
On Including the User Dynamic in Learning to Rank
Nicola Ferro

University of Padua, Padua, Italy
ferro@dei.unipd.it

Claudio Lucchese
ISTI–CNR, Pisa, Italy

claudio.lucchese@isti.cnr.it

Maria Maistro
University of Padua, Padua, Italy

maistro@dei.unipd.it

Ra�aele Perego
ISTI–CNR, Pisa, Italy

ra�aele.perego@isti.cnr.it

ABSTRACT
Ranking query results e�ectively by considering user past behaviour
and preferences is a primary concern for IR researchers both in
academia and industry. In this context, LtR is widely believed to be
the most e�ective solution to design ranking models that account
for user-interaction features that have proved to remarkably im-
pact on IR e�ectiveness. In this paper, we explore the possibility
of integrating the user dynamic directly into the LtR algorithms.
Speci�cally, we model with Markov chains the behaviour of users
in scanning a ranked result list and we modify LambdaMart, a
state-of-the-art LtR algorithm, to exploit a new discount loss func-
tion calibrated on the proposed Markovian model of user dynamic.
We evaluate the performance of the proposed approach on publicly
available LtR datasets, �nding that the improvements measured
over the standard algorithm are statistically signi�cant.

CCS CONCEPTS
•Information systems →Learning to rank; �ery log analy-
sis; Retrieval e�ectiveness;

KEYWORDS
LambdaMart; learning to rank; user dynamic
ACM Reference format:
Nicola Ferro, Claudio Lucchese, Maria Maistro, and Ra�aele Perego. 2017.
On Including the User Dynamic in Learning to Rank. In Proceedings of SIGIR
’17, Shinjuku, Tokyo, Japan, August 07-11, 2017, 4 pages.
DOI: h�p://dx.doi.org/10.1145/3077136.3080714

1 INTRODUCTION
Information Retrieval (IR) systems are nowadays challenged with
increasingly complex search tasks where information about how
users interact with IR systems play a central role to adapt them to
user needs and interests [13]. A lot of IR research focused on
improving e�ectiveness, by exploiting information about user-
system interactions recorded in the query logs of Web search
engines. �e number of clicks on a given query-result pair, the
click-through rate, and the dwell time, are examples of actionable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’17, Shinjuku, Tokyo, Japan
© 2017 ACM. 978-1-4503-5022-8/17/08. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3080714

information to improve various aspects of IR systems. In the con-
text of Learning to Rank (LtR), user actions recorded in query logs
are used to extract several important features [1]. As an empir-
ical evidence of the importance of user interaction features, we
trained a LambdaMart [4, 19] model on the MSLR-WEB10K LtR
dataset (h�ps://www.microso�.com/en-us/research/project/mslr/)
with and without user-interaction features: the nDCG measured
on the test set without such features drops from 0.4636 to 0.4410.

In this paper, we explore the embedding of user interaction dy-
namics into LambdaMart, a state-of-the-art LtR algorithm. Instead
of proposing new features modeling this particular aspect of user
behavior and then training the LtR model on this extended set of
features, we adopt a complementary approach. We model the user
dynamic in scanning a ranked result list withMarkov chains trained
on query log data and we modify the LambdaMart loss function
to embed this trained Markov chain.

To the best of our knowledge, the integration of the user dynamic
in a LtR algorithm is novel and has not been addressed yet. Our
approach di�ers in fact from on-line LtR and reinforcement learning.
�e authors of [11] exploit click logs to infer preferences between
rankers in order to make on-line LtR faster. Lerot [16] proposes an
on-line LtR algorithmwhich uses clicks as feedback for interleaving
methods. We instead propose an o�-line LtR algorithm where the
user dynamic is directly embedded in the ranking function.

