No Stem 40.51 39.45 36.59 36.32 40.26
SPLIT 41.54 43.22 37.80 38.39 39.85
STON 39.66 42.20 37.53 33.26 39.90
Porter 40.55 41.68 38.73 34.79 42.70

Experiments to Evaluate Probabilistic Models 231

formances of the system. Furthermore, when the stemming algorithms positively
affect the performances, SPLIT and STON perform as effectively as Porter’s
stemmer.

Thus these figures gives a positive answer to both hypotheses H′ and H′′ since
stemming does not hurt and sometimes improves the performance of an informa-
tion retrieval system (IRS). The experimental evidence confirms the hypothesis
that it is possible to generate stemmers using probabilistic models without or
with very little knowledge about the language.

However the degree to which the observed differences are significant has to be
measured using statistical testing methods. To test the hypotheses more soundly,
the runs have been compared using the following measures: number of relevant
retrieved documents (labelled Rel. Retr.), average precision (labelled Avg. Prec)
and exact R-precision (labelled Exact R-Prec.), which are the same measures
used previously. Furthermore the runs have also been compared using precision
after 10, 20 and 30 retrieved documents (labelled, respectively, P @ 10 docs, P
@ 20 docs and P @ 30 docs). These latter measures correspond to performance
assessing from a more user-oriented point of view than a system-oriented one. If
stemming is applied in an interactive context, such as that of a search engine or
of a digital library, the ranking used to display the results to the user acquires
great importance: in fact, it would more interesting to know if the user finds
the relevant document after 10 or 20 retrieved documents instead of knowing if
successful retrieval is reached after 50% retrieved documents.

Table 4 allows us to answer question H′. As far as the Dutch language is
concerned, with our approach stemming does not exhibit significant differences
with respect to the case of no stemming. For French, stemming shows significant
differences with respect to the case of no stemming in terms of number of relevant
retrieved documents, but not for the other measures. For German, stemming
exhibits an impact on the performances for all the considered measures with
the exception of the exact R-precision. In the case of Italian, there is no clear
indication whether the null hypothesis should be rejected or not. Finally for
Spanish, stemming clearly influences the performances in terms of number of
relevant retrieved documents and average precision; for the other measures there
is no strong evidence for accepting the null hypothesis.

Thus, in general, the hypothesis that stemming influences the performances
of an IRS cannot be rejected. The impact of the stemming depends on both the
language and the considered measure: stemming for the Dutch language is little
effective.

Table 5 allows us to answer hypothesis H′′ for the SPLIT algorithm. The
results show that in general the hypothesis that SPLIT is as effective as Porter’s
algorithm cannot be rejected. However, there is some exception to this observa-
tion: with French and German, there are some significant differences in terms
of number of relevant retrieved documents; for Spanish Porter’s stemmer signif-
icantly performs better than SPLIT in terms of average precision, P @ 20 docs
and P @ 30 docs.

232 G.M. Di Nunzio et al.

Table 4. Comparison of No Stem and Porter runs for different measures

Measure Dutch FrenchGermanItalianSpanish
No Stem > Porter 6 1 4 3 6
No Stem = Porter 43 41 33 41 28

Rel. Retr. No Stem < Porter 7 10 19 7 23
Signed Rank Test (p–value) 83.94% 0.49% 0.09% 43.16% 0.06%
No Stem > Porter 26 23 20 18 22
No Stem = Porter 4 6 1 11 1

Avg. Prec. No Stem < Porter 26 23 35 22 34
Signed Rank Test (p–value) 73.61% 39.72% 0.89% 53.64% 1.07%
No Stem > Porter 10 12 16 16 12
No Stem = Porter 34 28 18 25 22

Exact R-Prec.No Stem < Porter 12 12 22 10 23
Signed Rank Test (p–value) 79.51% 52.96% 16.17% 34.73% 6.66%
No Stem > Porter 12 11 11 13 12
No Stem = Porter 34 26 23 28 23

