
Graph Databases Benchmarking on the
Italian Business Register

Nicola Ferro1 and Luca Sinico2

1 Department of Information Engineering, University of Padua, Italy
ferro@dei.unipd.it
2 Infocamere, Italy

luca.sinico@infocamere.it

Abstract. In this paper, we develop a benchmark for graph database
systems based on the real data of the Italian Business Register, consisting
of about 10 million entities and 5 million relationships among them.
We evaluate three state-of-the-art open source graph database systems
– ArangoDB, Neo4J, and OrientDB – and we compare them to a well-
known relational database management system, namely PostgreSQL.
We found out that the strong points of graph databases are: the purposely
designed storage techniques, which let them have good performance on
graph datasets; and the purposely designed query languages, which go
beyond the standard SQL and manage the typical problems that arise
when graphs are explored. However, we have seen that the main perfor-
mance increments have been obtained when heavy graph situations are
queried; for simpler situations and queries, a relational database performs
equally well.

1 Introduction

Graph databases [3, 2] are becoming a more and more adopted data model and
technology. Common use cases for graph databases are social graphs, recom-
mender systems, business relationships, network impact analysis, geospatial ap-
plications such as maps and route planning for rail or logistics, telecommunica-
tion or energy distribution networks, fraud detection, and many more.

The success of graph databases in such fields is due not only to their data
model, which naturally model the domain of interest, but also to their query
functionalities and their graph processing APIs which allow us to express queries
and operations on graphs more easily than, e.g., the SQL language.

In this paper, we focus on the application of graph databases to the case of
the Italian Business Register3 (“Registro Imprese”), i.e. the register of company
details (name, articles of association, directors, headquarters, . . .), their share
holders, their subsidiaries, and all subsequent events that occurred after regis-
tration – for instance, amendments to the articles of association and company
roles, relocations, liquidations, insolvency procedures, and so on.

3 http://www.registroimprese.it/



The Italian Business Register thus provides a complete picture of the le-
gal position of each company and is a key archive for drawing up indicators of
economic and business development. Its main function is to ensure an organic
system of legal disclosure for companies, ensuring the provision of timely infor-
mation throughout the country. The Italian Business Register is thus intrinsically
a graph of relationship among Italian companies. This work has been conducted
in the context of a joint project with InfoCamere s.c.p.a., the company which
manages the Italian Business Register. We aim at comparing graph database sys-
tems, also with respect to traditional relational systems, to determine the best
solutions to develop an innovative application to search and access the Italian
Business Register. Therefore, we studied and tested three of the most important
open source graph databases – ArangoDB4, Neo4j5, OrientDB6 – and we also
compared them to a well-known relational database, namely PostgreSQL7. We
used a real dataset, i.e. the data of the Italian companies and their equity par-
ticipations, constituted by, roughly, 6 million companies, 4 million persons and
5 million relationships among them.

The paper is organized as follows: Section 2 briefly summarizes related works;
Section 3 describes the compared graph databases; Section 4 introduces the
domain of interest and the experimental setup; Section 5 reports the conducted
experiments and their results; finally, Section 6 wraps up the discussion and
outlooks possible future works.

2 Related Works

In recent years there have been several efforts to evaluate graph databases and
develop benchmarks for this purpose. [10] compared Neo4J to the MySQL8 re-
lational database management system by using synthetic data. [5] used syn-
thetic data to evaluate traversal operations for different graph database systems,
among which Neo4J, OrientDB, and DEX (now Sparksee, commercial)9. [7] used
both synthetic data and real data from the Amazon’s co-purchasing network to
evaluate several systems, among which Neo4J, OrientDB, DEX/Sparksee, and
InfiniteGraph10 (commercial). [6] used synthetic data to evaluate Neo4J, Ori-
entDB, and DEX/Sparksee according to different workloads – load, traversal,
and intensive. [8] compared a wide range of graph and relational database sys-
tems using synthetic data against specific test cases, namely Single Source Short-
est Paths (SSSP) problem, Shiloach-Vishkin connected components algorithm,
and PageRank. [1] used two real datasets, namely Wiki-Talk and Slashdot, to
evaluate Neo4J, OrientDB and other systems. Finally, [9] used the Linked Data

