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ABSTRACT
In this paper, we formally investigate whether, or not, IR evalua-

tion measures are on an interval scale, which is needed to safely

compute the basic statistics, such as mean and variance, we daily

use to compare IR systems. We face this issue in the framework

of the representational theory of measurement and we rely on the

notion of difference structure, i.e. a total equi-spaced ordering on

the system runs.

We found that themost popular set-basedmeasures, i.e. precision,

recall, and F-measure are interval-based. In the case of rank-based

measures, using a strongly top-heavy ordering, we found that only

RBP with p = 1

2
is on an interval scale while RBP for other p values,

AP, DCG, and ERR are not. Moreover, using a weakly top-heavy

ordering, we found that none of RBP, AP, DCG, and ERR is on an

interval scale.

CCS CONCEPTS
• Information systems→ Retrieval effectiveness;

KEYWORDS
evaluation measures; representational theory of measurement; in-

terval scale

1 INTRODUCTION
Information Retrieval (IR) is deeply rooted in experimentation but

there is a growing need for stronger theoretical foundations [9].

Even if experimental evaluation is a main driver of progress and

IR measures are a core part of it, our theoretical understanding

of what IR measures are is still quite limited, despite the several

studies both in the past [3, 4, 21] and more recently [2, 5, 7, 18].

When measuring something, the notion of measurement scale
plays a central role [12, 20], since it determines the operations that

can be performed and, as a consequence, the statistical analyses that

can be applied. Stevens [20] identifies four major types of scales

with increasing properties: (i) the nominal scale consists of discrete
unordered values, i.e. categories; (ii) the ordinal scale introduces a
natural order among the values; (iii) the interval scale preserves the
equality of intervals or differences; and (iv) the ratio scale preserves
the equality of ratios.
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Many of the operations we perform daily in IR, such as comput-

ing averages and variances, are possible only from interval scales

onwards but, due to our limited knowledge of IR measures, we do

not actually know which scales they rely on. Robertson [16] points

out that the assumption of Average Precision (AP) being on an in-

terval scale is somehow arbitrary while Ferrante et al. [7] shows

that, only under some strong restrictions on the system runs being

compared, we can ensure that IR measures use at least an ordinal

scale.

We investigate whether IR measures are on an interval scale or

not. We rely on the representational theory of measurement [12],
which is the measurement theory adopted in both physical and

social sciences. According to this framework, the key point is to

understand how real world objects are related to each other since

measure properties are then derived from these relations. Moreover,

it is important that these relations among real world objects are in-

tuitive and sensible to “everybody” and that they can be commonly

agreed on.

In our context, this means that being on an interval scale is

not just a numeric property of an IR measure but we need first

to understand how system runs are ordered and what intervals of
system runs are. Then, once we come to commonly agreed notions

of order and interval among system runs, we can verify whether

an IR measure complies with these notions and determine whether

it is on an interval scale or not.

Therefore, we introduce a notion of interval among system runs

by relying on posets and lattices [19] and we exploit Hasse diagrams
to provide a graphical representation of such intervals. Then, we

define a difference which quantifies the “length” of such intervals.

In the case of set-based measures and system runs of fixed length,

we show that our notions of interval and difference induce a differ-
ence structure [12, 17] on the set of system runs and this guarantees

the existence of an interval scale measure M while a uniqueness

theorem ensures that any other interval scale measure is just a

positive linear transformation of such M. We then show how to

construct such interval scale measureM and we prove that Preci-

sion, Recall, and F-measure are all on an interval scale by finding a

positive linear transformation with such measureM.

In the case of rank-based measures and system runs of fixed

length, we explore two different notions of interval and difference

based on the top-heaviness property, i.e. the preference towards

highly ranked relevant documents. Using a strong top-heaviness
notion, we find how it induces a difference structure and we prove

that only Rank-Biased Precision (RBP) [15] with p = 1

2
is on an

interval scale while RBP for other values of p and other popular

measures – namely AP, Discounted Cumulated Gain (DCG) [10],
and Expected Reciprocal Rank (ERR) [6] – are not. Using a weak
top-heaviness notion, we find that it induces another difference
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structure and we prove that the previously mentioned IR measures

are not on an interval scale.

The paper is organized as follows: Section 2 introduces some

basic concepts about the representational theory of measurement

and how to determine if a measure is on an interval scale; Section 3

recalls some definition and properties of posets and Hasse diagrams;

Section 4 analyses set-based IR measures while Section 5 deals with

rank-based IR measures; finally, Section 6 wraps up the discussion

and outlooks some future work.

2 MEASUREMENT THEORY
2.1 Representational Theory of Measurement
The representational theory of measurement [12] sees measurement

as the process of assigning numbers to the entities in the real world

according to some property under examination. Therefore, the re-

lations among the entities in the real world determine the relations

among the numbers we assign.

More precisely, a relational structure [12, 17] is an ordered

pair X =
〈
X ,RX

〉
of a domain set X and a set of relations RX on X ,

where the relations in RX may have different arities, i.e. they can

be unary, binary, ternary relations and so on. Given two relational

structures X and Y, a homomorphism M : X → Y from X to Y
is a mapping M =

〈
M,MR

〉
where: (i) M is a function that maps

X into M(X ) ⊆ Y , i.e. for each element of the domain set there

exists one corresponding image element; (ii) MR is a function that

maps RX into MR (RX ) ⊆ RY such that ∀r ∈ RX , r and MR (r )
have the same arity, i.e. for each relation on the domain set there

exists one (and it is usually, and often implicitly, assumed: and

only one) corresponding image relation; (iii) ∀r ∈ RX ,∀xi ∈ X , if

r (x1, . . . ,xn ) thenMR (r )
(
M(x1), . . . ,M(xn )

)
, i.e. if a relation holds

for some elements of the domain set then the image relation must

hold for the image elements.

A relational structure E is called empirical if its domain set E
spans over the entities under consideration in the real world, i.e. the

system runs in our case; a relational structure S is called symbolic
if its domain set S spans over a given set of numbers. A measure-
ment (scale) is the homomorphism M =

〈
M,MR

〉
from the real

world to the symbolic world and ameasure is the number assigned

to an entity by this mapping.

