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A General Theory of IR Evaluation Measures
Marco Ferrante, Nicola Ferro and Silvia Pontarollo

Abstract—Interval scales are assumed by several basic descriptive statistics, such as mean and variance, and by many statistical
significance tests which are daily used in IR to compare systems. Unfortunately, so far, there has not been any systematic and formal
study to discover the actual scale properties of IR measures. Therefore, in this paper, we develop a theory of IR evaluation measures,
based on the representational theory of measurements, to determine whether and when IR measures are interval scales.
We found that common set-based retrieval measures – namely Precision, Recall, and F-measure – always are interval scales in the
case of binary relevance while this happens also in the case of multi-graded relevance only when the relevance degrees themselves
are on a ratio scale and we define a specific partial order among systems.
In the case of rank-based retrieval measures – namely AP, gRBP, DCG, and ERR – only gRPB is an interval scale when we choose a
specific value of the parameter p and define a specific total order among systems while all the other IR measures are not interval
scales.
Besides the formal framework itself and the proof of the scale properties of several commonly used IR measures, the paper also
defines some brand new set-based and rank-based IR evaluation measures which ensure to be interval scales.

Index Terms—representational theory of measurement, interval scale, IR evaluation measure, formal framework
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1 INTRODUCTION

Information Retrieval (IR) is concerned with ranking doc-
ument with respect to their degree of relevance to user
information needs, typically expressed as vague and impre-
cise queries. IR systems are assessed by their effectiveness,
i.e. retrieving and better ranking relevant documents while
eliminating not relevant and noisy ones. Experimental evalu-
ation is the way to measure the performance of IR systems
from the effectiveness point of view [1] and most of our
understanding of how IR systems work comes from research
in the experimental evaluation area.

Experimental evaluation is based on the Cranfield
paradigm [2] which makes use of experimental collections
(D,T,GT ) where: a corpus of documents D represents the
domain of interest; a set of topics T represents the user
information needs; and, human-made relevance judgements
or ground-truth GT are the “correct” answers determining,
for each topic, the relevant documents. The ranked result
lists, i.e. the IR system outputs, are then scored with respect
to the ground-truth using several evaluation measures, which
aim at quantifying the effectiveness of a system.

Even if experimental evaluation is a main driver of
progress in IR and evaluation measures lay at its foun-
dations, our theoretical understanding of what evaluation
measures are is still very limited, despite the several studies
both in the past [3], [4], [5] and more recently [6], [7], [8].

In particular, measurement scales play a central role [9],
[10] since they determine the operations that can be per-
formed with the measured values and, as a consequence, the
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statistical analyses that can be applied. Stevens [10] identi-
fies four major types of scales with increasing properties:
(i) the nominal scale consists of discrete unordered values,
i.e. categories; (ii) the ordinal scale introduces a natural
order among the values; (iii) the interval scale preserves the
equality of intervals or differences; and (iv) the ratio scale
preserves the equality of ratios.

In experimental evaluation we daily perform operations,
such as computing means and variances, which are also
the basic “ingredients” of the more sophisticated statistical
significance tests we use to compare IR systems and assess
their differences [11]. However, all these operations can be
performed only from interval scales onwards but, due to our
limited knowledge of evaluation measures, we do not actu-
ally know which scales they rely on. For example, Robertson
[12] claims that the assumption of Average Precision (AP)
being an interval scale is somehow arbitrary.

This paper sets a theory of IR evaluation measures to
formally investigate their properties and to study whether
and when they use an interval scale. We frame our work
within the representational theory of measurement [9], which is
the measurement theory adopted in both physical and social
sciences. In particular, we develop a fully comprehensive
framework, comprising both set-based measures – namely
Precision, Recall and F-measure – dealing with unordered
result lists, and rank-based measures – namely, Average Preci-
sion (AP) , Discounted Cumulated Gain (DCG) , Rank-Biased
Precision (RBP) , and Expected Reciprocal Rank (ERR) –
dealing with ranked result lists. Moreover, we consider both
binary relevance, i.e. when documents can be just relevant
or not relevant, and multi-graded relevance [13], i.e. when
documents can have different degrees of relevance, such as
not relevant, partially relevant, and highly relevant.

We found that in the case of set-based IR measures,
Precision, Recall, and F-measure are always interval scales
when using binary relevance while this holds in the multi-
graded case only when the relevance degrees are a ratio
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scale. In the case of rank-based IR measures RBP is an
interval scale for specific values of its parameter while all
the other measures – namely AP, DCG, and ERR – are not.

Moreover, as an additional significant contribution, we
derived from our theory new evaluation measures which
guarantee to be interval scales in all the examined cases –
see eq. (3), (5), (7), and (9).

Finally, the impact of this paper goes well beyond IR it-
self and reaches out to neighboring fields, such as databases
and data mining, where many of the studied measures are
widely adopted in benchmarking and it is equally crucial
to know which scales they use as well as which descriptive
statistics and which statistical analyses are permissible.

The paper is organized as follows. Section 2 briefly
recalls some definitions and properties of posets and Hasse
diagrams, which are the basic algebraic tools we rely on
to build our theory. Section 3 introduces the basic concepts
about the representational theory of measurement and how
to determine if a measure is an interval scale. Section 4
introduces the basic formalism adopted in our framework
to model the Cranfield paradigm and the IR evaluation
measures. Section 5 analyses set-based evaluation measures
while Section 6 deals with rank-based evaluation measures,
in both cases considering binary and multi-graded relevance
judgements. Section 7 reports some related works. Finally,
Section 8 wraps up the discussion and outlooks some future
work. The Electronic Appendix reports explanations, exam-
ples, and proofs, which do not fit here for space reasons.

2 POSET, LATTICE, AND HASSE DIAGRAM

A partially ordered set P , poset for short, is a set with a
partial order � defined on it [14]. A partial order � is a
binary relation over P which is reflexive, antisymmetric and
transitive. Given s, t ∈ P , we say that s and t are comparable
if s � t or t � s, otherwise they are incomparable.

A closed interval is a subset of P defined as [s, t] := {u ∈
P : s � u � t}, where s, t ∈ P and s � t. Moreover, we say
that t covers s if s � t and [s, t] = {s, t}, that is there does
not exist u ∈ P such that s ≺ u ≺ t.

We can represent a finite poset P by using the Hasse
diagram which is a graph where vertices are elements of
P , edges represent covers relations, and if s ≺ t then s is
below t in the diagram. Note that if s, t ∈ P lie on the same
horizontal level of the diagram, then they are incomparable
by construction.

A subset C of a poset P is a chain if any two elements
of C are comparable: a chain is a totally ordered subset of a
poset. If C is a finite chain, the length of C , `(C), is defined
by `(C) = |C| − 1. A maximal chain of P is a chain that is
not a proper subset of any other chain of P .

If every maximal chain of P has the same length n, we
say that P is graded of rank n; in particular there exists
a unique function ρ : P → {0, 1, . . . , n}, called the rank
function, such that ρ(s) = 0, if s is a minimal element of P ,
and ρ(t) = ρ(s) + 1, if t covers s.

Finally, since any interval on a graded poset is graded,
the length of an interval [s, t] is given by `(s, t) :=
`([s, t]) = ρ(t)− ρ(s).

Foldes [15] proves that in a graded poset P the length
`(·, ·) of any interval, also called the natural distance, equals

the length of the shortest path connecting the two endpoints
of the interval in its Hasse diagram.

Please, see the Electronic Appendix for a more detailed
description of posets, Hasse diagrams, and their properties.

3 MEASUREMENT THEORY

3.1 Representational Theory of Measurement
The representational theory of measurement [9] sees measure-
ment as the process of assigning numbers to entities in the
real world conforming to some property under examination.
According to this framework, the key point is to understand
how real world objects are related to each other since
measure properties are then derived from these relations.

Moving to the IR context, being an interval scale is not
just a numeric property of an evaluation measure but firstly
we need to understand how system runs are ordered, then
what intervals of system runs are, and finally how these
intervals are ordered too. Only at this point, we can verify
whether an evaluation measure complies with these notions
and determine whether it is an interval scale or not.

More precisely, a relational structure [9], [16] is an
ordered pair X =

〈
X,RX

〉
of a domain set X and a

set of relations RX on X , where the relations in RX may
have different arities, i.e. they can be unary, binary, ternary
relations and so on. Given two relational structures X and
Y, a homomorphism M : X→ Y from X to Y is a mapping
M =

〈
M,MR

〉
where: (i) M is a function that maps X

into M(X) ⊆ Y , i.e., for each element of the domain set
there exists one corresponding image element; (ii) MR is
a function that maps RX into MR(RX) ⊆ RY such that
∀r ∈ RX , r and MR(r) have the same arity, i.e., for each
relation on the domain set there exists one (and it is usually,
and often implicitly, assumed: and only one) corresponding
image relation; (iii) ∀r ∈ RX ,∀xi ∈ X , if r(x1, . . . , xn) then
MR(r)

(
M(x1), . . . ,M(xn)

)
, i.e., if a relation holds for some

elements of the domain set then the image relation must
hold for the image elements.

A relational structure E is called empirical if its domain
set E spans over entities in the real world, i.e. system runs
in our case; a relational structure S is called symbolic if
its domain set S spans over a given set of numbers. A
measurement (scale) is the homomorphism M =

〈
M,MR

〉
from the real world to the symbolic world and a measure is
the number assigned to an entity by this mapping1.