4 https://www.arangodb.com/
5 https://neo4j.com/
6 https://orientdb.com/
7 https://postgresql.org/
8 https://www.mysql.com/
9 http://sparsity-technologies.com/

10 http://www.objectivity.com/products/infinitegraph/



Benchmark Council (LDBC)11 Social Network Benchmak (SNB) to evaluate
Neo4J, PostgreSQL and other systems. Note that LDBC develops also another
benchmark, i.e. the Semantic Publishing Benchmark (SPB).

Our work differs from the state-of-the-art because it relies on real data, in-
stead of synthetic ones as many of the works above, and explores a new domain,
i.e. the business register, which is not covered by previous works.

3 Property Graph Databases

A property graph [4] is a directed graph were both nodes and edges can contain
properties which, typically are, key-value pairs. Moreover, both nodes and edges
are typed, allowing for semantic enrichment of the data.

We compared the graph databases described in the following sections. Table 1
summarizes and compares the main features of the analyzed graph databases.

ArangoDB ArangoDB is an open-source NoSQL multi-model database man-
agement system supporting three data models, namely graphs, key/value pairs,
and documents. It is a schema-free DBMS, implemented in C/C++ and JavaScript,
and supports several operating systems (Linux, OS X, Windows, Raspbian and
Solaris).

ArangoDB represents documents in a proprietary JavaScript Object Nota-
tion (JSON) binary format, called VelocyPack, which is a platform-independent
serialization format. It manages two kinds of documents, i.e. nodes and edges.
It has its own proprietary and declarative query language – ArangoDB Query
Language (AQL), which offers aggregate, ordering, filtering, and sub-querying,
and graph-traversal functions, especially suitable to express how graphs have to
be explored, e.g. breadth or depth-first, how many times to visit a node or an
edge, whether to avoid duplicates and cycles.

Neo4j Neo4j is an open-source NoSQL graph database implemented in Java and
Scala, portable across many operating systems. Its data model consists of node
objects, which can be labeled, connected by named and directed edge objects,
where both nodes and edges can act as containers of properties. Neo4j stores
graph data in different files for each part of the graph – nodes, relationships,
labels, and properties – specifically arranged to facilitate graph traversals.

Cypher is the proprietary and declarative query language provided by Neo4j.
It is designed for working with graph data and defines the structure of the
patterns to be searched or created over the graph data. It allows for a sort of
graphical specification of queries or search patterns by means of an ASCII art
like drawing.

11 http://www.ldbcouncil.org/



Feature ArangoDB Neo4j OrientDB PostgreSQL

Category NoSQL NoSQL NoSQL Relational

Initial release 2012 2007 2010 1996

Database Model
Graph

Document
Key-Value

Graph

Graph
Document
Key-Value

Object

Relational
Object

Graph model Property graph Property graph Property graph –

Native graph Yes Yes Yes –

Index-free adjacency No Yes ∼Yes –

Implementation
C++

JavaScript
Java
Scala

Java C

Indices Yes, secondary Yes, secondary Yes, secondary Yes, secondary

Transactions
(Single instance)

Yes, ACID Yes, ACID Yes, ACID Yes, ACID

Data scheme Schema-less Schema-less
Schema-less
Schema-ful

Schema-ful

Referential integrity ∼Yes (edges) Yes (edges) ∼Yes (edges) Yes

Data typing Yes Yes Yes Yes

Query Language AQL Cypher SQL “extended” SQL

Stored procedures
AQL

JavaScript
Java

SQL
JavaScript

Groovy

PL/pgSQL
PL/Tcl
PL/Perl

PL/Python

Graph functions Yes Yes Yes No

Drivers

JavaScript
Java
PHP

Python
Perl
.Net
...