2.2 Measurement Scales
As discussed in Section 1, there are four major types of measure-

ment scales [20] which can be ordered by their increasing properties

and allows for different computations: nominal scales allow us to

compute the number of cases and the mode; in addition, ordinal
scales allow us to compute median and percentiles; interval scales
add the possibility to compute mean, variance, product-moment

correlation and rank correlation; finally, ratio scales add the capa-

bility to compute the coefficient of variation. Over the years, there

has been debate [22] on whether these rules are too strict or not

but they are applied widely.

If we already know that on an empirical structure there is an

interval scaleM, the uniqueness theorem – see e.g. Theorem 3.18 in

[17] – ensures that any other measurementM
′
on that structure is a

linear positive transformation of M, that is M
′ = αM + β , α , β ∈ R.

However, in the case of IR measures, we lack a known interval

scale M which we can use to compare all the other IR measures

against. Actually, the core issue is even more severe and it is the

lack of any notion of interval on the empirical set E of the system

runs and, consequently, we cannot define an interval scaleM.

Therefore, following [12, 17], we will rely on the notion of dif-
ference structure to introduce a definition of interval among system

runs in such a way that it ensures the existence of an interval scale.

Given E, a weakly ordered empirical structure is a pair (E, ≼)where,
for every a,b, c ∈ E,

• a ≼ b or b ≼ a;
• a ≼ b and b ≼ c ⇒ a ≼ c .

Given (E, ≼), we have to define a difference ∆ab between two

elements a,b ∈ E, which is a kind of signed distance we exploit

to compare intervals. Then, we have to define a weak order ≼d
between these ∆ab differences. We can proceed as follows: if two

elements a,b ∈ E are such that a ∼ b, i.e. a ≼ b and b ≼ a, then
the interval [a,b] is null and, consequently, we set ∆ab ∼d ∆ba ; if
a ≺ b we agree upon choosing ∆aa ≺d ∆ab which, in turn implies

that ∆aa ≻d ∆ba .

Definition 1. Let E be a finite (not empty) set of objects. Let ≼d be a

binary relation on E×E that satisfies, for each a,b, c,d,a′,b ′, c ′ ∈ E,
the following axioms:

i. ≼d is weak order ;
ii. if ∆ab ≼d ∆cd , then ∆dc ≼d ∆ba ;
iii. if ∆ab ≼d ∆a′b′ and ∆bc ≼d ∆b′c ′ then ∆ac ≼d ∆a′c ′ ;
iv. Solvability Condition: if ∆aa ≼d ∆cd ≼d ∆ab , then there

exists d ′,d ′′ ∈ R such that ∆ad ′ ∼d ∆cd ∼d ∆d ′′b .

Then (E, ≼d ) is a difference structure.

Particular attention has to be paid to the Solvability Condition
which ensures the existence of an equally spaced gradation be-

tween the elements of E, indispensable to construct an interval

scale measurement.

The representation theorem for difference structures states:

Theorem 1. Let E be a finite (not empty) set of objects and let
(R, ≼d ) be a difference structure. Then there exist a measurement scale
M : E → R such that for every a,b, c,d ∈ E

∆ab ≼d ∆cd ⇔ M(b) −M(a) ≤ M(d) −M(c) .

This theorem ensures us that, if there is a difference structure

on the empirical set E, then there exists an interval scale M. We

can then resort to the uniqueness theorem mentioned above and

look for a linear positive transformation between thisM and any

another measurement M
′
to determine if the latter one is on an

interval scale as well.

3 POSET, LATTICE, AND HASSE DIAGRAM
As anticipated in Section 1, we will rely on the notion of poset
and other constructs to introduce a definition of interval on the

empirical set E of the system runs. In this section, following [19],

we recall some definitions and results that will be useful afterwards.

A partially ordered set P , poset for short, is a set with a partial

order ≼ defined on it. A partial order ≼ is a binary relation over

P which is reflexive, antisymmetric and transitive. Given s, t ∈ P ,



we say that s and t are comparable if s ≼ t or t ≼ s , otherwise they
are incomparable.

Example. Given a set A, let us consider the set B = {E : E ⊆ A}
and then define the following ordering: given E, F ∈ B, we say that

E ≼ F if E ⊆ F . B is the set of all subsets of A ordered by inclusion
and it is a poset.

Note that a total order over a set P is a partial order where

every pair of elements are comparable, whereas a weak order is a
total order without the antisymmetric relation.

A closed interval is a subset of P defined as [s, t] B {u ∈ P :

s ≼ u ≼ t}, where s, t ∈ P and s ≼ t . Moreover we say that t covers
s if s ≼ t and [s, t] = {s, t}, that is there does not exist u ∈ P such

that s ≺ u ≺ t .
We can represent a finite poset P by using the Hasse diagram

which is a graph where vertices are the elements of P , edges rep-
resent the covers relations, and if s < t then s is below t in the

diagram. Note that if s, t ∈ P lie on the same horizontal level of the

diagram, then they are incomparable by construction. Furthermore,

elements on different levels may be incomparable as well.

Example. Let N = 30 and P the set of all divisors of N , that is
P = {1, 2, 3, 5, 6, 10, 15, 30}. Let us define the following ordering on

P : given a,b ∈ P we say that a ≼ b if a divide b. P is a poset with

respect to the ordering ≼, and its Hasse diagram is:

30

6

2

10

3

1

15

5

2, 3 and 5 are on the same horizontal level and they are incompara-

ble since, for example, neither 2 divides 3 nor 3 divides 2. Moreover

3 and 10 lie on different levels and they are incomparable.

A subset C of a poset P is a chain if any two elements of C are

comparable: a chain is a totally ordered subset of a poset. If C is a

finite chain, the length of C , ℓ(C), is defined by ℓ(C) = |C | − 1. A

maximal chain of P is a chain that is not a proper subset of any

other chain of P . Referring to the previous example, a chain is the

subset {1, 10, 30}, while an example of maximal chain is the subset

{1, 2, 10, 30}.

If every maximal chain of P has the same length n, we say that

P is graded of rank n; in particular there exists a unique function

ρ : P → {0, 1, . . . ,n}, called the rank function, such that ρ(s) = 0,

if s is a minimal element of P , and ρ(t) = ρ(s) + 1, if t covers s . The
poset P = {1, 2, 3, 5, 6, 10, 15, 30} defined above is graded of rank 3

since any maximal chain of P has length equal to 3.

Finally, since any interval on a graded poset is graded, the length
of an interval [s, t] is given by ℓ(s, t) B ℓ([s, t]) = ρ(t) − ρ(s).