3.2 Measurement Scales
There are four major types of measurement scales [10] which
can be ordered by their increasing properties and allows for
different computations: nominal scales allow us to compute
the number of cases and the mode; in addition, ordinal scales
allow us to compute median and percentiles; interval scales
add the possibility to compute mean, variance, product-
moment correlation and rank correlation; finally, ratio scales

1. Note that an evaluation measure like AP should be called a
measurement according to this terminology, since AP is the process
by which numbers are assigned to system runs; on the other hand,
the actual value of AP assigned to a system should be called measure.
However, in the rest of the paper, we will keep using the term measure
instead of measurement, since this is what is commonly used and
understood in the IR field.
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add the capability to compute the coefficient of variation.
Over the years, there has been debate [17] on whether these
rules are too strict or not but they are applied widely.

If we already know that on an empirical structure there
is an interval scale M, the uniqueness theorem – see e.g.
Theorem 3.18 in [16] – ensures that any other measurement
M′ on that structure is a linear positive transformation of M,
that is M′ = αM + β, α, β ∈ R and α > 0.

However, in the case of IR evaluation measures, we lack
a known interval scale M which we can use to compare
all the other IR measures against. Actually, the core issue
is even more severe: we lack any notion of order on the
empirical set E of the IR system runs, thus we also lack
the notion of interval of system runs and, consequently,
we cannot define an interval scale M too. This issue was
somehow early pointed out by van Rijsbergen [18]:

In the physical sciences there is usually an empir-
ical ordering of the quantities we wish to measure
[...] Such a situation does not hold for informa-
tion retrieval. There is no empirical ordering for
retrieval effectiveness and therefore any measure of
retrieval effectiveness will by necessity be artificial.

In this paper, we overcome these issues and, following
[9], [16], we rely on the notion of difference structure to
introduce a definition of interval among system runs and
to ensures the existence of an interval scale.

Given E, a weakly ordered empirical structure is a pair
(E,�) where, for every a, b, c ∈ E,

• a � b or b � a;
• a � b and b � c ⇒ a � c (transitivity).

Note that if a, b ∈ E are such that a � b and b � a,
then we write a ∼ b and we say that a and b are equivalent
elements of E for �. This does not necessarily mean that a
and b are equal, i.e. a = b, since they might be two distinct
objects. When the antisymmetric relation holds, that is when
a � b and b � a implies that a and b are the same element
(namely a = b), we talk about a total order.

An interval on the empirical structure is an element
(a, b) ∈ E × E and we introduce a notion of difference
∆ab over intervals, to act as a signed distance we exploit to
compare intervals. Once we have a notion of difference ∆ab,
we can define a weak order �d between the ∆ab differences
and, consequently, among intervals. We can proceed as
follows: if two elements a, b ∈ E are such that a ∼ b,
then the interval [a, b] is null and, consequently, we set
∆ab ∼d ∆ba; if a ≺ b we agree upon choosing ∆aa ≺d ∆ab

which, in turn implies that ∆aa �d ∆ba, that is there exist a
kind of “zero” and the inverse with respect to this “zero”.

Note that the symbols ∼ and � indicate equivalence
and ordering among objects while the symbols ∼d and
�d indicate equivalence and ordering among intervals of
objects, as highlighted by the subscript d standing for the
difference ∆ab which induces such ordering.

The following notion of difference structure allows us to
verify whether a measurement is an interval scale or not.
Definition 1. Let E be a finite (not empty) set of objects. Let
�d be a binary relation on E × E that satisfies, for each
a, b, c, d, a′, b′, c′ ∈ E, the following axioms:

i. �d is weak order;

ii. if ∆ab �d ∆cd, then ∆dc �d ∆ba;
iii. Weak Monotonicity: if ∆ab �d ∆a′b′ and ∆bc �d ∆b′c′

then ∆ac �d ∆a′c′ ;
iv. Solvability Condition: if ∆aa �d ∆cd �d ∆ab, then

there exists d′, d′′ ∈ R such that ∆ad′ ∼d ∆cd ∼d
∆d′′b.

Then (E,�d) is a difference structure.

The first condition defines an ordering among intervals
while the second one sets a sign for differences. The Weak
Monotonicity condition gives us a rule to compose adjacent
intervals; among other things, it tells us that adding a non-
null interval to an interval produces a greater interval.
The Solvability Condition ensures the existence of an equally
spaced gradation between the elements of E, indispensable
to construct an interval scale measurement.

The representation theorem for difference structures states:

Theorem 1. Let E be a finite (not empty) set of objects and
let (E,�d) be a difference structure. Then, there exist a
interval scale measurement M : E → R such that for
every a, b, c, d ∈ E

∆ab �d ∆cd ⇔ M(b)−M(a) ≤ M(d)−M(c) .

This theorem ensures us that, if there is a difference
structure on the empirical set E, then there exists an interval
scale M over it.

Please, see the Electronic Appendix for a more detailed
description of the representational theory of measurement.

3.3 Overall Approach

The procedure we adopt to study whether IR measures are
interval scales or not is as follows:

• we define an ordering among system runs by creat-
ing a poset P , which allows us also to introduce a
notion of interval among runs;

• if the poset P is graded of rank n, then there exists
a unique rank function ρ which assigns a natural
number to each run; we have to construct such rank
function ρ;

• we define the length of an interval as the natural
distance ∆ab := `(a, b) := `([a, b]) = ρ(b) − ρ(a),
which also corresponds to the length of a maximal
chain in [a, b] minus 1. Moreover, the natural length
of any interval of a graded poset equals to the num-
ber of edges in every shortest path connecting the
endpoints of the interval in its Hasse diagram;

• we can check whether the poset P with the above
natural length is a difference structure or not;

• in case we have a difference structure, we can define
an interval scale M as the rank function ρ itself;

• we can finally check whether IR measures are a linear
positive transformation of this interval scale M and
determine whether they are an interval scale or not.

Since any notion of interval depends on a notion of order
among systems, we investigate two alternatives for defining
the poset P by introducing two ways of ordering system
runs, namely a total ordering and a partial order. Moreover,
as a litmus test, we also consider the ordering of system
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runs induced by the evaluation measures themselves, con-
sidering this as the ultimate chance for them to show to be
an interval scale.

Below, we provide an introductory example on how this
procedure works by using natural numbers.

Example 1.
Let B be the set of natural numbers from 0 to N ∈ N,
that is B = {0, . . . , N}, ordered by the less than or equal
to relation ≤. B is a totally ordered set and, as poset, is
graded of rank N . Note that, given a, b ∈ B, a covers
b if b = a − 1. Therefore, the rank function ρ is defined
as ρ(a) = a for any a ∈ B, since ρ(0) = 0 and ρ(a) =
ρ(a − 1) + 1. For a, b ∈ B such that a ≤ b, the natural
distance is then given by `(a, b) = ρ(b)− ρ(a) .
We can define the difference as equal to the natural
distance, that is ∆ab = `(a, b) if a ≤ b, otherwise
∆ab = −`(b, a). Therefore ∆ab = b− a for any a, b ∈ B.
Since ∆a,b ∈ Z for any a, b ∈ B by contruction,
we choose �d to be the less than or equal to relation
defined between natural numbers. Therefore, for any
a, b, c, d ∈ B:

∆ab �d ∆cd ⇔ b− a ≤ d− c .

Let us prove that (B,�d) is a difference structure. Let
a, a′, b, b′, c, c′, d ∈ B:

i. �d is a weak order, due to the similar property
satisfied by ≤ on B. Note that �d is not a total order,
since ∆ab �d ∆cd and ∆cd �d ∆ab imply that the
two intervals have the same length and not that they
coincide.

ii. ∆ab �d ∆cd ⇔ b− a ≤ d− c ⇔ c− d ≤ a− b ⇔
∆dc �d ∆ba.

iii. ∆ab �d ∆a′b′ and ∆bc �d ∆b′c′ ⇔ b−a ≤ b′−a′ and
c−b ≤ c′−b′ ⇔ c−a = c−b+b−a ≤ c′−b′+b′−a′ =
c′ − a′ ⇔ ∆ac �d ∆a′c′ .

iv. Let a, b, c, d be such that ∆aa �d ∆cd �d ∆ab, then
0 = a − a ≤ d − c ≤ b − a. To prove the Solvability
Condition we need to show that there exist d′, d′′ ∈ B
such that ∆ad′ ∼d ∆cd ∼d ∆d′′b, that is d′ − a =
d−c = b−d′′. Clearly such d′ and d′′ have to be such
that d′ = a+d−cwhile d′′ = b+c−d; moreover, from
0 ≤ d−c ≤ b−a, it follows that N ≥ b ≥ a+d−c ≥
a ≥ 0 and that 0 ≤ a ≤ b−(d−c) ≤ b ≤ N ; therefore,
d′, d′′ ∈ B and the Solvability Condition is satisfied.

To further understand the indispensable Solvability Con-
dition and the equi-spacing among intervals, let for ex-
ample a, b, c, d be respectively equal to 1, 6, 7, 9. ∆11 �d
∆79 �d ∆16 since ∆11 = 1 − 1 = 0, ∆79 = 9 − 7 = 2
and ∆16 = 6 − 1 = 5: then d′ = 3 = a + d − c and
d′′ = 4 = b+c−d are such that ∆13 ∼d ∆79 ∼d ∆46 = 2.
Finally, a measurement M given by the rank function,
that is M(a) = ρ(a) = a, for any a ∈ B is an interval
scale. Indeed, for any a, b, c, d ∈ B:

∆ab �d ∆cd ⇔ b− a ≤ d− c
⇔M(b)−M(a) ≤M(d)−M(c) ,

as Theorem 1 requires.

4 BASIC FORMALISM

Let (REL, �) be a finite and totally ordered set of relevance
degrees. We set REL = {a0,a1, . . . ,ac} with ai ≺ ai+1

for all i ∈ {0, . . . , c − 1}; REL has a minimum a0, called
the “not relevant” relevance degree.