P @ 10 docs No Stem < Porter 10 15 22 10 22
Signed Rank Test (p–value) 89.60% 33.16% 4.96% 53.16% 31.06%
No Stem > Porter 7 14 8 9 14
No Stem = Porter 33 25 22 29 18

P @ 20 docs No Stem < Porter 16 13 26 13 25
Signed Rank Test (p–value) 10.49% 71.81% 2.59% 51.26% 17.72%
No Stem > Porter 13 12 9 12 9
No Stem = Porter 28 25 24 30 27

P @ 30 docs No Stem < Porter 15 15 23 9 21
Signed Rank Test (p–value) 25.34% 12.63% 1.21% 62.63% 6.10%

Table 6 allows us to answer to hypothesis H′′ for the STON algorithm. The
results show that in general the hypothesis that STON is as effective as Porter’s
algorithm cannot be rejected. However, German is an exception with significant
differences between STON and Porter’s stemmers in terms of number of relevant
retrieved documents, where Porter’s algorithm performed better than STON. It
is worth noting that the reliability of the statistical test might be affected by the
presence of a high number of tied values for some measures, such as for example
the number of relevant retrieved documents. In particular the omission of tied
observations which is performed by both the sign test and the signed rank test
introduces bias toward the rejection of the null hypothesis, as reported by [6].

Bilingual Experiments. Free dictionaries available on the Web at http://
www.travlang.com/Ergane and http://www.freedict.com/ have been used.
Source words have been stemmed and the dictionaries have been merged after
stemming. Porter’s stemmers have been used because they are considered to
be standard algorithms. Stemming increased the number of translations but re-
duced the number of entries. The five most frequent collocates of each keyword
were computed to create word contexts for each language collection. Table 7

http://
www.travlang.com/Ergane
http://www.freedict.com/

Experiments to Evaluate Probabilistic Models 233

Table 5. Comparison of SPLIT and Porter runs for different measures

Dutch FrenchGermanItalianSpanish
SPLIT > Porter 6 1 2 6 11
SPLIT = Porter 44 39 38 43 27

Rel. Retr. SPLIT < Porter 6 12 16 2 19
Signed Rank Test (p–value) 96.97% 0.24% 0.11% 46.09% 5.88%
SPLIT > Porter 24 22 22 25 19
SPLIT = Porter 3 9 3 12 1

Avg. Prec. SPLIT < Porter 29 21 31 14 37
Signed Rank Test (p–value) 71.99% 72.17% 25.53% 5.59% 0.43%
SPLIT > Porter 10 13 16 15 14
SPLIT = Porter 29 31 19 28 21

Exact R-Prec. SPLIT < Porter 17 8 21 8 22
Signed Rank Test (p–value) 82.88% 56.62% 41.96% 3.86% 12.95%
SPLIT > Porter 12 10 13 12 11
SPLIT = Porter 34 29 29 31 25

P @ 10 docs SPLIT < Porter 10 13 14 8 21
Signed Rank Test (p–value) 70.47% 62.52% 47.61% 13.35% 14.61%
SPLIT > Porter 5 11 13 14 9
SPLIT = Porter 34 31 22 33 20

P @ 20 docs SPLIT < Porter 17 10 21 4 28
Signed Rank Test (p–value) 8.44% 98.61% 2.28% 2.25% 0.07%
SPLIT > Porter 10 6 13 16 9
SPLIT = Porter 33 31 24 28 19

P @ 30 docs SPLIT < Porter 13 15 19 7 29
Signed Rank Test (p–value) 24.69% 11.72% 2.96% 30.73% 0.02%

summarizes the size and the coverage after stemming and merging the two dic-
tionaries.

The experimental results were rather disappointing. Porter’s stemming algo-
rithm used on a source language was rather aggressive and was thus detrimental
to retrieval performance because many translations were erroneously mixed. Fur-
thermore, the procedure to generate the contexts was not very effective because
many contexts contained unrelated words. The average precision was between
15% and 20%. However, we believe that the approach will stimulate further
research.