Given s, t ∈ P , an upper bound isu ∈ P such that s ≼ u and t ≼ u.
A least upper bound (or supremum) of s and t , denoted by s ∨ t , is
an upper bound u such that every other upper bound v ∈ P of s
and t satisfies v ≽ u. Dually it is defined the greatest lower bound
(or infimum) s ∧ t . Note that not every pair of elements in a poset

has necessarily the infimum or the supremum. A poset L for which

every pair of elements has a least upper bound and a greatest lower

bound is called lattice. The poset P from the previous example is a

lattice: for example the elements 2, 15 ∈ P are such that 2∨ 15 = 30

and 2 ∧ 15 = 1, and for any other pair of elements s, t ∈ P one has

s ∨ t = least common multiple and s ∧ t = greatest common divisor.

Proposition 1. Let L be a finite lattice. The following two condi-
tions are equivalent:

i. L is graded, and the rank function ρ of L satisfies

ρ(s) + ρ(t) ≥ ρ(s ∧ t) + ρ(s ∨ t),

for all s, t ∈ L.
ii. If s and t both covers s ∧ t , then s ∨ t covers both s and t .

Moreover, Foldes [8] proves that in a graded poset P the length

ℓ(·, ·) of any interval, also called the natural distance, equals the
length of the shortest path connecting the two endpoints of the

interval in its Hasse diagram.

4 SET-BASED MEASURES
We recall some basic definitions from [7]. Let (REL, ≼) be a totally
ordered set of relevance degrees with minimum called the non-

relevant relevance degree nr = min(REL) and a maximum rr =

max(REL). In this work, we assume binary relevance, that is we set

REL = {0, 1} without any loss of generality.

Let us consider a set of documents D and a set of topicsT . For
each pair (t ,d) ∈ T × D, the ground-truth GT is a map which

assigns a relevance degree rel ∈ REL to a document d with respect

to a topic t .
Given a positive natural numberN called the length of the run, we

define the set of retrieved documents asD(N ) =
{
{d1, . . . ,dN } :

di ∈ D
}
and the universe set of retrieved documents as D :=⋃ |D |

N=1 D(N ).

A run rt , retrieving a set of documents D(N ) in response to a

topic t ∈ T , is a function from T into D

t 7→ rt = {d1, . . . ,dN } .

A multiset (or bag) is a set which may contain the same element

several times and its multiplicity of occurrences is relevant [11].

A set of judged documents is a multiset (REL, m) = {0, 1, 0,

. . . , 0, 0, 1, . . .}, wherem = (m0,m1) andm0,m1 are two functions

from REL into N0 representing the multiplicity of the 0 and 1 rele-

vance degrees, respectively [13]; if the multiplicity is 0, a given rele-

vance degree is not present in themultiset. LetM(N ) be the set of all

the possible multiplicity functionsm, such thatm0 +m1 = N ; then,

R :=
⋃ |D |

N=1
⋃
m∈M(N )(REL,m) is theuniverse set of judged doc-

uments, i.e. the set of all the possible sets of judged documents

(REL,m). We denote by RBt the recall base, i.e. the total number

of relevant documents for a topic.

We call judged run the function r̂t from T × D into R, which

assigns a relevance degree to each retrieved document

(t , rt ) 7→ r̂t =
{
GT (t ,d1), . . . ,GT (t ,dN )

}
=

{
r̂t,1, . . . , r̂t,N

}
.

In the following, we omit the dependence on the topic and we

simplify the notation into r̂ B {r̂1, . . . , r̂N }, RB, and so on.

As discussed in Section 2.2, we have to start from introducing

an order relation ≼ on the set of judged runs. Therefore, we order

judged runs with same length by how many relevant documents



they retrieve, i.e. by their total mass of relevance:

r̂ ≼ ŝ ⇔

N∑
i=1

r̂i ≤
N∑
i=1

ŝi . (1)

Note that this order is quite intuitive and just corresponds to

common sense; therefore it respects the requirement of defining

intuitive, sensible and commonly agreeable relations discussed in

Section 1.

The order ≼ is a partial order on R, since runs with different

length are incomparable. However, to define a difference structure

on R and apply Theorem 1, we need a weak order, that is a totally

ordered subset of R since the antisymmetric relation is satisfied on

R.

Let us define R(N ) B
⋃
m∈M(N )(REL,m) as the set of the

judged runs with length fixed to N . R(N ) ⊆ R and it is a totally

ordered set with respect to the ordering ≼ defined in (1) since every

pair of runs on this set is comparable. Moreover, R(N ) is a maxi-

mal chain of R since runs with same length are all and only the

comparable runs.

Since R(N ) is a totally ordered set and |R(N )| = N + 1, it is

graded of rank N . Therefore, as discussed in Section 3, there is a

unique rank function ρ : R(N ) → {0, 1, . . . ,N } which is given

by ρ(r̂ ) =
∑N
i=1 r̂i . Indeed, ρ({0, . . . , 0}) = 0; if ŝ cover r̂ , that is ŝ

has one more relevant document than r̂ , then ρ(ŝ) = ρ(r̂ ) + 1 by

definition of rank function. This leads for any r ≼ s to the following

natural distance on R(N ): ℓ(r̂ , ŝ) = ρ(ŝ) − ρ(r̂ ) =
∑N
i=1(ŝi − r̂i ).

We can finally rely on this natural distance to introduce the

definition of difference ∆, which is the core building block for an

interval scale as explained in Section 2.2.

Definition 2. Given two runs r̂ , ŝ ∈ R(N ), the difference between
r̂ and ŝ is defined as ∆r̂ ŝ =

∑N
i=1

(
ŝi − r̂i

)
, that is ∆r̂ ŝ = ℓ(r̂ , ŝ) if

r̂ ≼ ŝ , otherwise ∆r̂ ŝ = −ℓ(ŝ, r̂ ).

Let ≼d be the less than or equal to relation on R(N ) × R(N ),

where the subscript d is to highlight its connection with inter-

vals as described in Section 2.2; note that ≼d is exactly the order

relation ≤ among real numbers. We show that (R(N ), ≼d ) is a

difference structure. Indeed the first three axioms of Theorem 1

follow immediately from the fact that the ordering ≼d between

intervals is given by the well known order ≤, thanks to the def-

inition of difference. Whereas the Solvability Condition, i.e. hav-
ing an equally-spaced gradation on R(N ), is satisfied by construc-

tion: if ŝ covers r̂ , the difference ∆r̂ ŝ is constant and equal to 1

(∆r̂ ŝ = ℓ(r̂ , ŝ) = ρ(ŝ) − ρ(r̂ ) = ρ(r̂ ) + 1 − ρ(r̂ ) = 1).