Let us consider a finite set of documents D and a set of
topics T . For each pair (t, d) ∈ T ×D, the ground-truth GT
is a map which assigns a relevance degree rel ∈ REL to a
document d with respect to a topic t.

LetN be a positive natural number called the length of the
run. We assume that all the runs have same length N , since
this is what typically happens in real evaluation settings
when you compare IR systems.

We define D(N) as the set of all the possible N
retrieved documents.

A run r : T → D(N) retrieves N documents belonging
to D(N) in response to a topic t ∈ T.

Let R(N) be the set of N judged documents, that is the
set of all the N possible combinations of relevance degrees.

We call judged run of length N the function r̂ from T ×
D(N) into R(N) which assigns a relevance degree to each
retrieved document, i.e. a judged run r̂ is the application of
the ground-truth GT function to each element of the run r.

We define the gain function g : REL → R+ as the map
that assigns a positive real number to any relevance degree.
We set, without loss of generality, g(a0) = 0 and we require
g to be strictly increasing.

We define the indicator function for the relevance de-
grees as δa(aj) = j ∀j ∈ {0, . . . , c}. Note that δa is a
particular gain function.

Given the gain function g, the recall base RB : T → R+

is the map defined as RB(t) =
∑|D|
j=1 g(GT (t, dj)). In the

binary relevance case when c = 1 and REL = {a0,a1},
the gain function usually is g(a1) = δa(a1) = 1 and RB
counts the total number of relevant documents for a topic.

An evaluation measure is a function M : R(N) → R+

which maps a judged run r̂ into a positive real number
which quantifies its effectiveness. Note that most of the
evaluation measures are normalized and thus the co-domain
is the [0, 1] interval.

In the following, we specialize the above definitions to
the case of both set-based and rank-based retrieval.

4.1 Set-Based Retrieval
The set of all the possible unordered N retrieved documents
is D(N) =

{
{d1, . . . , dN} : di ∈ D

}
. A run r is given by

r = {d1, . . . , dN}. We denote by rj the j-th element of the
set r, i.e. rj = dj .

A multiset (or bag) is a set which may contain the same
element several times [19]. The set of judged documents is
a multiset (REL, m) = {a1,a1,a0, . . . ,ac,a2,ac, . . .},
where m is a function from REL into N0 representing
the multiplicity of every relevance degree aj [20]; if the
multiplicity is 0, a given relevance degree is not present in
the multiset. Let M be the set of all the possible multiplicity
functions m, then REL(M) :=

⋃
m∈M(REL,m) is the

universe set of judged documents, i.e. the set of all the
possible sets of judged documents (REL,m). We can define
the set of N judged documents as R(N) := {r̂ ∈ REL(M) :
|r̂| = N}.
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Note that, since each judged run in R(N) is an un-
ordered set of N relevance degrees, R(N) consists of all the
N combinations of c+ 1 = |REL| objects with repetition.

For each run r̂ ∈ R(N), we use the convention to
represent it as {r̂1, . . . , r̂N} where r̂i � r̂i+1, for any
i ∈ {1, . . . , N − 1}. In other terms, among all the possible
ways of “displaying” it, we choose the one where the
relevance degrees are listed in decreasing order. This choice
does not affect the generality of the proposed framework
but it just makes proofs a bit easier to follow.

We now introduce the definitions of generalized preci-
sion and recall [13], which extend precision and recall to the
multi-graded relevance case, and of F-measure.

4.1.1 Generalized Precision (gP)

gP(r̂) =
1

N

N∑
i=1

g(r̂i)

g(ac)
,

where the factor 1/g(ac) is needed in order to normalize the
gain function to one. Note that gP coincides with Precision
(P) when binary relevance (c = 1) is considered.

4.1.2 Generalized Recall (gR)

gR(r̂) =
1

RB

N∑
i=1

g(r̂i)

g(ac)
,

where RB is recall base. gR coincides with Recall (R) when
binary relevance (c = 1) is considered.

4.1.3 F-Measure
The F-measure is a binary measure, i.e. it works with binary
relevance when REL = {a0,a1}, and is the harmonic
mean of Precision (P) and Recall (R) given by

F(r̂) = 2
P(r̂) · R(r̂)

P(r̂) + R(r̂)
.

To the best of our knowledge, its extension to multi-
graded case is not usually considered in the literature but
it comes naturally if you use gP and gR.

4.2 Rank-Based Retrieval
The set of all the possible ordered list of N retrieved
documents is D(N) = {(d1, . . . , dN ) : di ∈ D, di 6=
dj for any i 6= j}, i.e. a set of ranked lists of retrieved
documents without duplicates. A run r is the vector
r = (d1, . . . , dN ) and we denote by r[j] its j-th ele-
ment, i.e. r[j] = dj . Similarly, a judged run is the vector
r̂ =

(
GT (t, d1), . . . , GT (t, dN )

)
, i.e. an ordered list of rel-

evance degrees, where we denote by r̂[j] its j-th element,
i.e. r̂[j] = GT (t, dj).

4.2.1 Average Precision (AP)
AP is a binary measure given by

AP(r̂) =
1

RB

N∑
i=1

1

i

i∑
j=1

g(r̂[j])

 g(r̂t[i]) ,

where the gain function is such that g(a0) = 0 and g(a1) =
1, that is g is the indicator function δa(·), and RB is the
recall base.

4.2.2 Graded Rank-Biased Precision (gRBP)
Let p ∈ (0, 1) be the persistence parameter, i.e. how much
a user is willing to continue to scan a result list. gRBP [21],
[22] is a multi-graded relevance measure given by

gRBP(r̂) =
(1− p)
g(ac)

N∑
i=1

pi−1g(r̂[i]) .

Typical values of p are 0.5 for a very impatient user,
0.8 for a relatively patient user, and 0.95 for a user very
persistent in deeply scanning the result list.

gRBP coincides with RBP when binary judgments (c =
1) are considered and g(a1) = 1.

4.2.3 Discounted Cumulated Gain (DCG)
DCG [23] is a multi-graded relevance measure given by

DCGb(r̂) =
N∑
i=1

g(r̂[i])

max{1, logb i}
,

where base b of the logarithm indicates the patience of the
user in scanning the result list and plays a role somewhat
similar to the persistence parameter p of RBP. Typical values
for b are 2 for an impatient user and 10 for a patient user.

4.2.4 Expected Reciprocal Rank (ERR)
ERR [24] is a cascaded multi-graded relevance measure,
accounting for all the previously seen relevant documents,
given by

ERR(r̂) =
N∑
i=1

1

i
xi

i−1∏
j=1

(1− xj) ,

with the convention that
∏0
i=1 = 1 and xk represents the

probability that a user leaves their search after considering
the document at position k. In this work, we adopt the
typical setting xk = (2g(r̂[k]) − 1)/2g(ac).

5 SET-BASED MEASURES

5.1 Total Ordering
As discussed in Section 3.3, we start by introducing an order
relation � on the set of judged runs. Let r̂, ŝ ∈ R(N) such
that r̂ 6= ŝ, and let k be the biggest relevance degree at which
the two runs differ for the first time, i.e. k = max{j ≤ c :∣∣{i : r̂i = aj}

∣∣ 6= ∣∣{i : ŝi = aj}
∣∣}. We strictly order any pair

of distinct system runs as follows

r̂ ≺ ŝ ⇔
∣∣{i : r̂i = ak}

∣∣ < ∣∣{i : ŝi = ak}
∣∣ . (1)

Note that, with the previously explained convention that
elements in any judged run r̂ are represented in decreasing
order, r̂ ≺ ŝ if and only if exists j ≤ N such that r̂i = ŝi for
any i < j and r̂j ≺ ŝj . From (1) we define the order relation

r̂ � ŝ ⇔ r̂ ≺ ŝ or r̂ = ŝ .

For example, let c = 4, r̂ = {a4,a3,a2,a2,a2,a2}, and
ŝ = {a4,a3,a3,a0,a0,a0}; we have r̂ ≺ ŝ since both
runs have one document with relevance degree equal to
a4, but ŝ has two documents with relevance a3 while r̂
has just one document with this relevance degree. Note that
the number of documents each run has with lowest degrees
doesn’t matter, since they already differ at a3.
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R(N) is a totally ordered set with respect to the ordering
� defined by (1). Indeed, every pair of runs in R(N) is
comparable. The antisymmetry follows since r̂ � ŝ and ŝ �
r̂ hold true iff r̂ = ŝ. The transitivity, i.e. r̂ � ŝ and ŝ � û ⇒
r̂ � û, is trivial if r̂ = ŝ or ŝ = û. If r̂ ≺ ŝ and ŝ ≺ û, there
exist j1 and j2 such that r̂i = ŝi for any i < j1, r̂j1 ≺ ŝj1 ,
ŝi = ûi for any i < j2 and ŝj2 ≺ ûj2 . If i < j = min(j1, j2),
then r̂i = ûi, while r̂j ≺ ûj , which implies that r̂ ≺ û.

As for any totally order set, R(N) is a poset consisting of
only one maximal chain (the whole set); therefore it is graded
of rank |R(N)| − 1, where

∣∣R(N)
∣∣ =

(N+c
N

)
since it consists

of all the N combinations of c + 1 = |REL| objects with
repetition.

Since R(N) is graded of rank |R(N)| − 1, there exists a
unique rank function ρ(r̂) : R(N) −→ N such that ρ(0̂) = 0
and ρ(ŝ) = ρ(r̂) + 1 if ŝ covers r̂.

We now show how to construct such unique rank
function ρ(r̂). Let us agree to set

(n
m

)
= 0 if n < m

and consider r̂ = {r̂1, r̂2, . . . , r̂N} ∈ R(N). We can con-
struct an ordered chain of runs from 0̂ to r̂ as follows:
R = {r̂0 = 0̂, r̂1, r̂2, . . . , r̂N = r̂} ⊂ R(N) such that for
any j ≤ N

r̂j = {r̂1, r̂2, . . . , r̂j , 0, . . . 0} .