5 Conclusions and Future Work

This year the IMS research group has carried out many experiments and devel-
oped methodologies for both automatic stemmer generation and query transla-
tion. The first methodology has been tested in the monolingual track of CLEF,
while the second has been tested in the bilingual track. The idea underlying both
automatic stemmer generation and query translation has been the use of diverse

234 G.M. Di Nunzio et al.

Table 6. Comparison of STON and Porter runs for different measures

Dutch French German ItalianSpanish
STON > Porter 3 5 3 6 9
STON = Porter 45 43 37 40 30

Rel. Retr. STON < Porter 8 4 16 5 18
Signed Rank Test (p–value) 10.16% 100.00% 0.92% 46.48% 31.42%
STON > Porter 24 21 22 21 28
STON = Porter 7 10 4 11 1

Avg. Prec. STON < Porter 25 21 30 19 28
Signed Rank Test (p–value) 62.95% 98.50% 12.38% 74.70% 23.37%
STON > Porter 13 15 16 9 20
STON = Porter 28 28 21 26 16

Exact R-Prec. STON < Porter 15 9 19 16 21
Signed Rank Test (p–value) 34.46% 75.33% 39.89% 57.20% 25.14%
STON > Porter 7 10 8 8 13
STON = Porter 38 28 36 27 30

P @ 10 docs STON < Porter 11 14 12 16 14
Signed Rank Test (p–value) 19.56% 51.90% 60.06% 23.70% 54.73%
STON > Porter 12 10 7 16 18
STON = Porter 32 28 30 23 21

P @ 20 docs STON < Porter 12 14 19 12 18
Signed Rank Test (p–value) 96.57% 43.17% 7.28% 66.77% 57.61%
STON > Porter 9 9 13 14 16
STON = Porter 30 29 27 25 23

P @ 30 docs STONh < Porter 17 14 16 12 18
Signed Rank Test (p–value) 6.29% 22.31% 30.37% 75.07% 25.14%

Table 7. A summary of the dictionaries employed

Language No. of entries Av. No. of translations
German 67889 3.69
French 29819 2.97
Spanish 15697 3.52
Italian 8958 3.93

probabilistic models. Whereas the probabilistic models for stemmer generation
have confirmed the positive results observed last year, those employed for query
translation need further experiments and refinement.

Acknowledgments

The work reported in this paper has been conducted in the context of a joined
program between the Italian National Research Council (CNR) and the Ministry
of Education (MIUR), under the law 449/97-99.

Experiments to Evaluate Probabilistic Models 235

References

1. Agosti, M., Bacchin, M. Ferro, N., Melucci, M.: Improving the automatic retrieval
of text documents. In Peters, C., Braschler, M., Gonzalo, J., Kluck, M., eds.: Pro-
ceedings of Cross Language Evaluation Forum 2002. LNCS 2785, Springer-Verlag
(2003) 279–290

2. Bacchin, M., Ferro, N., Melucci, M.: The effectiveness of a graph-based algorithm for
stemming. In: Proceedings of the Internation Conference on Asian Digital Libraries,
Singapore (2002) 117–128

3. Rabiner, L., Juang, B.: Fundamentals of speech recognition. Prentice Hall, Engle-
wood Cliffs, NJ (1993)

4. Di Nunzio, G.: The CLEF2003 lexer. (http://www.dei.unipid.it/~dinunzio/
CLEF2003Lexer.pdf)

5. Di Nunzio, G., Ferro, N., Melucci, M., Orio, N.: The University of Padova at
CLEF 2003: Experiments to evaluate probabilistic models for automatic stemmer
generation and query word translation. In Peters, C., Borri, F., eds.: Working Notes
for the CLEF 2003 Workshop. (2003) 211–223

6. Gibbons, J.D.: Nonparametric Statistical Inference. 2nd edn. Marcel Dekker, Inc.,
New York, USA (1985)

http://www.dei.unipid.it/~dinunzio/
CLEF2003Lexer.pdf

	Introduction
	Monolingual Track
	A Probabilistic Framework for Stemmer Generation
	An Approach Based on Hidden Markov Models for Stemmer Generation

	Cross-Language Retrieval Using Mutual Reinforcement
	Experiments
	Conclusions and Future Work