Java
C/C++

JavaScript
PHP
Ruby

Python
...

Java
JDBC

JavaScript
PHP
Ruby

Python
...

C/C++
JDBC
PHP
Ruby

Python
ODBC

...

Access methods RESTful HTTP
RESTful HTTP

Java API

RESTful HTTP
Java API

Binary

JDBC
C API

Triggers
∼Yes

(via FOXX Queues)
∼Yes

(via Event Handler)
∼Yes

(Hooks)
Yes

Concurrency Yes Yes Yes Yes

User concepts Yes Yes Yes Yes

Durability Yes Yes Yes Yes

Community license Apache v2 GPL v3 Apache v2 BSD

Replication
conflict resolution

Master/Master
Master/Agent

Master/Slave
Master/Master
Master/Slave

Master/Slave

Data sharding Yes No Yes No

Caching
Data

Query results
Data

Query plans
Data

Query results
Data

Query plans

Table 1. Feature matrix



(0,N)

fiscal_code

Enterprise member_of
subsidiary

holding

Company

Physical person

country

rea cciaa legal_form share_capitalstocks

denomination

(0,N)

(0,1) (0,1)

(0,1)(0,1)(0,1)(0,1)(0,1)

Fig. 1. ER schema of the simplified Italian Business Register.

OrientDB OrientDB, initially born as an object-oriented database, is now an
open-source multi-model database management system, supporting alternative
paradigms, namely objects, documents, key/value pairs, and graphs. It is devel-
oped in Java and multi-platform. It relies on its object-oriented nature to model
graphs as node and edge elements together with their properties.

OrientDB comes with a sort of dialect of the SQL query language, which
provides specific extension for graph traversal and pattern specification.

4 Experimental Setup

4.1 Use Case

InfoCamere12 is the IT company of the Italian Chambers of Commerce. By
developing up-to-date and innovative IT solutions and services, it connects the
Chambers of Commerce and their databases through a network that is also
accessible to the public via the Internet. Thanks to InfoCamere, businesses,
Public Authorities, trade associations, professional bodies and simple citizens
both in Italy and abroad can easily access updated and official information and
economic data on all businesses registered and operating in Italy. The Italian
Chambers of Commerce are public bodies entrusted to serve Italian businesses
through over 300 branch offices located throughout the country. InfoCamere
helps them in pursuing their goals in the interest of the business community,
especially through the provision of the Italian Business Register and services
over it.

12 https://www.infocamere.it/



We use a simplified version of the Italian Business Registers, whose Entity–
Relationship (ER) schema is shown in Figure 1. There are two entities, namely
companies and physical persons, whose attributes are:

– fiscal code: a unique identifier;

– rea: an identification code for linking to the REA register (Repertorio Eco-
nomico Amministrativo);

– cciaa: the identifier of the Chamber of Commerce where the company is
registered;

– type: either company or physical person;

– denomination: the business name for companies or the name for persons;

– country: the registration country for companies, e.g. foreign companies with
branches in Italy or the birth country for persons;

– legal form: a code representing the legal nature of a company, e.g. sole
proprietorship;

– share capital: the amount of company’s share capital;

– stocks: the number of financial stocks.

The recursive relationship distinguishes between two roles: the subsidiary

and the holding company.

The dataset is a snapshot of the Italian Business Register at October 2016,
consisting of about 10.5 million companies and physical persons and about 5
million relationships among them.

4.2 Queries

According to the requirements for developing advanced services on the Italian
Business Registry, there are two typologies of queries that need to be answered,
e.g. for supporting antitrust, investigations, financial organizations, loans and so
on:

– how is a company composed?