By construction, r̂j � r̂i for any 0 ≤ j ≤ i ≤ N ; moreover

ρ(r̂) = ρ(r̂N ) =
N∑
j=1

(
ρ(r̂j)− ρ(r̂j−1)

)
.

Since r̂j = {r̂1, r̂2, . . . , r̂j−1, r̂j , 0, . . . 0} and r̂j−1 =
{r̂1, r̂2, . . . , r̂j−1, 0, . . . 0}, the difference ρ(r̂j) − ρ(r̂j−1)
equals ρ̃(ŝj) − ρ̃(ŝj−1) where: ρ̃(·) is the rank function
defined on R(N − (j − 1)); ŝj = {r̂j , 0, . . . , 0}; and ŝj−1 =
{0, 0, . . . , 0}, that is we are considering only the tails where
the two runs differ. ρ̃(ŝj−1) = 0; indeed, if r̂j = a0, then
also ρ̃(ŝj) = 0; otherwise, if r̂j = ak � a0, then ŝj covers
û = {ak−1, . . . ,ak−1} ∈ R(N − (j − 1)). This means that,
when r̂j = ak � a0, ŝj is the run in the total ordered set
R(N − (j − 1)) that comes after N − (j − 1) combinations
of
∣∣{a0, . . . ,ak−1}

∣∣ = k = δa(r̂j) objects with repetitions,
that is

ρ̃(ŝj) =

(
N − (j − 1) + δa(r̂j)− 1

N − (j − 1)

)
= ρ(r̂j)− ρ(r̂j−1) .

Therefore, the rank function ρ : R(N) −→
{0, 1, . . . ,

(N+c
N

)
} is uniquely defined as:

ρ(r̂) =
N∑
j=1

(
δa(r̂j) +N − j
N − j + 1

)
, (2)

where r̂ = {r̂1, . . . , r̂N} ∈ R(N) with r̂i � r̂i+1 for any
i < N .

The following example clarifies how the rank function
has been constructed.

Example 2. Let us set c = 3, N = 5 and r̂ =
{a3,a2,a1,a0,a0}. By (1), t̂ = {a3,a0,a0,a0,a0} �
r̂. Then t̂ covers û = {a2,a2,a2,a2,a2}, indeed there
is no v̂ ∈ R(N) such that û ≺ v̂ ≺ t̂, and we can
easily determine ρ(t̂) since t̂ is preceded by 5 combina-
tions of |{a0,a1,a2}| = 3 objects with repetition, thus

ρ(t̂) =
(δa(r̂1)+N−1

N−1+1

)
=
(3+5−1

5

)
= 21 (remember that

ρ({a0,a0,a0,a0,a0}) = 0 by definition).
Let us now consider ŵ = {a3,a2,a0,a0,a0}: t̂ ≺ ŵ ≺
r̂. In order to determine ρ(ŵ) − ρ(t̂), we have just to
compute the rank of ŵ = {a2,a0,a0,a0}. Analogously,
ŵ covers {a1,a1,a1,a1}, that is ŵ is preceded by 4
combinations of |{a0,a1}| = 3 objects with repetition,
thus ρ(ŵ) =

(δa(r̂2)+N−2
N−2+1

)
=
(2+5−2
5−2+1

)
= 5 = ρ(ŵ) −

ρ(t̂) = 5.
Eventually, we can compute ρ(r̂)− ρ(ŵ) just as the rank
of r̂ = {a1,a0,a0}. Since r̂ covers {a0,a0,a0}, then
ρ(r̂) = 1 = ρ(r̂)− ρ(ŵ).
Therefore ρ(r̂) = ρ(t̂) +

(
ρ(ŵ)− ρ(t̂)

)
+ (ρ(r̂)− ρ(ŵ)) =

21 + 5 + 1 = 27, as we expected from (2).

The natural distance is then given by `(r̂, ŝ) = ρ(ŝ) −
ρ(r̂), for r̂, ŝ ∈ R(N) such that r̂ � ŝ, and we can define
the difference as ∆r̂ŝ = `(r̂, ŝ) if r̂ � ŝ, otherwise ∆r̂ŝ =
−`(ŝ, r̂).
Definition 2. Given two runs r̂, ŝ ∈ R(N), the difference

between r̂ and ŝ is defined as

∆r̂ŝ =
N∑
j=1

[(
δa(ŝj) +N − j
N − j + 1

)
−
(
δa(r̂j) +N − j
N − j + 1

)]
.

Let �d be the less than or equal to relation on R(N) ×
R(N), where the subscript d is to highlight its connec-
tion with intervals, as described in Section 3.2. We show
that (R(N),�d) is a difference structure. The ordering �d
between intervals is given by the well known order ≤
among real numbers, since the difference ∆r̂ŝ is an integer
number and, therefore, �d is a weak order. Indeed for every
r̂, ŝ, t̂, û, v̂, ẑ ∈ R(N), from the fact that ∆r̂ŝ,∆t̂û,∆v̂ẑ ∈ Z,
it follows ∆r̂ŝ �d ∆t̂û or ∆t̂û �d ∆r̂ŝ. Moreover if
∆r̂ŝ �d ∆t̂û and ∆t̂û �d ∆v̂ẑ , then ∆r̂ŝ �d ∆v̂ẑ . Condition
ii of Definition 1 follows from the fact that, from its defini-
tion, ∆r̂ŝ = −∆ŝr̂ . For example, when r̂ � ŝ and t̂ � û,
∆r̂ŝ �d ∆t̂û means that `(r̂, ŝ) ≤ `(t̂, û), which implies that
−`(t̂, û) ≤ −`(r̂, ŝ), which in turn implies that ∆ût̂ �d ∆ŝr̂ .
Condition iii. follows from the fact that ∆r̂ŝ = ∆r̂t̂ + ∆t̂ŝ,
for any r̂, ŝ, ŷ ∈ R(N). Whereas the Solvability Condition, i.e.
having an equally-spaced gradation on R(N), is satisfied
by construction: if ŝ covers r̂, the difference ∆r̂ŝ is constant
and equal to 1, since ∆r̂ŝ = `(r̂, ŝ) = ρ(ŝ) − ρ(r̂) =
ρ(r̂) + 1− ρ(r̂) = 1.

Let us show how we can construct an interval scale mea-
sure M on R(N). Given r̂ ∈ R(N), ρ(r̂) computes the total
number of runs preceding r̂ and, if ŝ covers r̂, the difference
∆r̂ŝ = ρ(ŝ) − ρ(r̂) is always equal to 1, by construction.
Thus, an interval scale measure M on (R(N),�d) is given
by the rank function itself:

M(r̂) = ρ(r̂) =
N∑
j=1

(
δa(r̂j) +N − j
N − j + 1

)
, (3)

which satisfies the condition imposed by Theorem 1: let
r̂, ŝ, û, v̂ ∈ R(N) such that ∆r̂ŝ ≤ ∆ûv̂ , then ∆r̂ŝ ≤ ∆ûv̂ ⇔
ρ(ŝ)−ρ(r̂) ≤ ρ(v̂)−ρ(û) ≤

∑N
i=1

(
v̂i−ûi

)
⇔ M(ŝ)−M(r̂) ≤

M(v̂) −M(û), since R(N) is totally ordered. Thus, M is an
interval scale on (R(N),�d).

Let us explore more deeply how the measure defined
in (3) works. The first relevance degree immediately above
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not relevant, i.e. a1, always gives a constant contribution,
independently from how many a1 documents are retrieved,
since: (

δa(a1) +N − j
N − j + 1

)
=

(
1 +N − j
N − j + 1

)
= 1 .

However, when we consider higher relevance degrees,
i.e. ak with k > 1, the binomial coefficient strictly depends
and changes on the basis of how many of them are retrieved.
Indeed, δa(ak) is constant for all the documents with the
same relevance degree ak but the term N − j decreases
as the number of ak retrieved documents increases due N
being constant and j increasing, i.e. the binomial coefficient
is decreasing in the number of ak retrieved documents. In
other terms, each additional ak retrieved document gives
a contribution smaller than the previously retrieved ones
by a discount factor j. This somehow recalls the idea that
relevance is a dynamic notion which changes as far as
more relevant documents are inspected, see e.g. [25]. As a
consequence, given r̂, ŝ ∈ R(N), a replacement in r̂ may
have a different effect than the same replacement in ŝ, if the
relevance degree of the new document is greater than a1.

Example 3. Let us consider REL = {a0,a1,a2}, N = 5,
r̂ = {a2,a2,a1,a1,a1}, and ŝ = {a2,a1,a1,a0,a0}.
From(3), we have that M(r̂) =

(2+5−1
5−1+1

)
+
(2+5−2
5−2+1

)
+ 1 +

1 + 1 = 14 and M(ŝ) =
(2+5−1
5−1+1

)
+ 1 + 1 = 8.

Let us now replace one a1 retrieved document with a a2

one; we obtain the new runs r̂(1) = {a2,a2,a2,a1,a1}
and ŝ(1) = {a2,a2,a1,a0,a0}. Therefore, M(r̂(1)) =(2+5−1
5+1−1

)
+
(2+5−2
5−2+1

)
+
(2+5−3
5−3+1

)
+1+1 = 17 and M(ŝ(1)) =(2+5−1

5−1+1

)
+
(2+5−2
5−2+1

)
+ 1 = 12.

We can note the different contribution of the same re-
placement in the two runs, since M(r̂(1))−M(r̂) = 3 6=
4 = M(ŝ(1))−M(ŝ).