Let us show howwe can construct an interval scalemeasureM on

R(N ). The rank function ρ counts the number of relevant retrieved

documents and, if ŝ covers r̂ , the difference ∆r̂ ŝ = ρ(ŝ) − ρ(r̂ ) is
always equal to 1, by construction. Thus an interval scale measure

M on (R(N ), ≼d ) is given by the rank function itself:

M(r̂ ) = ρ(r̂ ) =
N∑
i=1

r̂i ,

which satisfies the condition imposed by Theorem 1: let r̂ , ŝ, û, v̂ ∈

R(N ) such that ∆r̂ ŝ ≤ ∆ûv̂ , then ∆r̂ ŝ ≤ ∆ûv̂ ⇔
∑N
i=1

(
ŝi − r̂i

)
≤∑N

i=1
(
v̂i −ûi

)
⇔ M(ŝ)−M(r̂ ) ≤ M(v̂)−M(û); thusM is an interval

scale on (R(N ), ≼d ).

We can finally proceed with the last step of Section 2.2 and check

whether an IR measure uses an interval scale on (R(N ), ≼d ) by

looking for a linear positive transformation withM.

Let us consider Precision

Prec@[N ](r̂ ) =
1

N

N∑
i=1

r̂i =
M(r̂ )

N
;

thus Precision is an interval scale.

Similarly, Recall

Recall(r̂ ) =
1

RB

N∑
i=1

r̂i =
M(r̂ )

RB

is an interval scale.

The F-measure, that is the harmonic mean of Precision and Recall,

F(r̂ ) = 2

Prec(r̂ ) · Recall(r̂ )

Prec(r̂ ) + Recall(r̂ )
=

2

N + RB

N∑
i=1

r̂i =
2M(r̂ )

N + RB

is an interval scale as well.

4.1 Related Work
van Rijsbergen [21] exploited conjoint structures to study Precision

and Recall by considering all the possible Precision and Recall pairs,

i.e. R × P , as the empirical set E and then creating a kind of “second

order” measure on this set E whose properties are examined, e.g. if

this “second order” measure is interval based. We take a different

approach since we consider system runs as the empirical set E and

not the set of all the possible Precision and Recall pairs; moreover,

we directly determine if an IR measure is on an interval scale by

exploiting the ordering and difference among system runs.

Bollmann and Cherniavsky [4] introduced the MZ-metric and,
following the example of van Rijsbergen [21], they defined a con-

joint structure on the contingency table relevant/not relevant and

retrieved/not retrieved in order to determine under which trans-

formations the MZ-metric was on an interval scale. Instead of a

conjoint structure on the contingency table, we directly created a

difference structure on the set of system runs that can be used to

determine if any set-based IR measure is on an interval scale.

Moreover, the MZ-metric is not on a interval scale if we use the

structure we defined above. Indeed, ifMZ is the MZ-metric, let us
consider the measure MZ B 1 −MZ , since we are working with

effectiveness measures, defined asMZ (r̂ ) =

∑N
i=1 r̂i

RB + N −
∑N
i=1 r̂i

for

r̂ ∈ R(N ). This measure is not interval scale on (R(N ), ≼d ), since

replacing a non relevant document with a relevant one yields to a

not constant increment of the measure which depends on the run

at hand. This further stresses that the core issue in determining

what are the properties of a measure is to agree on what are the

appropriate relations among the entities in the empirical set E, from
which the properties of a measure are then derived.

Finally, Bollmann [3] studied set-based measures by showing

that measures complying with a monotonicity and an Archimedean

axiom are a linear combination of the number of relevant retrieved

documents and the number of not relevant not retrieved documents.

We address a completely different issue, that is determining which

scales are used by IR measures.



5 RANK-BASED MEASURES
Given N , the length of the run, we define the set of retrieved
documents as D(n) = {(d1, . . . ,dn ) : di ∈ D,di , dj for any i ,
j}, i.e. the ranked list of retrieved documents without duplicates, and

the universe set of retrieved documents as D :=
⋃ |D |

n=1 D(n). A
run rt , retrieving a ranked list of documents D(n) in response to a

topic t ∈ T , is a function from T into D

t 7→ rt = (d1, . . . ,dn )

We denote by rt [j] the j-th element of the vector rt ,
i.e. rt [j] = dj .

We define the universe set of judged documents as R :=⋃ |D |

N=1 REL
N
, where RELN is the set of the ranked lists of judged

retrieved documents with length fixed toN . Since in our case REL =
{0, 1}, RELN = {0, 1}N refers to the space of all N−length vectors

consisting of 0 and 1. As for the set-based case, we denote by RBt
the recall base, i.e. the total number of relevant documents for a

topic.

We call judged run the function r̂t from T × D into R, which

assigns a relevance degree to each retrieved document in the ranked

list

(t , rt ) 7→ r̂t =
(
GT (t ,d1), . . . ,GT (t ,dN )

)
We denote by r̂t [j] the j-th element of the vector r̂t , i.e. r̂t [j] =
GT (t ,dj ).

As for the set-based case, we can simplify the notation omitting

the dependence on topics, r̂ B
(
r̂ [1], . . . , r̂ [N ]

)
, RB, and so on.

5.1 Strong Top-Heaviness
Top-heaviness is a central property in IR, stating that the higher a

system ranks relevant documents the better it is. If we apply this

property at each rank position (not only at the first ones) and we

take to extremes the importance of having a relevant document

ranked higher, we can define a strong top-heaviness property
which, in turn, will induce total ordering among runs with fixed

length N .

We start from the definition of an order among system runs. Let

r̂ , ŝ ∈ RELN such that r̂ , ŝ , then there exists k = min{j ≤ N :

r̂ [j] , ŝ[j]} < ∞, and we order system runs as follows

r̂ ≼ ŝ ⇔ r̂ [k] ≤ ŝ[k] . (2)

This ordering prefers a single relevant document ranked higher to

any number of relevant documents ranked just below it; more for-

mally, (û[1], . . . , û[m], 1, 0, . . . , 0) is greater than (û[1], . . . , û[m],

0, 1, . . . , 1), for any length N ∈ N and for anym ∈ {0, 1, . . . ,N − 1}.