• retrieve the companies which own equity shares of a given company, i.e.
the holding companies;

• retrieve the companies directly connected to a given company regardless
of type of participation, i.e. both subsidiaries and holdings;

• retrieve the list and level of all the direct and indirect subsidiaries of a
given company, e.g. shell companies;

– how are companies linked?

• retrieve the list of the companies which are shared subsidiaries of two
given companies;

• retrieve the list of the companies which are shared holdings of two given
companies;

• get the shortest path between two given companies.



Each query is performed on three types of workloads: small-weight (also ref-
erenced as Small), medium-weight (Medium), and large-weight (Large) workload
for that query. For example, for the “Subsidiaries and holdings of a company”
query, the light situation is given by a company that has few (units) subsidiaries
and holdings; the medium case is given by a company with a good number (hun-
dreds) of subsidiaries and holdings; the heavy case is given by a company that
has a very large number (thousands) of subsidiaries and holdings.

We used the query language provided by each database to implement the
queries: AQL for ArangoDB; Cypher or the Java API in the case of complex
queries for Neo4j; its extended SQL for OrientDB; and SQL for PostgreSQL.

4.3 Configuration

All tests have been done during an internship at InfoCamere. We set up a vir-
tual instance of a RedHat Linux server with the following characteristics: AMD
Opteron 6276, x86 64, dual-core, single-thread per core, 64bit, 2.3GHz; 6GB
DRAM; 100GB HDD; Red Hat Enterprise Linux Server release 6.8 (Santiago);
OpenJDK 1.8.0 101 64-Bit Server VM (Java version 8u101).

We used the following versions of the tested databases: ArangoDB 3.0.10;
Neo4J 3.0.6; OrientDB 2.2.11; and, PostgreSQL 9.6.1.

We performed a cache warm-up; we repeated each query 20 times, reporting
averaged values and confidence intervals; after each query, we re-started the
database and warmed-up the cache again.

5 Evaluation

5.1 How is a Company Composed?

In this section we report the performance of the queries corresponding to the
use cases aimed at defining how a company is composed.

Holdings of a company Figure 2 shows, on the left, the typical subgraph for
the holdings of a company and, on the right, the performance of the different
systems in the three workloads, where we have 4 resulting nodes in the small
case, 418 nodes in the medium case, and 6067 nodes in the large case.

From Figure 2.(b), it emerges that the best performing system is ArangoDB
while the worst one is Neo4J; OrientDB and PostgreSQL are very similar and
about one order of magnitude slower than ArangoDB. In terms of stability,
i.e. low variance among query performance, PostgreSQL is the top performing
system, closely followed by ArangoDB.

Subsidiaries and holdings of a company Figure 3 shows, on the left, the
typical subgraph for the subsidiaries and holdings of a company and, on the
right, the performance of the different systems in the three workloads, where we



Small Medium Large102

103

104

105

106

107

ns

 ArangoDB
 Neo4J
 OrientDB
 PostgreSQL

(a) Typical graph pattern. (b) Execution time.

Fig. 2. Holdings of a company.

Small Medium Large102

103

104

105

106

107

ns
 ArangoDB
 Neo4J
 OrientDB
 PostgreSQL

(a) Typical graph pattern. (b) Execution time.

Fig. 3. Subsidiaries and holdings of a company.

have 5 resulting nodes in the small case, 120 nodes in the medium case, and 1815
nodes in the large case.

As before, ArangoDB is the top performing system while Neo4J is the worst
one. However, PostgreSQL is very competitive and better than ArangoDB in
the medium and large cases. OrientDB performs roughly an order of magnitude
slower than ArangoDB. In terms of variance, both ArangoDB and PostgreSQL
are quite stable while OrientDB and Neo4J exhibit quite less stability.

Direct and indirect subsidiaries of a company Figure 4 shows, on the left,
the typical subgraph for the direct and indirect subsidiaries of a company and,
on the right, the performance of the different systems in the three workloads,
where we have 12 resulting nodes in the small case, 76 nodes in the medium
case, and 14037 nodes in the large case. Note that a challenging aspect of this
query is a kind of “global uniqueness”, i.e. the need to avoid duplicate records
and to traverse the same nodes more than once.