We can finally proceed with the last step of Section 3.3
and check whether an IR measure uses an interval scale on
(R(N),�d) by looking for a linear positive transformation
with M.

5.1.1 Binary Relevance Case
When c = 1, i.e. in the binary relevance case, the ordering (1)
just orders judged runs by how many relevant documents
they retrieve, i.e. by their total mass of relevance:

r̂ � ŝ ⇔
N∑
i=1

δa(r̂i) ≤
N∑
i=1

δa(ŝi) ,

since there is only one relevant relevance degree a1.
Therefore the rank function becomes

ρ(r̂) =
N∑
i=1

δa(r̂i) = M(r̂) .

This follows easily from (3), using the fact that δa(r̂i) ∈
{0, 1} for any i ≤ N when c = 1.

Let now g be the gain function, and let us consider
Precision

P(r̂) =
1

N

N∑
i=1

g(r̂i)

g(a1)
=

1

N

N∑
i=1

δa(r̂i) =
M(r̂)

N
,

since g(a0) = 0 = δa(a0) and c = 1. Thus Precision is an
interval scale, as it is a linear positive transformation of M.

Similarly, Recall

R(r̂) =
1

RB

N∑
i=1

g(r̂i)

g(a1)
=

1

RB

N∑
i=1

δa(r̂i) =
M(r̂)

RB

is an interval scale.
The F-measure, that is the harmonic mean of Precision

and Recall,

F(r̂) = 2
P(r̂) · R(r̂)

P(r̂) + R(r̂)
=

2

N +RB

N∑
i=1

δa(r̂i) =
2M(r̂)

N +RB

is an interval scale as well.

5.1.2 Multi-graded Relevance Case
Neither Generalized Precision nor Generalized Recall are a
positive linear transformation of M defined in (3). Indeed,
in these measures, the individual contribution of each re-
trieved document r̂j is independent from the contribution
of any other retrieved document r̂k. However, the previous
discussion on the measure defined in (3) pointed out that,
for each relevance degree ak with k > 1, the individual
contribution of an ak retrieved document depends on how
many ak retrieved documents there are in the run. There-
fore neither gP nor gR are an interval scale, since they cannot
be a linear transformation of M.

Moreover they are not even an ordinal scale which,
again, implies they cannot be an interval scale too. Indeed,
a measure M′ is an ordinal scale on R(N) if, for every
r̂, ŝ ∈ R(N), the following statement is true:

r̂ � ŝ ⇔ M′(r̂) ≤ M′(ŝ) .

Let us consider r̂ = {a1, . . . ,a1} and ŝ =
{a2,a0, . . . ,a0}, two runs of length N . We have r̂ ≺ ŝ.
Moreover, since gR and gP are both proportional to G(v̂) :=∑N
i=1 g(v̂i)/g(ac), for any v̂ ∈ R(N), we can just prove that

G(·) in not on an ordinal scale with respect to the order (1).
Since g(a0) = 0, G(r̂) = Ng(a1)/g(ac) while G(ŝ) =

g(a2)/g(ac). From the fact that the gain function g is a
positive strictly increasing function and it is defined inde-
pendently from the length N of the runs, by choosing a
N big enough we can have G(r̂) > G(ŝ). Therefore, in
the multi-graded relevance case when c > 1, the measures
introduced in Section 4.1 are not even an ordinal scale on
(R(N),�) for the ordering � defined in (1).

5.2 Partial Ordering
We now consider a partial order on R(N), based on the
following monotonicity-like property:

Replacement. A run replacing a document with
another one with a higher relevance degree should
be greater than the original run.

Let us consider two runs r̂, ŝ ∈ R(N), then

r̂ � ŝ ⇔
∣∣{i : r̂i � aj}

∣∣ ≤ ∣∣{i : ŝi � aj}
∣∣

∀j ∈ {0, . . . , c}
(4)

considers a run greater than another one if, for each rele-
vance degree, it has more documents above that relevance
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degree than second one. The replacement property consists
of replacing a document with another one with higher
relevance, i.e. if r̂ = {r̂1, . . . , r̂i−1, r̂i, r̂i+1 . . . , r̂N}, we can
replace r̂i with a document with higher relevance degree,
that is r̂ = {r̂1, . . . , r̂i−1,aj , r̂i+1 . . . , r̂N}, with r̂i � aj . It
is intuitive that r̂ should be smaller than r̂, and this relation
is satisfied by the order (4).

The order (4) is a partial order on R(N) since not every
pair of runs is comparable. Therefore, R(N) is a poset.
Example 4. Let r̂, ŝ ∈ R(N) be such that r̂ =
{a2,a2,a1,a1,a0} and ŝ = {a3,a1,a1,a1,a0}.
These two runs are incomparable with respect to the
ordering (4) since

∣∣{i : r̂i � a3}
∣∣ = 0 < 1 =

∣∣{i : ŝi �
a3}

∣∣ while
∣∣{i : r̂i � a2}

∣∣ = 2 > 1 =
∣∣{i : ŝi � a2}

∣∣.
As a side note, the two runs are comparable when
considering the total order (1) instead. Indeed, r̂ ≺ ŝ
since r̂ has no documents with relevance a3, while ŝ has
one document with such relevance degree.

5.2.1 Binary Relevance Case
The order (4) is a total order, since runs are ordered by the
total number of relevant documents they retrieve. Therefore,
the order (4) coincides with the total order (1) and the same
results of Section 5.1.1 hold, i.e. Precision, Recall, and F-
measure are interval scales.

5.2.2 Multi-graded Relevance Case
In this case, R(N) is bounded since, for any r̂ ∈ R(N),
r̂ � {a0, . . . ,a0} and r̂ � {ac, . . . ,ac}. Moreover, it is of
finite rank since

∣∣R(N)
∣∣ =

(N+c
N

)
, as shown before.

The following proposition holds:
Proposition 2. Let N ∈ N be fixed and let REL =
{a0, . . . ,ac} with c > 1. The poset R(N) is graded,
i.e. every maximal chain of R(N) has the same length.

See the Electronic Appendix for a complete proof.
Example 5. Let us fix N = 3 and c = 3. The Hasse Diagram

of R(N) is

{a3,a3,a3}

{a3,a3,a2}

ŝ = {a3,a3,a1}

{a3,a3,a0}

{a3,a2,a0}

{a3,a1,a0}

{a3,a0,a0}

{a2,a0,a0}

{a1,a0,a0}

{a0,a0,a0}

{a3,a2,a1}

{a3,a1,a1}

{a2,a2,a0}

{a2,a1,a0}

{a3,a2,a2}

{a2,a2,a2}

{a2,a2,a1}

{a2,a1,a1}

{a1,a1,a1}

{a1,a1,a0} = r̂

From the diagram you can note that a run covers another
one if and only if a relevance degree aj is replaced with
aj−1, for j > 0.
If we consider r̂ = {a1,a1,a0} (in red) and ŝ =
{a3,a3,a1} (in blue), there are several shortest paths
in the diagram connecting these two runs. One of
them is, for example, composed by r̂ = {a1,a1,a0},
{a1,a1,a1}, {a2,a1,a1}, {a3,a1,a1}, {a3,a2,a1},
{a3,a3,a1} = ŝ (green edges). These paths all have the
same length equal to 5 and each of them coincides with
a maximal chain on [r̂, ŝ], viewed as a subset of R(N).

As detailed in the Electronic Appendix, given two runs,
one covers the other one if they differ only for the re-
placement of a document with another one with relevance
degree immediately consecutive inREL. Therefore, in order
to compute the rank function ρ(r̂), we need to count the
number of replacements needed to go from the smallest
run possible, i.e. (a0, . . . ,a0) to r̂, replacing elements of
relevance degree aj with relevance degree aj+1, j < c. In
the Hasse diagram this means to follow one of the shortest
paths connecting the two runs and counting the number of
edges passed through, since each edge represent a “cover”
relation. Therefore, the explicit expression for the unique
rank function is

ρ(r̂) =
N∑
i=1

δa(r̂i) ,

for r̂ ∈ R(N).

Example 6. Let us consider ŝ = {a3,a1,a0}. Since ŝ1 = a3,
from 0̂ = {a0,a0,a0} we need 3 = δa(ŝ1) sub-
sequent replacements in 0̂1, leading to the run t̂ =
{a3,a0,a0}, plus 1 = δa(ŝ2) replacement in t̂2 to
reach {a3,a1,a0} = ŝ. In other terms, we have to
perform four “cover” operations to go from 0̂ to ŝ and,
equivalently, the path in the Hasse diagram has length
equal to 4.

Therefore, from the natural distance `(r̂, ŝ) = ρ(ŝ)−ρ(r̂)
if r̂ � ŝ, we can define the difference as ∆r̂ŝ = `(r̂, ŝ) if
r̂ � ŝ, otherwise ∆r̂ŝ = −`(ŝ, r̂).
Definition 3. Given two comparable runs r̂, ŝ ∈ R(N), with

REL = {a0, . . . ,ac}, the difference between r̂ and ŝ is
∆r̂ŝ =

∑N
i=1

(
δa(ŝi)− δa(r̂i)

)
.

Note that, contrary to the previous case, since the or-
dering given by (4) is only partial, in order to compare
differences between intervals we need to restrict our study
to a maximal chain, i.e. a totally ordered subset of R(N).
Thus, denoted with C(R(N)) a maximal chain of R(N),
and given the less than or equal to �d relation which, as in
the previous case, coincides with the order relation≤ among
real numbers, the relational structure (C(R(N)),�d) is a
difference structure. This follows from the same discussion
we have done for the difference structure in the total order
case in the previous subsection.