2 METHODOLOGY
As shown in [20], e�ectiveness is o�en measured as the inner
product of a relevance vector J and a discounting vector D. �e
elements Ji account for the bene�t of ranking an high-quality doc-
ument at the i-th position of the Search Engine Result Page (SERP),
while D denotes such contribution for low-ranked documents. For
instance, according to Discounted Cumulated Gain (DCG) the i-th
element of J is de�ned as Ji = 2li − 1, where li is the relevance
label of the i-th ranked document, andDi = log(i+1). �e underly-
ing assumption is that low-ranked documents receive less a�ention
by the user and therefore they contribute less to the user-perceived
quality of the SERP. De�ning a proper quality metric is crucial both
for evaluating retrieval systems and for learning e�ective ranking
models as such metrics are used to drive the training process.

Most metrics assume the user analyzes a SERP from top to bot-
tom, and therefore de�ne a decreasing discount vector, hoever some
user studies suggest that the probability of observing a result de-
pends on the quality of the documents ranked higher: if the user
�nds a relevant document at position i it is less likely that he will

https://www.microsoft.com/en-us/research/project/mslr/

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan N. Ferro et al.

Rank Positions
2 4 6 8 10

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25
1 Relevant Document
0 Relevant Documents
3 Relevant Documents
5 Relevant Documents
7 Relevant Documents
9 Relevant Documents

(a) Di�erent �ery Types

2 4 6 8 10
Rank Positions

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

1

D
is

co
un

t

(i) = i-1+ i+
 = 0.2601
 = 0.0112
 = -0.0378

 Stationary Distribution
 User Dynamic

nDCG Discount

(b) Navigational �eries

2 4 6 8 10
Rank Positions

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

0.2

0.4

0.6

0.8

1

D
is

co
un

t

(i) = i-1+ i+
 = 0.0848
 = 0.0045
 = 0.0502

 Stationary Distribution
 User Dynamic

nDCG Discount

(c) Informational �eries

Figure 1: Stationary distributions for queries retrieving di�erent number of relevant documents (a), and stationary distribu-
tion with its �tted curve and DCG discount for navigational (b), and informational queries (c).

inspects the document at position i + 1 [21]. However, the user be-
havior is more complex as he/she can move forward and backward,
can jump from one document to any other and visit already visited
documents, as suggested by [10].

Our work stems from the simple observation that user behavior
in visiting a SERP di�ers depending on query type and the number
of relevant results. For example, it is likely that on a SERP with a
single highly relevant result in the �rst position the user assumes a
navigational behavior, while a SERP with several relevant results
may likely correspond to an informational query, where a more
complex SERP visiting behavior can be observed [2]. Since at train-
ing time a list-wise LtR algorithm such as LambdaMart is aware of
the number and distribution of relevance labels associated with the
training samples for each query, we suppose that it can pro�t from
the knowledge of the user dynamic associated with the speci�c kind
of query. In the following we discuss our model of user dynamic
and the methodology followed to integrate it into LambdaMart.

2.1 Modeling User Dynamic
We model the user dynamic with a Markovian process [14] where
the user scans the ranked documents in the SERP according to possi-
bly complex paths. Let us denote byX1,X2, . . . the sequence of ran-
dom variables representing the rank positions in R = {1, 2, . . . ,R}
visited by the user, where Xn = j means that the nth document
visited by the user is at rank j . Moreover, we assume that the prob-
ability to move from the document at rank i to the document at
rank j depends on the document at rank i only and is independent
of all the previously visited documents. Finally, we denote by P
the transition matrix whose entries represent the transition prob-
abilities P = (pi j : i, j ∈ R), where pi j = P[Xn+1 = j |Xn = i]. �e
sequence of random variables (Xn)n>0 de�nes a discrete-time ho-
mogeneous Markov chain. Under the assumption of irreducibility
and aperiodicity, P admits a unique stationary distribution π = πP ,
which is the limit of the n-step transition probabilities p (n)i j → πj as
n → ∞ for all i , j [14]. When extending this analysis to a long-term
query log, we can consider the behavior recorded for each user
as a di�erent observation of the same stochastic process, and the
resulting stationary distribution can be considered as an aggregated

representation of user dynamics. In addition, since we observe that
the behavior of users change depending on the number of relevant
documents in the SERP, we can classify queries on the basis of
the number of relevant documents returned and estimate di�erent
transition matrices P̂ for di�erent classes of queries. Speci�cally,
we �rst aggregate the dynamics of di�erent users on the basis of
the typology of query, then we adopt the maximum likelihood
estimator approach [18] on the aggregated data:

(1) for each i ∈ R let vi be the number of times that the users
visited the document at rank i given the query;

(2) if vi = 0, then p̂i j = 0 for all j , i and p̂ii = 1;
(3) if vi > 0, let vi j be the number of transitions from docu-

ment at rank i to document at rank j, then p̂i j =
vi j
vi .

Figure 1(a) plots the stationary distributions obtained from the
Yandex query log detailed in Section 3.1. When considering queries
with just one relevant retrieved document, i.e. the red line with
circle markers in Figure 1(a), the user dynamic exhibits a spike
with respect to the �rst rank position, while for queries without
any relevant documents or with more than one relevant document,
i.e. the blue lines, the probability tends to be distributed more
uniformly, meaning that the user is exploring the whole SERP.

We focus on these two distinct macroscopic behaviors, and, for
the sake of simplicity, we call navigational the queries where users
concentrated on just the �rst item, and we consider all the other
queries as informational since users tend to visit more documents.

On the basis of the above experimental observation, we claim
that the user dynamic can be described as a mixture of the navi-
gational and informational behavior. �e navigational component
is represented by the inverse of the rank position i , 1

i , while the
informational component is linear with respect to the rank position
i . �erefore, we model the user dynamic as δ (i) = αi−1 + βi + γ ,
where the parameters α , β and γ are calibrated in order to �t the
estimated stationary distributions computed on the Yandex dataset.

Figures 1(b) and 1(c) show the stationary distributions together
with the ��ed curves for the navigational and informational cases,
respectively. In Figure 1(b) the stationary distribution is the same
reported in the red line of Figure 1(a), while to compute the station-
ary distribution reported in Figure 1(c) we aggregate all the user

On Including the User Dynamic in Learning to Rank SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

dynamics corresponding to the other queries, i.e. queries without
relevant documents or with more than one relevant document.

�e user dynamic de�ned above can actually be considered as
a discounting vector to be exploited in any given quality metric.
Di�erently from other approaches, the user dynamic is de�ned on
the basis of two di�erent query classes which exhibit a di�erent user
behavior. Figures 1(b) and 1(c) show how di�erent is the derived
user dynamic w.r.t. the DCG discounting component. Below we
discuss how δ can be exploited in a state-of-the-art LtR algorithm.

2.2 Integrating User Dynamic into LtR
A LtR algorithm exploits a ground-truth set of training examples in
order to learn a document scoring function σ [12]. Such training set
is composed of a collection of queries Q, where each query q ∈ Q
is associated with a set of assessed documents D = {d0,d1, . . .}.
Each document di is labeled by a relevance judgment li according
to its relevance to the query q. Each query-document pair (q,di)
is represented by a vector of features x , able to describe the query
(e.g., its length), the document (e.g., the in-link count) and their
relationship (e.g., the number of query terms in the document).

Since IR measures are not di�erentiable, their optimization is
very challenging. To address this issue, the state-of-the-art solution
is the LambdaRank gradient approximation [5], which is based on
the idea of measuring the cost variation a�er swapping any two
documents in a given result list. As discussed in [9], this approach
can be applied to several IR measures and it is capable of accurately
discovering local optima.