Small Medium Large102

104

106

108

1010

ns

 ArangoDB
 Neo4J
 OrientDB
 PostgreSQL

(a) Typical graph pattern. (b) Execution time.

Fig. 4. Direct and indirect subsidiaries of a company.

We can observe that ArangoDB is still the top performing systems but the
gap between systems is somehow smaller in this more complex case, being just
about one order of magnitude for the small and medium cases. In these two
cases, PostgreSQL is still very competitive with respect to graph databases while
its performance greatly deteriorates in the large case, about three orders of
magnitude slower. This is probably due to the way in which “global uniqueness”
is imposed, i.e. only at a posteriori and not while traversing the graph. From the
variance point of view, PostgreSQL is the most stable system closely followed by
ArangoDB while, as in the previous cases, Neo4J and OrientDB are somehow
less stable.

5.2 How are Companies Linked?

In this section we report the performance of the queries corresponding to the
use cases aimed at defining how companies are linked among them.

Companies which are shared subsidiaries of two companies Figure 5
shows, on the left, the typical subgraph for the shared subsidiaries of two com-
panies and, on the right, the performance of the different systems in the three
workloads, where we have 6 resulting nodes in the small case, 84 nodes in the
medium case, and 8728 nodes in the large case.

ArangoDB is again the top performing systems and the gap between systems
is somehow small, being just about one order of magnitude for the small and
medium cases. In these two cases, PostgreSQL is still very competitive with
respect to graph databases while its performance greatly deteriorates in the large
case, about four orders of magnitude slower. As before, from the variance point
of view, PostgreSQL is the most stable system closely followed by ArangoDB
while Neo4J and OrientDB are somehow less stable.



Small Medium Large102

104

106

108

1010

ns

 ArangoDB
 Neo4J
 OrientDB
 PostgreSQL

(a) Typical graph pattern. (b) Execution time.

Fig. 5. Companies which are shared subsidiaries of two companies.

Small Medium Large103

104

105

106

107

ns

 ArangoDB
 Neo4J
 OrientDB
 PostgreSQL

(a) Execution time.

Fig. 6. Companies which are shared holdings of two companies. The typical graph
pattern is the same as in Figure 5.(a) but with reversed edges.

Companies which are shared holdings of two companies Figure 6 shows,
on the left, the typical subgraph for the shared holdings of two companies and,
on the right, the performance of the different systems in the three workloads,
where we have 26 resulting nodes in the small case, 140 nodes in the medium
case, and 19548 nodes in the large case.

This query is basically the same as the previous one but just with reversed
direction of the edges. With respect to the previous query case, we can observe
that there is a swap between ArangoDB, the top performing system in the small
and medium cases, and Neo4j in the large case, where Neo4J is the best system.
Moreover, in the small and medium cases, the variance in performance is greatly
increased for both Neo4J and OrientDB. PostgreSQL somehow performs as in
the previous query case, even if it improves in the large case being just about
one order of magnitude slower.



Small Medium Large102

104

106

108

1010

ns

 ArangoDB
 Neo4J
 OrientDB
 PostgreSQL

(a) Typical graph pattern. (b) Execution time.

Fig. 7. Shortest path between two companies.

Shortest path between two companies Figure 7 shows, on the left, the
typical subgraph for the shortest path between two companies and, on the right,
the performance of the different systems in the three workloads, where we have
5 resulting nodes in the small case, 120 nodes in the medium case, and 1815
nodes in the large case.