Therefore, an interval scale measure M on
(C(R(N)),�d) is given by the rank function itself,
that is

M(r̂) = ρ(r̂) =
N∑
i=1

δa(r̂i) , (5)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, 2018 9

for r̂ ∈ C(R(N)).
Let us suppose that the gain function g is such that

g(ai+1)− g(ai) = K

for a positive K constant and for any i ∈ {0, . . . , c − 1}.
It follows that we can write the gain of each relevance
degree as g(aj) = Kδa(aj) = Kj, that is the gain function
is the indicator function times a positive constant K . In
other terms, we are requesting that the gain function itself
is a ratio scale on the set REL of the relevance degrees.
Under this condition, the measures of retrieval effectiveness
defined in Section 4.1 are an interval scale.

Indeed, let us consider Generalized Precision

gP(r̂) =
1

N

N∑
i=1

g(r̂i)

g(ac)
=

1

N

N∑
i=1

Kδa(r̂i)

Kδa(ac)
=

M(r̂)

cN
,

since δa(ac) = c. Thus, it is an interval scale, as it is a linear
positive transformation of M defined in (5).

Similarly, Generalized Recall

gR(r̂) =
1

RB

N∑
i=1

g(r̂i)

g(ac)
=

1

RB

N∑
i=1

Kδa(r̂i)

Kδa(ac)
=

M(r̂)

cRB

is an interval scale.
If the gain function g itself is not a linear positive

transformation of the indicator function δa, i.e. it is not a
ratio scale for the relevance degrees, it is not possible to find
a linear positive transformation between M in (5) and any
of Generalized Precision and Generalized Recall. Indeed,
for any of those measures, we can find an example where
Theorem 1 does not hold, as it is done in the following.
Example 7. Let us consider four runs in a maximal chain of

R(3), for c = 3: û = {a0,a0,a0}, v̂ = {a1,a1,a1},
r̂ = {a2,a2,a1} and ŝ = {a3,a2,a2}. We have û ≺
v̂ ≺ r̂ ≺ ŝ, and ∆r̂ŝ = 2 ≤ 3 = ∆ûv̂ (see the Hasse
diagram in Example 5).
Let us now consider the measure gP. If this mea-
sure is an interval scale for a given gain function g,
then we should have gP(ŝ) − gP(r̂) ≤ gP(v̂) − gP(û),
thanks to Theorem 1. This is true if and only if, mul-
tiplying both sides by Ng(ac),

∑N
i=1 (g(ŝi)− g(r̂i)) ≤∑N

i=1 (g(v̂i)− g(ûi)) ⇔ g(a3) − g(a1) ≤ 3g(a1) ⇔
g(a3) ≤ 4g(a1).
Therefore, when g is such that g(a3) > 4g(a1), the
measure Generalized Precision (and, similarly, also Gen-
eralized Recall) is not an interval scale. Similar examples
can be found for every gain function that is not a linear
positive transformation of the indicator function.

5.3 Induced Total Ordering

Fixed a measure, e.g. gP, let us consider the total order
induced by the measure on the domain, i.e. r̂ � ŝ if and
only if gP(r̂) ≤ gP(ŝ). With this ordering, a measure can
be interval scale only if it generates an equally spaced
graduation on the set {gP(r̂) : r̂ ∈ R(N)} ⊂ R, i.e. if the
Solvability Condition holds in the codomain.

We have already proved that the measures defined in
Section 4.1 are interval scales in the binary relevance case
and in the multi-graded relevance case only when the gain

function is a ratio scale for the relevance degrees. In these
cases, the induced total ordering coincides with the orders
studied in the previous sections and the same results hold.

Let us now deal with the multi-graded case and a gain
function g which is not a ratio scale for the relevance de-
grees, i.e. such that exists j ∈ {1, . . . , c} : g(aj) 6= Kδa(aj).

Looking at the codomain of, e.g., Generalized Precision,
we can show that the Solvability Condition is not satisfied.
Consider Example 7 and let g(a3)−g(a2) 6= g(a2)−g(a1),
i.e. the relevance degrees are not a ratio scale. The run ŝ =
{a3,a3,a3} covers r̂ = {a3,a3,a2}, which in turn covers
û = {a3,a3,a1}. We have gP(ŝ)−gP(r̂) = 1

Ng(ac)
(g(a3)−

g(a2)) 6= 1
Ng(ac)

(g(a2) − g(a1)) = gP(r̂) − gP(û), that
is the Solvability Condition (considered on the codomain)
fails. Similar considerations hold for the other cases and the
Generalized Recall as well.

Therefore, even using the induced total ordering, these
measures are not an interval scale in the multi-graded case,
when the gain function g itself is not a ratio scale.

6 RANK-BASED MEASURES

6.1 Total Ordering
Top-heaviness is a central property in IR, stating that the
higher a system ranks relevant documents the better it is. If
we apply this property at each rank position and we take
to extremes the importance of having a relevant document
ranked higher, we can define a strong top-heaviness property
which, in turn, will induce a total ordering among runs.

Let r̂, ŝ ∈ R(N) such that r̂ 6= ŝ, then there exists k =
min{j ≤ N : r̂[j] 6= ŝ[j]} < ∞, and we order system runs
as follows

r̂ ≺ ŝ ⇔ r̂[k] ≺ ŝ[k] . (6)

This ordering prefers a single relevant document ranked
higher to any number of relevant documents, with the
same relevance degree or higher, ranked just below it;
more formally, (û[1], . . . , û[m],aj ,a0, . . . ,a0) is greater
than (û[1], . . . , û[m],a0,ac, . . . ,ac), for any 1 ≤ j ≤ c,
for any length N ∈ N and any m ∈ {0, 1, . . . , N − 1}. This
is why we call it strong top-heaviness.

R(N) is totally ordered with respect to�, since for every
pair of runs r̂, ŝ ∈ R(N), if k is the smallest depth at which
the two runs differ, we establish which one is the biggest by
just looking at the relevance degrees of r[k] and s[k].

Moreover, R(N) is graded of rank (c+ 1)N − 1 since
R(N) is the set of the dispositions with repetition of (c+ 1)
elements from REL in a collection of N elemets, hence
|R(N)| = (c+1)N . Therefore, there is a unique rank function
ρ : R(N) −→ {0, 1, . . . , (c+ 1)N − 1} which is given by:

ρ(r̂) =
N∑
i=1

δa(r̂[i])(c+ 1)N−i,

where δa is the indicator function.
Let us set δaδaδa(r̂) = (δa(r̂[1]), . . . , δa(r̂[N ])). If we look at

δaδaδa(r̂) as a string, the rank function is exactly the conversion
in base 10 of the number in base c + 1 identified by δaδaδa(r̂)
and the ordering among runs � corresponds to the ordering
≤ among numbers in base c+ 1.
Example 8. Let us firstly consider the binary relevance

case, that is c = 1 and REL = {a0,a1}. Let
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r̂, ŝ ∈ R(5) be such that r̂ = (a0,a0,a1,a1,a1)
and ŝ = (a0,a1,a0,a0,a0). Since r̂[1] = ŝ[1], while
r̂[2] = a0 ≺ a1 = ŝ[2], we have r̂ ≺ ŝ. Moreover
δaδaδa(r̂) = (0, 0, 1, 1, 1) and δaδaδa(ŝ) = (0, 1, 0, 0, 0), thus
ρ(r̂) = 0 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 7 < 8 =
0 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 0 ∗ 20 = ρ(ŝ) and, in
particular, ŝ covers r̂ (indeed ρ(ŝ) = ρ(r̂) + 1).
Now let us consider the multi-graded relevance case
when c > 1: for example we set c = 3 and
r̂, ŝ ∈ R(5) such that r̂ = (a1,a3,a0,a3,a2) and
ŝ = (a1,a3,a1,a0,a2). Note that r̂ ≺ ŝ since
r̂[1] = ŝ[1], r̂[2] = ŝ[2] but r̂[3] ≺ ŝ[3], furthermore
δaδaδa(r̂) = (1, 3, 0, 3, 2) and δaδaδa(ŝ) = (1, 3, 1, 0, 2), thus
ρ(r̂) = 1 ∗ 44 + 3 ∗ 43 + 0 ∗ 42 + 3 ∗ 41 + 2 ∗ 40 = 461 <
466 = 1 ∗ 44 + 3 ∗ 43 + 42 + 0 ∗ 41 + 2 ∗ 40 = ρ(ŝ).

The natural distance is then given by `(r̂, ŝ) = ρ(ŝ) −
ρ(r̂), for r̂, ŝ ∈ R(N) such that r̂ � ŝ, and we can define
the difference as ∆r̂ŝ = `(r̂, ŝ) if r̂ � ŝ, otherwise ∆r̂ŝ =
−`(ŝ, r̂).
Definition 4. Given two runs r̂, ŝ ∈ R(N), the difference

between r̂ and ŝ is defined as ∆r̂ŝ =
∑N
i=1

(
δa(ŝ[i]) −

δa(r̂[i])
)
(c+ 1)N−i .

Let�d be the less than or equal to relation onR(N)×R(N)
which, similarly to what has been demonstrated in the
set-based case, is exactly the order relation ≤ among real
numbers, then (R(N),�d) is a difference structure. Indeed,
as shown for the set-based case, the first three axioms of The-
orem 1 follow immediately from the fact that the ordering
�d between intervals is given by the well known order ≤
among real numbers, thanks to the definition of difference.
Finally, the Solvability Condition is satisfied by construction
of the rank function, since ∆r̂ŝ = ρ(ŝ) − ρ(r̂) = 1 for every
r̂, ŝ ∈ R(N) such that ŝ covers r̂.