This is why we call it strong top-heaviness. This ordering makes

sense and it is quite intuitive but it might be considered too radical;

therefore, it is a matter of future discussion to determine if it can

also be commonly agreed on.

RELN is totally ordered with respect to ≼, since for every pair

of runs r̂ , ŝ ∈ RELN , if k is the smallest depth at witch the two runs

differ, we establish which one is the biggest by just looking at the

values of r̂ [k] and ŝ[k].
Moreover, RELN is graded of rank 2

N − 1 since |{0, 1}N | = 2
N

and RELN = {0, 1}N is a maximal chain. Therefore, there is a

unique rank function ρ : RELN −→ {0, 1, . . . , 2N − 1} which is

given by:

ρ(r̂ ) =
N∑
i=1

2
N−i r̂ [i] .

If we look at the runs as binary strings, the rank function is

exactly the representation in base 10 of the number identified by a

run and the ordering among runs ≼ corresponds to the ordering ≤

among binary numbers.

Example. Let r̂ , ŝ ∈ REL5 be such that r̂ = (0, 0, 1, 1, 1) and ŝ =
(0, 1, 0, 0, 0). Since r̂ [1] = ŝ[1], while r̂ [2] = 0 < 1 = ŝ[2], we have
r̂ ≺ ŝ . Moreover ρ(r̂ ) = 2

2 + 21 + 20 = 7 < 8 = 2
3 = ρ(ŝ) and, in

particular, ŝ covers r̂ (indeed ρ(ŝ) = ρ(r̂ ) + 1).

The natural distance is then given by ℓ(r̂ , ŝ) = ρ(ŝ) − ρ(r̂ ), for
r̂ , ŝ ∈ RELN such that r̂ ≼ ŝ, and we can define the difference as

∆r̂ ŝ = ℓ(r̂ , ŝ) if r̂ ≼ ŝ , otherwise ∆r̂ ŝ = −ℓ(ŝ, r̂ ).

Definition 3. Given two runs r̂ , ŝ ∈ RELN , the difference be-

tween r̂ and ŝ is defined as ∆r̂ ŝ =
∑N
i=1 2

N−i (ŝ[i] − r̂ [i]
)
.

Let ≼d be the less than or equal to relation on RELN × RELN ,

which as in the set-based case is exactly the order relation ≤ among

real numbers, then (RELN , ≼d ) is a difference structure. Indeed, as
shown for the set-based case, the first three axioms of Theorem 1

follow immediately from the fact that the ordering ≼d between

intervals is given by the well known order ≤, thanks to the defini-

tion of difference. Finally, the Solvability Condition, that is needed
to have an equally-spaced gradation on RELN , is satisfied by con-

struction of the rank function, since ∆r̂ ŝ = ρ(ŝ)− ρ(r̂ ) = 1 for every

r̂ , ŝ ∈ RELN such that ŝ covers r̂ .
Similarly to the set-based case, an interval scale measureM on

(RELN , ≼d ) is given by the rank function itself

M(r̂ ) = ρ(r̂ ) =
N∑
i=1

2
N−i r̂ [i]

which is an interval scale since it satisfies the condition imposed by

Theorem 1. To prove it, let r̂ , ŝ, û, v̂ ∈ RELN such that ∆r̂ ŝ ≼d ∆ûv̂ ;

then, ∆r̂ ŝ ≼d ∆ûv̂ ⇔
∑N
i=1 2

N−i (ŝ[i] − r̂ [i]
)
≤

∑N
i=1 2

N−i (v̂[i] −
û[i]

)
⇔ M(ŝ) −M(r̂ ) ≤ M(v̂) −M(û), as we have to show.

Remember that a measure M
′
is an ordinal scale on RELN if, for

every r̂ , ŝ ∈ RELN , the following statement is true:

r̂ ≼ ŝ ⇔ M
′(r̂ ) ≤ M

′(ŝ) .

Let us show that RBPp is ordinal scale on RELN , with respect to the

total ordering defined above, if and only if p ≤ 1/2. Even though

we work with N fixed, note that we want RBPp ordinal for some

p ≥ 0 to hold regardless of the chosen value for N .

Let us consider r̂ , ŝ ∈ RELN such that r̂ ≺ ŝ . Then there exist k ∈

{1, . . . ,N } such that r̂ = (r̂ [1], . . . , r̂ [k − 1], 0, r̂ [k + 1], . . . , r̂ [N ])

and ŝ = (r̂ [1], . . . , r̂ [k − 1], 1, ŝ[k + 1], . . . , ŝ[N ]). Letmoreover
ˆr , ˆs ∈

RELN be such that
ˆr = (r̂ [1], . . . , r̂ [k − 1], 0, 1, . . . , 1) and ˆs =

(r̂ [1], . . . , r̂ [k − 1], 1, 0, . . . , 0). Clearly r̂ ≼ ˆr ≺ ˆs ≼ ŝ , let us prove

that RBPp (ˆr ) < RBPp (ˆs) iff p ≤ 1/2.

RBPp (ˆr ) − RBPp (ˆs) = (1 − p)
(∑k−1

i=1 r̂ [i]pi−1 +
∑N
i=k+1 p

i−1
)
−

(1 − p)
(∑k−1

i=1 r̂ [i]pi−1 + pk−1
)
= (1 − p)

(∑N
i=k+1 p

i−1 − pk−1
)
=

(1 − p)

(
pk − pN

1 − p
− pk−1

)
= −pk−1(1 − 2p + pN−k+1).



Note that RBPp (ˆr ) < RBPp (ˆs) ⇔ RBPp (ˆr ) − RBPp (ˆs) < 0 ⇔

1−2p+pN−k+1 > 0. If p > 1/2 then there exists N ∈ N big enough

such that 1 − 2p + pN−k+1 < 0, while if p ≤ 1/2 then 1 − 2p ≥ 0

and it is true that 1 − 2p + pN−k+1 > 0. Then we have shown that

RBPp (ˆr ) < RBPp (ˆs) ⇔ p ≤ 1/2.