ArangoDB is again the top performing systems and the gap between systems
is somehow small, being just about one order of magnitude for the small and
medium cases. In these two cases, PostgreSQL is also very competitive with
respect to graph databases while its performance greatly deteriorates in the
large case, about three orders of magnitude slower. It is interesting to note that
ArangoDB and Neo4J have very close performance in the large case and that the
Neo4J performances are almost constant across the three cases. Finally, from the
variance point of view, PostgreSQL is the most stable system closely followed
by ArangoDB while Neo4J and OrientDB are somehow less stable.

5.3 Overall Considerations

By looking at the charts, it emerges that ArangoDB generally performs better
than all the others, especially for the small and medium cases. For the large
case, Neo4j works on par with ArangoDB or even better in all the queries that
requires somehow heavier graph processing.

Furthermore, Neo4j and OrientDB have often quite close performance, espe-
cially for small and medium cases; for the large case, instead, there is no clear
winner.

Overall, PostgreSQL typically performs well and it is competitive in the
small and medium cases or when light graph processing is required, i.e. when
just directly connected nodes are involved. On the other hand, it takes more
time than the others when it has to process bigger amounts of data and/or more
complex graph structures.



6 Conclusions and Future Work

We evaluated the performance of three state-of-the-art open source graph database
systems – ArangoDB, Neo4J, and OrientDB – and one relational database man-
agement system – PostgreSQL. We developed a benchmark using the real data of
the Italian Business Register, considering six types of queries involving more or
less complex graph patterns, and accounting for three workloads – light, medium,
and large. To the best of our knowledge, this is the first benchmark for graph
databases using real business register data.

We found that ArangoDB is almost always the top-performing system, espe-
cially in the small and medium cases, followed by Neo4J and OrientDB for which
there is no clear winner. When we consider the large workload case, ArangoDB
and Neo4J get closer and, sometimes, the latter performs better. When it comes
to PostgreSQL it is competitive for the small and medium cases but its per-
formance deteriorate in the case of large workloads and more complex graph
structures. In terms of performance stability, PostgreSQL is the most stable sys-
tem, i.e. the one with lowest variance, closely followed by ArangoDB while Neo4J
and OrientDB show a greater variance.

Future work will be about the release to the Chambers of Commerce and
other users the application which uses the graph database technology, and will
further inspect how to extract other valuable information from the graph data.

References

1. Abul-Basher, Z., Chignell, M.H., Godfrey, P., Yakovets, N.: TGDB: Towards a
Benchmark for Graph Databases. In CASCON 2016. pp. 257–267. ACM Press,
New York, USA (2016)

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoč, D.: Foundations
of Modern Query Languages for Graph Databases. ACM CSUR 50(5), 68:1–68:40
(2017)

3. Angles, R., Gutierrez, C.: Survey of Graph Database Models. ACM CSUR 40(1),
1:1–1:39 (2008)

4. Angles, R., Gutierrez, C.: An introduction to Graph Data Management. arXiv.org,
Databases (cs.DB) arXiv:1801.00036 (2017)

5. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking Traversal Operations over
Graph Databases. In ICDEW 2012. pp. 186–189. IEEE Computer Society (2012)

6. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In:
SocialCom 2013. pp. 708–7015. IEEE Computer Society (2013)

7. Kolomičenko, V., Svoboda, M., Holubová, I.: Experimental Comparison of Graph
Databases. In: IIWAS 2013. pp. 115–124. ACM Press, New York, USA (2013)

8. McColl, R., Ediger, D., Poovey, J., Campbell, D., Bader, D.A.: A Performance
Evaluation of Open Source Graph Databases. In: PPAA 2014. pp. 11–17. ACM
Press (2014)

9. Pacaci, A., Zhou, A., Lin, J., Tamer Özsu, M.: Do We Need Specialized
Graph Databases?: Benchmarking Real-Time Social Networking Applications. In
GRADES 2017. pp. 12:1–12:7. ACM Press (2017)

10. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A Comparison
of a Graph Database and a Relational Database. In: ACM SE 2010. pp. 42:1–42:6.
ACM Press (2010)