Similarly to the set-based case, an interval scale measure
M on (R(N),�d) is given by the rank function itself

M(r̂) = ρ(r̂) =
N∑
i=1

δa(r̂[i])(c+ 1)N−i (7)

which is an interval scale since it satisfies the condition im-
posed by Theorem 1. To prove it, let r̂, ŝ, û, v̂ ∈ R(N) such
that ∆r̂ŝ �d ∆ûv̂ ; then, ∆r̂ŝ �d ∆ûv̂ ⇔

∑N
i=1(δa(ŝ[i]) −

δa(r̂[i]))(c+1)N−i ≤
∑N
i=1(δa(v̂[i])−δa(û[i]))(c+1)N−i ⇔

M(ŝ)−M(r̂) ≤ M(v̂)−M(û).
In the following, we first investigate when IR evaluation

measures are an ordinal scale, which is a necessary condi-
tion for being an interval scale. Remember that a measure
M′ is an ordinal scale on R(N) if, for every r̂, ŝ ∈ R(N), the
following statement is true:

r̂ � ŝ ⇔ M′(r̂) ≤ M′(ŝ) .

Let us recall the definition of gRBPp from Section 4.2:

gRBPp(r̂) =
1− p
g(ac)

N∑
i=1

g(r̂[i])pi−1,

and let G = minj∈{1,...,c}(g(aj) − g(aj−1))/g(ac) > 0
be the normalized smallest gap between the gain of two
consecutive relevance degrees. Then, gRBPp is an ordinal
scale on R(N) with respect to the total order (6) if and only

if 0 < p ≤ G/(G + 1); see the Electronic Appendix for a
complete proof. Note that in the binary relevance case, RBPp
is gRBPp where c = 1 and G = 1, that is RBPp is ordinal if
and only if 0 < p ≤ 1/2.

gRBPp with p > G/(G + 1) and other IR measures –
namely AP, DCG, and ERR – are not even an ordinal scale
on R(N), as the following example shows. Therefore, these
measures cannot be an interval scale too, since an interval
scale measure is also ordinal scale.

Example 9. Let r̂ = (a1,a0,a2,a0,a1) and ŝ =
(a1,a1,a0,a0,a0) be two runs on R(5) with c = 2 and
let us use the indicator function δ as gain function g. We
have r̂ � ŝ. Then DCG2(r̂) = 1 + 2/ log2 3 + 1/ log2 5 >
1 + 1 = DCG2(ŝ); ERR(r̂) = 1/4 + 3/16 + 3/320 >
1/4 + 3/32 = ERR(ŝ); finally, since g(a2) = δa(a2) = 2,
2gRBPp(r̂) = (1 − p)(1 + 2p2 + p4) > (1 − p)(1 + p) =
2gRBP(ŝ) for p & 0.454, and such an example can be
found for any other values of p > G/(G + 1), where
G = 1/2.
AP is a binary measure and, just to stay with the same
data above, we adopt a lenient mapping of multi-graded
to binary relevance degrees setting g(a1) = g(a2) = 1
and thusRB·AP(r̂) = 1+2/3+3/5 > 1+1 = RB·AP(ŝ),
where RB is the recall base.

Therefore, only gRBPp with p ≤ G/(G + 1) may be on
interval scale. Firstly note that, given r̂ ∈ R(N), in order for
gRBPp to be a linear positive transformation of (7), the gain
function g has to be such that g(ai) = Kδa(ai), for any
i ∈ {0, . . . ,N} and for any K > 0 fixed. In other terms, g is
a ratio scale with respect to the relevance degrees.

With such gain function, G is equal to 1/c and gRBPp is
interval scale if and only if p = G/(1+G) = (c+1)−1, since

gRBP(c+1)−1(r̂) =
c

c+ 1

1

Kc

N∑
i=1

Kδa(r̂[i])(c+ 1)−i+1

=
1

(c+ 1)N

N∑
i=1

δa(r̂[i])(c+ 1)N−i

=
1

(c+ 1)N
M(r̂) .

On the other hand gRBPp with p < G/(G+1) is not a lin-
ear positive transformation of M, since it does not preserve
the equivalence between differences. Indeed, let us consider
r̂ = (a0,a0,a0,a0,ac), ŝ = (a0,a0,a0,a1,a0), û =
(a0,a0,a0,ac,ac) and v̂ = (a0,a0,a1,a0,a0), four
runs on R(5). Note that ŝ covers r̂ and v̂ covers û but
RBPp(ŝ) − RBPp(r̂) = RBPp(v̂) − RBPp(û) ⇔ p3 − cp4 =
p2−cp3−cp4, that is if and only if p = G/(1+G) = (c+1)−1.

Therefore, given the total order (6) induced by the strong
top-heaviness, gRBP(c+1)−1 with the gain function such that
g(aj) = Kj for all j ∈ {0, . . . , c} and for any K > 0 fixed,
is the only one among the considered IR measures that is an
interval scale with respect to the difference structure defined
above. Note that in the binary relevance case, this means
that RBP is an interval scale only for p = 1/2.

Finally, note that when g(aj) 6= Kj not even
gRBP(c+1)−1 is an interval scale measure; see the Electronic
Appendix for a complete proof.
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6.2 Partial Ordering

We abandon the total ordering induced by the strong top-
heaviness and we explore a partial ordering, induced by a
weaker form of top-heaviness. This ordering is based on two
monotonicity-like properties which extend the replacement
property defined in the previous section:

Replacement. A run replacing a document with
another one in the same rank position with a
higher relevance degree should be greater than the
original run.
Swap. A run swapping a less relevant document
with a more relevant one in a lower rank position
should be greater than the original run.

Let us consider two runs r̂, ŝ ∈ R(N), then

r̂ � ŝ ⇔
∣∣{i ≤ k : r̂[i] � aj}

∣∣ ≤ ∣∣{i ≤ k : ŝ[i] � aj}
∣∣

∀j ∈ {0, . . . , c} and k ∈ {1, . . . , N}
(8)

defines a partial ordering among system runs, which con-
siders a run bigger than another one when, for each rank
position, it has more relevant documents than the other one
up to that rank for every relevance degree. With respect to
the strong top-heaviness (6), this ordering is less extreme
because it is sensitive to the total mass of relevance accumu-
lated at the different rank positions instead of “cutting” ev-
erything just because of a single relevant document ranked
higher. This is why we call it weak top-heaviness.

Similarly to the set-based case, the replacement property
consists of replacing a document of a judged run with
another one with higher relevance in the same rank position,
i.e. if r̂ = (r̂[1], . . . , r̂[i − 1], r̂[i], r̂[i + 1] . . . , r̂[N ]), we can
replace r̂[i] with a document with higher relevance degree,
that is r̂ = (r̂[1], . . . , r̂[i − 1],aj , r̂[i + 1] . . . , r̂[N ]), with
r̂[i] � aj . We can thus agree on r̂ being smaller run than
r̂ and this relation is satisfied by the partial ordering just
introduced. The swap property, instead, consists of swap-
ping two documents with different relevance degrees as fol-
lows: let for example r̂ = (r̂[1], . . . , r̂[i], . . . , r̂[j], . . . , r̂[N ])
with r̂[i] � r̂[j], then r̂ = (r̂[1], . . . , r̂[i− 1], r̂[j],
r̂[i+ 1], . . . , r̂[j − 1], r̂[i], r̂[j + 1], . . . , r̂[N ]). According to
the ordering (8) the two runs are such that r̂ � r̂.

The ordering � is a partial ordering on R(N), since not
every pair of runs is comparable, as pointed out in the next
example. Thus R(N) is a poset.

Example 10. Let r̂, ŝ ∈ R(N) be such that r̂ =
(a1,a1,a3,a0,a2) and ŝ = (a1,a2,a0,a0,a3).
These two runs are incomparable for the above ordering
(8) since |{i ≤ 2 : r̂[i] � a2}| = 0 < 1 = |{i ≤ 2 : ŝ[i] �
a2}|, while |{i ≤ 3 : r̂[i] � a1}| = 3 > 2 = |{i ≤ 3 :
ŝ[i] � a1}|.
As a side note, on the contrary, according to the order-
ing (6) and characterized by the strong top-heaviness,
r̂ � ŝ since r̂[1] = ŝ[1] while r̂[2] ≺ ŝ[2] regardless of the
relevance of the documents ranked in lower positions.

In addition, R(N) is bounded since r̂ � (a0, . . . ,a0)
and r̂ � (ac, . . . ,ac) for every r̂ ∈ R(N), and it is of finite
rank since |R(N)| = (c+ 1)N <∞, as shown above.

6.2.1 Binary Relevance Case
The following proposition holds:
Proposition 3. Let N ∈ N be fixed and let REL = {a0,a1}.

The poset R(N) is graded, i.e. every maximal chain of
R(N) has the same length.

See the Electronic Appendix for a complete proof.
Example 11. Let N = 4. The Hasse Diagram of R(N) is

(a1,a1,a1,a1)

(a1,a1,a1,a0)

(a1,a1,a0,a1)

ŝ = (a1,a0,a1,a1)

r̂3 = (a0,a1,a1,a1)

r̂2 = (a0,a1,a1,a0)

r̂1 = (a0,a1,a0,a1)

(a0,a0,a1,a1)

(a0,a0,a1,a0)

(a0,a0,a0,a1)

(a0,a0,a0,a0)

(a1,a1,a0,a0)

(a1,a0,a1,a0)

(a1,a0,a0,a1)

(a1,a0,a0,a0)

(a0,a1,a0,a0) = r̂

where different colours of the runs correspond to differ-
ent total numbers of relevant retrieved documents.
Given r̂ = (a0,a1,a0,a0), ŝ = (a1,a0,a1,a1), let
us consider one of the shortest paths between the two
runs, for example the one with orange edges: it starts
from r̂, goes through r̂1, r̂2, r̂3, and ends in ŝ. Note that
{r̂0 := r̂, r̂1, r̂2, r̂3, r̂4 := ŝ} is also a maximal chain, since
there does not exist û ∈ R(4) such that r̂i ≺ û ≺ r̂i+1

for any i ∈ {0, 1, 2, 3}. Moreover this shortest path has
length 4, and every other shortest path between r̂ and ŝ
has the same length, e.g. the one with dark green edges.
Thus the natural length of [r̂, ŝ] is 4.