Moreover RBPp (r̂ ) ≤ RBPp (ˆr ), since r̂ [i] ≤ 1 for all i ∈ {1, . . . ,N },

and RBPp (ˆs) ≤ RBPp (ŝ). Thus we can conclude that, for p ≤ 1/2,

r̂ ≺ ŝ ⇒ RBPp (r̂ ) < RBPp (ŝ). Moreover, if r̂ = ŝ, then simply

RBPp (r̂ ) = RBPp (ŝ). Therefore, for p ≤ 1/2, r̂ ≼ ŝ ⇒ RBPp (r̂ ) ≤
RBPp (ŝ).

To show the other implication of the iff, that is RBPp (r̂ ) ≤

RBPp (ŝ) ⇒ r̂ ≼ ŝ , we just prove that not{r̂ ≼ ŝ} ⇒ not{RBPp (r̂ ) ≤
RBPp (ŝ)}, i.e. we need to prove that r̂ ≻ ŝ ⇒ RBPp (r̂ ) > RBPp (ŝ).
But this last relation is exactly what we have already proven above,

exchanging r̂ and ŝ , hence the proof is complete.

RBPp withp > 1/2 and other IRmeasures – namely DCG, AP and

ERR – are not even ordinal scale onRELN . Indeed, let us for example

consider the runs r̂ = (0, 0, 1, 1, 1) and ŝ = (0, 1, 0, 0, 0) on REL5:
clearly r̂ ≼ ŝ . Note instead that DCG2(r̂ ) = 1/log

2
3 + 1/log

2
4 +

1/log
2
5 > 1 = DCG2(ŝ); RB·AP(r̂ ) = 1/3 + 2/4 + 3/5 > 1/2 =

RB·AP(ŝ), where RB is the recall base; ERR(r̂ ) = 1/6+1/16+1/40 >

1/4 = ERR(ŝ); finally, RBPp (r̂ ) = (1 − p)(p2 + p3 + p4) > (1 − p)p =
RBP(ŝ) forp & 0.54, and such an example can be found for any other

values of p > 1/2. Hence, these measures cannot be on interval

scale, since an interval scale measure is also ordinal scale.

Therefore, only RBPp with p ≤ 1/2 may be on interval scale.

Note that only RBP
1/2 is a linear positive transformation of the M

defined above:

RBP
1/2(r̂ ) =

1

2

N∑
i=1

1

2
i−1 r̂ [i] =

1

2
N

N∑
i=1

2
N−i r̂ [i] =

1

2
N M(r̂ ) ,

for every r̂ ∈ RELN . While RBPp with p < 1/2 is not a linear posi-

tive transformation ofM, since it does not preserve the equivalence

between differences. Indeed, let us consider r̂ = (0, 0, 0, 0, 1), ŝ =
(0, 0, 0, 1, 0), û = (0, 0, 0, 1, 1) and v̂ = (0, 0, 1, 0, 0), four runs on

REL5. Note that ŝ covers r̂ and v̂ covers û, but RBPp (ŝ) −RBPp (r̂ ) =

RBPp (v̂) − RBPp (û) ⇔ (1−p)(p3 −p4) = (1−p)(p2 −p3 −p4), that
is iff p = 1/2, as we expect.

Therefore we have shown that, given the total order (2) induced

by the strong top-heaviness, RBP
1/2 is the only one among the

considered IR measures that is on an interval scale with respect to

the difference structure defined above.

5.2 Weak Top-Heaviness
In this section, we abandon the total ordering induced by the

strong top-heaviness and we explore another ordering, induced by

a weaker form of top-heaviness. This ordering is based on these

two monotonicity-like properties proposed by Ferrante et al. [7]:

• Replacement A measure of retrieval effectiveness should

not decrease when replacing a document with another one

in the same rank position with higher degree of relevance.

• Swap If we swap a less relevant document with a more

relevant one in a lower rank position, the measure should

not decrease.

These two properties lead to the following partial ordering

among system runs

r̂ ≼ ŝ ⇔

k∑
j=1

r̂ [j] ≤
k∑
j=1

ŝ[j] ∀k ∈ {1, . . . ,N } . (3)

This ordering considers a run bigger than another one when, for

each rank position, it has more relevant documents than the other

one up to that rank. With respect to the strong top-heaviness of

eq. (2), this ordering is less extreme because it is sensitive to the

total mass of relevance accumulated at the different rank positions

instead of “cutting” everything just because of a single relevant

document ranked higher. This is why we call it weak top-heaviness.
Moreover, this ordering is based on two monotonicity-like proper-

ties which are common-sense and have been somehow pointed out

also in other previous works [2, 14]. Therefore, being also intuitive

and sensitive, this ordering might be commonly agreed on in an

easier way than the strong top-heaviness ordering.

The ordering ≼ is a partial ordering on RELN : for example, when

N = 5 the runs r̂ = (0, 1, 1, 0, 1) and ŝ = (1, 0, 0, 0, 1) are incompa-

rable, since ŝ[1] > r̂ [1] while
∑
3

i=1 ŝ[i] = 1 < 2 =
∑
3

i=1 r̂ [i]. Thus

RELN is a poset. In addition RELN is a lattice; indeed, for every

r̂ , ŝ ∈ RELN , r̂ ∧ ŝ ≽ (0, . . . , 0) and r̂ ∨ ŝ ≼ (1, . . . , 1).

Since RELN is a poset, that is it does not have a weak order,

we have no chance to find a difference structure defined on the

whole set, as we did in Section 5.1. Thus we first have to highlight

some properties associated to RELN as a poset, and then we will

make use of totally ordered subsets of RELN , i.e. chains, where it

is possible to define a difference structure.

Proposition 2. Let N ∈ N be fixed and REL = {0, 1}. The poset
RELN is graded, i.e. every maximal chain of RELN has the same
length.

Proof. Thanks to Proposition 1 and since RELN is a lattice, it is

sufficient to prove that for each r̂ , ŝ ∈ RELN that both cover r̂ ∧ ŝ,
r̂ ∨ ŝ covers both r̂ and ŝ .

Let r̂ , ŝ ∈ RELN be such that r̂ ≺ ŝ , define c =
��{k ≤ N :∑N

i=1 r̂ [i] <
∑N
i=1 ŝ[i]}

��
and denote with k1 < · · · < kc the depths

where the strict inequality on (3) hold. Firstly note that if r̂ ≺ ŝ
then c ≥ 1.