LambdaRank can be summarized as follows. di and dj are two
candidate documents for the same query q, with relevance labels li
and lj respectively, si and sj are the currently predicted document
scores. �e lambda gradient of any given IR quality function Q is:

λi j =
∂Qi j

∂
(
si − sj

) = sgn(yi − yj)
����∆Qi j ·

1
1 + esi−sj

����

where, the sign is determined by the document labels only, the �rst
factor ∆Q is the quality variation when swapping scores si and
sj , and the second factor is the derivative of the RankNet cost [3],
which minimizes the number of disordered pairs. When li ≥ lj ,
the quality Q increases with the score of document di . �e larger
the quality variation ∆Q , the higher the document di should be
scored. Note that the RankNet multiplier fades ∆Q if documents are
scored correctly, i.e. si ≥ sj , and boosts ∆Q otherwise. �e lambda
gradient for a document di is computed by marginalizing over all
possible pairs in the result list: λi =

∑
j λi j . LambdaRank uses

Normalized Discounted Cumulated Gain (nDCG) as Q and so ∆Q is
the variation in nDCG caused by the swap of two documents.

We enhance the existing LambdaMart algorithm by replacing
the above Q with a new quality measure which integrates the
proposed user dynamic δ . �is new measure is called Normalized
Markov Cumulated Gain (nMCG) and it is de�ned as follows:

nMCG@k =

∑
i≤k

(
2li − 1

)
· δc (i)∑

h≤k,sorted by lh
(
2lh − 1

)
· δc (h)

where li is the relevance label of the i-th ranked document and δc (i)
is the user dynamic function at rank i relative to the query class c ,
either navigational or informational. Basically, nMCG can be seen

as an extension of nDCG where the discount function is de�ned
by the user dynamic and depends on the query class. Moreover,
since δc depends on the query class, i.e. depends on the query
q, we are optimizing two di�erent variants of the same quality
measure nMCG across the training dataset. Finally, ∆nMCGi j can
be computed e�ciently as follows:

∆nMCGi j =
−

(
2li − 2lj

)
(δc (i) − δc (j))∑

h≤k,sorted by lh
(
2lh − 1

)
· δc (h)

.

Hereina�er, we use nMCG-MART to refer to the described variant
of LambdaMart aimed at maximizing nMCG.

Note that the query class is known at training time, and there-
fore the algorithm can optimize the proper user dynamic δc . Nor
the document relevance, neither the query class information are
available at test time, therefore the algorithm should, at the same
time, classify queries and rank documents according to the di�erent
class-based dynamics δc .

3 EXPERIMENTS
3.1 Experimental Setup
We remark that there is no publicly available dataset providing
user session data, document relevance and query-document pairs
features at the same time. �erefore, we have to use two di�erent
datasets: the �rst for the user dynamic derivation and the second
for the LtR analysis.

We calibrate the proposed user model on the basis of the click log
dataset provided by Yandex [17] (h�p://imat-relpred.yandex.ru/en/).
�e dataset is composed of 340,796,067 records with 30,717,251
unique queries, retrieving 10 URLs each. We used the training set,
which consists of 5191 assessed queries with binary judgments,
corresponding to 30,741,907 records. Notice that 9% of the ses-
sions corresponds to navigational queries while the remaining 91%
corresponds to informational ones.

�e accuracy of the proposed algorithm is evaluated on three
public LtR datasets, MSLR-WEB30K and MSLR-WEB10K, provided
by Microso� [15] and Istella provided by Tiscali Istella Web search
engine [8]. Dataset MSLR-WEB30K encompasses 31,531 queries
from the Microso� Bing search engine for a total of 3,771,125 query-
document pairs represented by 136 features. �e dataset is pro-
vided as a 5-fold split. �e MSLR-WEB10K dataset contains 10,000
queries samples at random from the previous. Dataset Istella pro-
vides 33,018 queries for a total of 3,408,630 query-document pairs
represented by 220 features. �e dataset is provided as a 60/20/20
train/validation/test split.