If c = 1 and k1 < N , then ŝ and r̂ differ in a swap of length one

ŝ = (. . . , ŝ[k1−1], 1, 0, ŝ[k1+2], . . . ), r̂ = (. . . , ŝ[k1−1], 0, 1, ŝ[k1+
2], . . . ). If c = 1 and k1 = N , then ŝ and r̂ differ in a replacement
in the last position: ŝ = (. . . , ŝ[k1 − 1], 1), r̂ = (. . . , ŝ[k1 − 1], 0).

In both cases, for every û ∈ RELN such that r̂ ≼ û ≼ ŝ , then
û = r̂ or û = ŝ , and this follows immediately from the partial order

recalled above.

On the contrary, if c > 1, there are two cases to study: k2 > k1+1
or k2 = k1 + 1. In the first case we have the following situation:

ŝ = (. . . , ŝ[k1 − 1], 1, 0, ŝ[k1 + 2], . . . , ŝ[k2 − 1], 1, ŝ[k2 + 1], . . . ),

r̂ = (. . . , ŝ[k1 − 1], 0, 1, ŝ[k1 + 2], . . . , ŝ[k2 − 1], 0, r̂ [k2 + 1], . . . ).

Note that r̂ [k1 + 1] = 1 while ŝ[k1 + 1] = 0 since

∑k1+1
i=1 r̂ [i] has to

be equal to

∑k1+1
i=1 ŝ[i] as k2 > k1 + 1. Then the following run

û = (. . . , ŝ[k1 − 1], 0, 1, ŝ[k1 + 2], . . . , ŝ[k2 − 1], 1, ŝ[k2 + 1], . . . )
is such that r̂ ≺ û ≺ ŝ .

While when k2 = k1 + 1, we can have ŝ = (. . . , ŝ[k1 − 1],

1, 0, ŝ[k2 + 1], . . . ) and r̂ = (. . . , ŝ[k1 − 1], 0, 0, r̂ [k2 + 1], . . . ),



or ŝ = (. . . , ŝ[k1−1], 1, 1, ŝ[k2+1], . . . ) and r̂ = (. . . , ŝ[k1 − 1], 0, 0,
r̂ [k2 + 1], . . . ). In both cases, û given by û = (. . . , ŝ[k1 − 1], 0, 1,
ŝ[k2 + 1], . . . ) is such that r̂ ≺ û ≺ ŝ .

Thus we have shown that the “cover” relations, that is the op-

eration for which from a run we can obtain a new run that covers

the first one, are swap of length one and replacements in the last

position.

Now let r̂ , ŝ ∈ {0, 1}N such that both cover r̂ ∧ ŝ , which implies

that r̂ and ŝ are incomparable. This means that does not exists

ẑ ∈ RELN such that r̂ ∧ ŝ ≺ ẑ ≺ r̂ nor r̂ ∧ ŝ ≺ ẑ ≺ ŝ . Thus, if
û B r̂∧ŝ B (û[1], . . . , û[N ]), there exist an index i ∈ {1, . . . ,N −1}

such that u[i] = 0 and u[i + 1] = 1. Since r̂ and ŝ both cover û, we
have two possibilities (up to symmetries):

i. r̂ = (û[1], . . . , û[i − 1], 1, 0, û[i + 2], . . . , û[N ]) and

ŝ = (û[1], . . . , û[j − 1], 1, 0, û[j + 2], . . . , û[N ]), if û[j] = 0,

û[j + 1] = 1, where j > i + 1;
ii. r̂ = (û[1], . . . , û[i − 1], 1, 0, û[i + 2], . . . , û[N ]) and

ŝ = (û[1], . . . , û[N − 1], 1), if û[N ] = 0.

Respectively, let us define t̂ ∈ RELN as

i. t̂ = (û[1], . . . , û[i − 1], 1, 0, û[i + 2], . . . , û[j − 1], 1, 0,
û[j + 2], . . . , û[N ]);

ii. t̂ = (û[1], . . . , û[i − 1], 1, 0, û[i + 2], . . . , û[N − 1], 1).
The notes made above entail that t̂ covers both r̂ and ŝ, since t̂
differs from each of them only for one swap or a replacement in

the last position. Then t̂ = r̂ ∨ ŝ and the proof is complete. �

As discussed in Section 3, RELN graded implies that the natural

distance ℓ(·, ·) is well defined for every two comparable elements

r̂ , ŝ ∈ RELN as the length of a maximal chain in [r̂ , ŝ] minus 1.

Equivalently, given the rank function ρ : RELN −→ N, the natural
distance is defined as ℓ(r̂ , ŝ) = ρ(ŝ) − ρ(r̂ ) and, if ŝ covers r̂ , then
ρ(ŝ) = ρ(r̂ ) + 1.

Remember that the natural length of any interval of a graded

poset equals the numbers of edges in every shortest path connecting

the endpoints of the interval in its Hasse diagram. The next example

highlights this fact.

Example. Let us fix N = 4. The Hasse Diagram of RELN is

(1, 1, 1, 1)

(1, 1, 1, 0)

(1, 1, 0, 1)

ŝ = (1, 0, 1, 1)

r̂3 = (0, 1, 1, 1)

r̂2 = (0, 1, 1, 0)

r̂1 = (0, 1, 0, 1)

(0, 0, 1, 1)

(0, 0, 1, 0)

(0, 0, 0, 1)

(0, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 1, 0)

(1, 0, 0, 1)

(1, 0, 0, 0)

(0, 1, 0, 0) = r̂

where different colours of the runs correspond to different total

numbers of relevant retrieved documents.

Given r̂ = (0, 1, 0, 0), ŝ = (1, 0, 1, 1), let us consider one of the

shortest paths between the two runs, for example the one with

orange edges: it starts from r̂ , goes through r̂1, r̂2, r̂3, and ends in ŝ .
Note that {r̂0 B r̂ , r̂1, r̂2, r̂3, r̂4 B ŝ} is also a maximal chain, since

there does not exist û ∈ REL4 such that r̂i ≺ û ≺ r̂i+1 for some

i ∈ {0, 1, 2, 3}. Moreover this shortest path has length 4, and every

other shortest path between r̂ and ŝ has the same length, e.g. the

one with dark green edges. Thus the natural length of [r̂ , ŝ] is 4.

The explicit expression for the rank function is

ρ(r̂ ) =
N∑
i=1

(N − i + 1)r̂ [i] .

Indeed, recalling that given two runs one covers the other if they

differ only for a swap of length one or a replacement in the last

position, in order to compute ρ(r̂ ) we need to count the number

of replacements and swaps needed to go from the smallest run

possible, i.e. (0, . . . , 0) to r̂ along a path in the Hasse diagram, where

the edges are the “cover” relations.