Both the Microso� and Istella datasets use integer relevance
labels in the range [0, 4]. In order to classify queries as navigational
or informational we adopt the following criterion. A query is con-
sidered as navigational if it contains only one result with relevance
label ≥ 3. Approximatively 15% of the queries in the Microso�
datasets are classi�ed according to this heuristic as navigational
queries, which is quite similar to the value measured on the Yan-
dex dataset. �e Istella dataset instead contains a smaller set of
navigational queries, covering about 3% of the dataset.

http://imat-relpred.yandex.ru/en/

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan N. Ferro et al.

Table 1: nDCG@10 and nMCG@10 across test datasets for di�erent model sizes (results are averaged across the 5 folds for
Microso� datasets.). Statistically signi�cant di�erences at p = 0.05 and at p = 0.01 w.r.t. λ-MART marked resp. with ∗ and ∗∗.

MSLR-WEB30K MSLR-WEB10K Istella-S
100 500 Full 100 500 Full 100 500 Full

Algorithm nDCG@10
λ-MART 0.4564 0.4759 0.4793 0.4479 0.4637 0.4634 0.7031 0.7451 0.7536
nMCG-MART 0.4598∗∗ 0.4778∗∗ 0.4808∗∗ 0.4499∗∗ 0.4646 0.4648∗ 0.7070∗∗ 0.7466∗ 0.7549
Algorithm nMCG@10
λ-MART 0.4684 0.4878 0.4914 0.4609 0.4767 0.4768 0.7551 0.7970 0.8059
nMCG-MART 0.4718∗∗ 0.4898∗∗ 0.4933∗∗ 0.4626∗ 0.4782 0.4790∗∗ 0.7595∗∗ 0.8000∗∗ 0.8090∗∗

3.2 Experimental Results
We compare the e�ectiveness of state-of-the-art LtR algorithm λ-
MART and nMCG-MART both in terms of nDCG@10 and nMCG@10
metrics. Recall that, at training time, λ-MART optimizes nDCG
while nMCG-MART exploits the proposed nMCG metric. �e al-
gorithms’ hyper-parameters were set a�er parameter sweeping,
similarly to [6], to a learning rate of 0.05, maximum number of
leaves of 64, and a maximum number of trees of 1500. �e actual
number of trees is tuned on the validation set. We also evaluate
smaller models with 100 and 500 trees. In Table 1 we report the
e�ectiveness scores.

We �rst observe that nMCG-MART is more e�ective in opti-
mizing nMCG in every dataset and with every model size. �is
was expected as the proposed algorithm is the only one aimed at
optimizing the proposed nMCG. At the same time, this con�rms
the soundness of the integration of nMCG into LambdaMart.

An interesting result is that nMCG-MART always provides higher
nDCG@10 than LambdaMart. Recall that even relative improve-
ments in nDCG below 1% are signi�cant in terms of user satis-
faction [7]. According to randomization test, the improvement is
statistically signi�cant at p = 0.01 on the larger MSLR-WEB30K
dataset and on the other datasets limited to the small models with
100 trees. �e proposed nMCG seems to provide more stable results,
as optimizing nMCG also helps in optimizing nDCG. We believe
that nMCG@k is somehow a simpler function to maximize: for
informational queries it mainly discriminates between documents
inside and outside the top-k results, and for navigational queries
an additional boost is given if the relevant document is ranked �rst.
�is possibly drives the learning algorithm along a smoother cost
function. �e bene�t is larger at the initial training iterations as sug-
gested by the statistically signi�cant improvements on small models
with 100 trees. Larger models reach a plateau of e�ectiveness where
it is anyway di�cult to improve further. �ese hypotheses needs a
detailed investigation as part of our future work.

We conclude that the proposed nMCG may provide a be�er
modeling of the user behavior and that it may also provide high
quality rankings according to other quality metrics of interest.

4 CONCLUSION AND FUTUREWORK
In this paper we presented a way to describe user dynamic through
a model based on Markov chains and we integrated this dynamic
in LambdaMart by de�ning a new quality measure called nMCG.
Moreover, since nMCG depends on the query type, the proposed
algorithm optimizes two di�erent versions of the same quality

measure. Experiments conducted on publicly available datasets
showed that the proposed algorithm improves over the state-of-
the-art with respect to both nDCG and nMCG.