Example. Let us consider ŝ = (1, 0, 1, 1) from the previous example.

Since ŝ[1] = 1, from 0̂ = (0, 0, 0, 0) we need a replacement in 0̂[4]

plus three swaps to reach ŝ[1], that is we have to do four “cover”

operation to go from 0̂ to (1, 0, 0, 0) and, equivalently, the path

in the Hasse diagram has length equal to 4. Since ŝ[3] = 1, from

(1, 0, 0, 0) to (1, 0, 1, 0) we need a replacement in the last position

plus a swap, that is 2 more “cover” operations. Eventually, with

another replacement, we reach ŝ . Hence ρ(ŝ) = 4 + 2 + 1 = 7 =∑
4

i=1(4 − i + 1)ŝ[i], as stated.

Therefore, from the natural distance and the rank function, we

can define the difference as ∆r̂ ŝ = ℓ(r̂ , ŝ) if r̂ ≼ ŝ , otherwise ∆r̂ ŝ =
−ℓ(ŝ, r̂ ).

Definition 4. Given two comparable runs r̂ , ŝ ∈ RELN , the differ-
ence between r̂ and ŝ is ∆r̂ ŝ =

∑N
i=1(N − i + 1)

(
ŝ[i] − r̂ [i]

)
.

Note that, contrary to the previous cases, since the ordering

given by (3) is only partial, in order to compare differences between

intervals we need to restrict our study to a maximal chain, i.e. a

totally ordered subset of RELN . Thus, denoted with C(RELN ) a

maximal chain of RELN , and given the less than or equal to ≼d rela-

tion, which as in the previous cases coincides with the order relation

≤ among real numbers, the relational structure (C(RELN ), ≼d ) is

a difference structure. This follows from the same discussion we

have done for the difference structure in the strong top-heaviness

case in the previous section.

Therefore, an interval scale measure M on (C(RELN ), ≼d ) is

given by the rank function, that is

M(r̂ ) = ρ(r̂ ) =
N∑
i=1

(N − i + 1)r̂ [i] ,

for r̂ ∈ C(RELN ).

AP, RBP, DCG, and ERR are on a ordinal scale with respect the

partial ordering (3) induced by the weak top-heaviness, as demon-

strated by [7]. However, none of them is on an interval scale since

there does not exist any positive linear transformation between M

and any of them. In particular, the next example shows how each

of them fails on intervals with same length.



Example. Consider the following runs on REL4 : r̂ = (0, 1, 0, 0), ŝ =
(1, 0, 0, 0), û = (0, 0, 0, 1) and v̂ = (0, 0, 1, 0). These runs are com-

parable, that is they belong to the same maximal chain on REL4.
Moreover, ŝ covers r̂ and v̂ covers û, that is the differences ∆r̂ ŝ and
∆ûv̂ are equal.

Hence an interval scale measureM should satisfyM(ŝ) −M(r̂ ) =
M(v̂)−M(û), as a consequence of Theorem 1. However, in the case of

APwe have thatRB·(AP(ŝ)−AP(r̂ )) = 1−1/2 > 1/3−1/4 = (AP(v̂)−
AP(û)) ·RB, where RB is the recall base. In the case of RBP we have

that RBPp (ŝ)−RBPp (r̂ ) = (1−p)2 > (1−p)2p2 = RBPp (v̂)−RBPp (û)
since p < 1. In the case of DCG we have that DCG2(ŝ)−DCG2(r̂ ) =
1 − 1 < 1/log

2
3 − 1/log

2
4 = DCG2(v̂) − DCG2(û). Finally, in

the case of ERR we have that ERR(ŝ) − ERR(r̂ ) = 1/2 − 1/4 >

1/6 − 1/8 = ERR(v̂) − ERR(û). This proves that none of these

measures is an interval scale on (C(RELN ), ≼d ), where C(REL
N )

is such that r̂ , ŝ, û, v̂ ∈ C(RELN ).

5.3 Related Work
Both Amigó et al. [2] and Moffat [14] studied the properties of IR

measures, in a formal and a numeric way respectively, defining, e.g.,

how an IR measure should behave when a relevant document is

added or removed from a system run. All the identified properties

could be exploited to introduce some sort of structure among the

system runs but these authors did not do that explicitly. Moreover,

they did not study what scales are adopted by IR measures, which

is the core topic of this paper instead.

Busin and Mizzaro [5] used the notion of scale and mapping

among scale to model different kinds of similarity and to introduce

constraints and axioms over them. However, they did not address

the problem of determining the scales used by an IR measure.

6 CONCLUSIONS AND FUTUREWORK
In this paper we have explored the question whether IR evaluation

measures are based on an interval scale or not. This is a core issue

since the validity of the statistics, such as mean and variance, and

the statistical tests we use to compare IR systems depends on the

scale adopted by IR measures.

We have relied on the representational theory of measurement

and highlighted that the key point to understand the properties

of IR measures is to have a clear understanding of the relations

among system runs. In particular, to determine if an IR measure is

on a interval scale, we need first to have a commonly agreed notion

of ordering and a notion of interval among system runs. We have

shown how to define such notions of ordering and interval and

how to exploit them to determine whether an IR measure is on an

interval scale.

In the case of set-based measures and system runs of fixed length,

we found that the most popular ones – namely Precision, Recall,

and F-measure – are on an interval scale. In the case of rank-based

measures and system runs of fixed length, adopting a strongly top-

heavy ordering, we found that: RBP with p = 1

2
is on an interval

scale; RBP with p < 1

2
is on an ordinal scale but not on an interval

one; RBP with p > 1

2
, AP, DCG, and ERR are not on an interval

scale and not even on an ordinal one. Using a weakly top-heavy

ordering, we found that RBP, AP, DCG, ERR are not on an interval

scale even if they are on an ordinal one.

Future work will concern further investigation of rank-based

measures and we will explore two alternatives. Firstly, instead of

defining a notion of ordering among the system runs, we will use

the ordering of systems induced by an IR measure itself and we will

check if, at least in this case, IR measures are on an interval scale.

Secondly, we will relax the properties of Definition 1 by removing

the Solvability Condition. This will cause the intervals of system

runs to not be anymore equi-spaced but could allow us to introduce

a notion of partially interval scale which IR measures might (or

not) comply to.
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