As future work we aim at analyzing the properties of nMCG as
well as the correlations with other evaluation measures. Moreover,
we will conduct a user study in order to investigate whether the
metric correlates with the quality of a ranking perceived by a user.
Acknowledgments. �is work was partially supported by the EC H2020
Program INFRAIA-1-2014-2015 SoBigData: SocialMining&BigData Ecosys-
tem (654024), and SID16 Ferro, PRAT 2016: Improving Information Retrieval
E�ectiveness via Markovian User Models.

REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving Web Search Ranking by Incor-

porating User Behavior Information. In SIGIR, pages 19–26, ACM, 2006.
[2] A. Broder. A Taxonomy of Web Search. SIGIR Forum, 36(2):3–10, 2002.
[3] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and

G. Hullender. Learning to Rank Using Gradient Descent. In ICML, pages 89–96,
ACM, 2005.

[4] C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview.
Technical Report, 2010.

[5] C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to Rank with Nonsmooth Cost
Functions. In NIPS, Vol. 6, pages 193–200, 2006.

[6] G. Capannini, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego and N. Tonello�o.
�ality versus E�ciency in Document Scoring with Learning-to-Rank Models.
In IPM, 52(6):1161–1177, 2016.

[7] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale Validation and
Analysis of Interleaved Search Evaluation. In TOIS, 30(1):6:1–6:41, 2012.

[8] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonello�o, and
R. Venturini. Fast Ranking with Additive Ensembles of Oblivious and Non-
Oblivious Regression Trees. In TOIS, 35(2):15:1–15:31, 2016.

[9] P. Donmez, K. M. Svore, and C. J. C. Burges. On the Local Optimality of Lamb-
daRank. In SIGIR, pages 460–467, ACM, 2009.

[10] M. Ferrante, N. Ferro, and M. Maistro. Injecting User Models and Time into
Precision via Markov Chains. In SIGIR, pages 597–606, ACM, 2014.

[11] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing Historical
Interaction Data for Faster Online Learning to Rank for IR. In WSDM, pages
183–192, ACM, 2013.

[12] T. Liu. Learning to Rank for Information Retrieval. IN FnTIR, 3(3):225–331, 2009.
[13] C. Lucchese, S. Orlando, R. Perego, F. Silvestri and G. Tolomei. Discovering tasks

from search engine query logs. In TOIS, 31(3):14:1–14:43, 2013.
[14] J. R. Norris. Markov Chains. Cambridge University Press, 1998.
[15] T. Qin, and T. Liu. Introducing LETOR 4.0 Datasets. In CoRR, 2013.
[16] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: An Online Learning

to Rank Framework. In LivingLab, pages 23–26, ACM, 2013.
[17] P. Serdyukov, N. Craswell, G. Dupret. WSCD2012: Workshop on Web Search

Click Data 2012. In WSDM, pages 771–772, ACM, 2012.
[18] I. Teodorescu. Maximum Likelihood Estimation for Markov Chains. In arXiv

preprint arXiv:0905.4131, 2009.
[19] Q. Wu, Burges, C. J. C. Christopher K. M. Svore, J. Gao. Adapting boosting for

information retrieval measures. In Information Retrieval, 13(3):254–270, 2010.
[20] E. Yilmaz, M. Shokouhi, N. Craswell, and S. Robertson. Expected Browsing

Utility for Web Search Evaluation. In CIKM, pages 1561–1565, ACM, 2010.
[21] Y. Zhang, L. A. F. Park, and A. Mo�at. Click-based Evidence for Decaying

Weight Distributions in Search E�ectiveness Metrics. In Information Retrieval,
13(1):46–69, 2010.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Modeling User Dynamic
	2.2 Integrating User Dynamic into LtR

	3 Experiments
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusion and Future Work
	References