Given two runs one covers the other one if they differ
only for a swap of length one or a replacement in the last
position (see the Electronic Appendix for the details). There-
fore, in order to compute the rank function ρ(r̂), we need to
count the number of replacements and swaps needed to go
from the smallest run possible, i.e. (a0, . . . ,a0) to r̂ along a
path in the Hasse diagram where the edges are the “cover”
relations. Thus, the rank function is

ρ(r̂) =
N∑
i=1

(N − i+ 1)δa(r̂[i]) .

Example 12. Let us consider ŝ = (a1,a0,a1,a1) from
the previous example. Since ŝ[1] = a1, from 0̂ =
(a0,a0,a0,a0) we need a replacement in 0̂[4] plus
three swaps to reach ŝ[1], that is, we have to perform
four “cover” operations to go from 0̂ to (a1,a0,a0,a0)
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and the path in the Hasse diagram has length equal
to 4. Since ŝ[3] = a1, from (a1,a0,a0,a0) to
(a1,a0,a1,a0) we need a replacement in the last po-
sition plus a swap, that is 2 more “cover” operations.
Eventually, with another replacement, we reach ŝ. Hence
ρ(ŝ) = 1 + 2 + 4 = 7 =

∑4
i=1(4 − i + 1)ŝ[i], as stated

above.

Therefore, from the natural distance `(r̂, ŝ) = ρ(ŝ)−ρ(r̂)
if r̂ � ŝ, we can define the difference as ∆r̂ŝ = `(r̂, ŝ) if
r̂ � ŝ, otherwise ∆r̂ŝ = −`(ŝ, r̂).
Definition 5. Given two comparable runs r̂, ŝ ∈ R(N), with

REL = {a0,a1}, the difference between r̂ and ŝ is
∆r̂ŝ =

∑N
i=1(N − i+ 1)

(
δa(ŝ[i])− δa(r̂[i])

)
.

Since the order (8) is only partial, in order to compare
differences between intervals we need to restrict our study
to a maximal chain, i.e. a totally ordered subset of R(N).
Thus, denoted with C(R(N)) a maximal chain ofR(N), and
given the less than or equal to �d relation, which as in the
previous cases coincides with the order relation ≤ among
real numbers, the relational structure (C(R(N)),�d) is a
difference structure. This follows from the same discussion
we have done for the difference structure in the strong top-
heaviness case in the previous section.

Thus, an interval scale measure M on (C(R(N)),�d) is
given by the rank function itself

M(r̂) = ρ(r̂) =
N∑
i=1

(N − i+ 1)δa(r̂[i]) , (9)

for r̂ ∈ C(R(N)).
AP, RBP, DCG, and ERR are not on an interval scale

since there does not exist any positive linear transformation
between the above M and any of them. In particular, the
next example shows how each of them fails on intervals
with same length, i.e. the Solvability Condition.

Example 13. Consider the following runs on R(4) :
r̂ = (a0,a1,a0,a0), ŝ = (a1,a0,a0,a0), û =
(a0,a0,a0,a1) and v̂ = (a0,a0,a1,a0). These runs
are comparable, that is they belong to the same maximal
chain on R(4). Moreover, ŝ covers r̂ and v̂ covers û, that
is the differences ∆r̂ŝ and ∆ûv̂ are equal.
Hence, an interval scale measure M should satisfy
M(ŝ) − M(r̂) = M(v̂) − M(û), as a consequence of
Theorem 1. We use the indicator function δ as gain
function g. However, in the case of AP, we have that
RB · (AP(ŝ) − AP(r̂)) = 1 − 1/2 > 1/3 − 1/4 =
(AP(v̂)−AP(û)) ·RB, where RB is the recall base. In the
case of RBP we have that RBPp(ŝ)−RBPp(r̂) = (1−p)2 >
(1− p)2p2 = RBPp(v̂)−RBPp(û) since p < 1. In the case
of DCG we have that DCG2(ŝ) − DCG2(r̂) = 1 − 1 <
1/ log2 3 − 1/ log2 4 = DCG2(v̂) − DCG2(û). Finally,
in the case of ERR we have that ERR(ŝ) − ERR(r̂) =
1/2 − 1/4 > 1/6 − 1/8 = ERR(v̂) − ERR(û). This
proves that none of these measures is an interval scale
on (C(R(N)),�d).

However, note that AP, RBP, DCG, and ERR are on a
ordinal scale with respect the partial order (8) induced by
the weak top-heaviness, as demonstrated by [26].

6.2.2 Multi-graded Relevance Case
Unfortunately, the multi-graded relevance case is very com-
plicated since the posetR(N) is not graded, as the following
example shows.
Example 14. Let, for example, c = 2, N = 3, r̂ =

(a2,a1,a0), and ŝ = (a2,a2,a1). According to the
above partial ordering (8), r̂ � ŝ and the Hasse diagram
associated to [r̂, ŝ] is

(a2,a2,a1)

(a2,a1,a2)

(a2,a1,a1)

(a2,a1,a0)

(a2,a2,a0)

The Hasse diagram shows that there are two maximal
chains on [r̂, ŝ] but with different length: the orange one
on the left has length 3 while the dark green one on the
right has length 2. Thus, {a0,a1,a2}3 is not graded.

R(N) not graded means that the length of an interval
is not uniquely defined, leading to a very tough case to
address. Therefore, it is left for future work to study whether
there exist alternative ways, based on more sophisticated
algebraic structures, to deal with it.

6.3 Induced Total Ordering
Similarly to the induced total ordering in the set-based case
in Section 5.3, we consider the order among runs induced
by a measure itself to understand if the measure generates
an equally spaced graduation between the codomain values
which, in turn, induces an interval scale.

As it happened for Section 5.3, when the induced total
ordering coincides with those considered in Sections 6.1
and 6.2, the same results hold.

Let us now consider the multi-graded relevance case and
the measures gRBPp, with p 6= G/(G + 1), ERR and DCG:
none of these are interval scale measure with respect to the
order induced by each of them on R(N). Indeed, given any
of these measures, which we denote with M, for any pair
r̂, ŝ ∈ R(N) such that ŝ covers r̂, it can be always found
another pair of runs û, v̂ ∈ R(N) such that v̂ covers û but
M(ŝ)−M(r̂) 6= M(v̂)−M(û), that is the Solvability condition
(considered on the codomain) fails.

Take for example DCG2, N = 3 and c = 2: for
any possible true multi graded gain function g, i.e. with
g(1) 6= g(2), the three biggest runs, with respect to the
order induced by DCG, in decreasing order are û =
(a2,a2,a2), ŝ = (a2,a2,a1) and r̂ = (a2,a1,a2).
We get DCG2(û) − DCG2(ŝ) = DCG2(ŝ) − DCG2(r̂) iff
g(2)(1 − 2/ log2 3) = g(1)(1 − 2/ log2 3) which leads to
a contradiction. Similar examples can be provided for the
other multi-graded measures.

7 RELATED WORK

The relation between the representational theory of mea-
surements and IR evaluation measures has been early in-
vestigated by van Rijsbergen [5], [27] in the context of
set-based IR measures. In particular, van Rijsbergen [5]
exploited conjoint structures [9] to study Precision and Recall
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by considering all the possible Precision and Recall pairs,
i.e. R × P , as the empirical set E and then creating a kind
of “second order” measure on this set E whose properties
are examined, e.g. if this “second order” measure is interval
based. In this sense, it resembles what we do in the induced
total ordering case, even if in our case we look at a single
measure at time and not pairs of them relying on conjoint
structures. In general, we take a different approach since we
consider system runs as the empirical set E and not the set
of all the possible Precision and Recall pairs; moreover, we
directly determine if an IR measure is on an interval scale by
exploiting the ordering and difference among system runs.

Bollmann and Cherniavsky [4] introduced the MZ-metric
and, following the example of van Rijsbergen [5], they
defined a conjoint structure on the contingency table rele-
vant/not relevant and retrieved/not retrieved in order to
determine under which transformations the MZ-metric was
on an interval scale. Instead of a conjoint structure on the
contingency table, we directly created a difference structure
on the set of system runs that can be used to determine if any
set-based IR measure is on an interval scale. Moreover, the
MZ-metric is not on a interval scale if we use the structure
we defined above, as shown in [28]. In addition, Bollmann
[3] studied set-based measures by showing that measures
complying with a monotonicity and an Archimedean axiom
are a linear combination of the number of relevant retrieved
documents and the number of not relevant not retrieved
documents. We address a completely different issue, that is
determining which scales are used by IR measures.

Both Amigó et al. [6], [29] and Moffat [30] studied the
properties of rank-based IR measures, in a formal and a
numeric way respectively, defining, e.g., how an IR mea-
sure should behave when a relevant document is added
or removed from a system run. All the identified proper-
ties could be exploited to introduce some sort of structure
among the system runs but these authors did not do that
explicitly. They also did not study what scales are adopted
by IR measures, which is the topic of this paper instead.

Mizzaro et al. [7], [31] used the notion of scale and map-
ping among scales to model different kinds of similarity and
to introduce constraints and axioms over them. However,
they did not address the problem of determining the actual
scales used by an IR measure.

We introduced the partial order based on the replace-
ments and swap properties in [26], where we used it to
demonstrate when both set-based and rank-based IR mea-
sures are ordinal scales in the binary relevance case. In
this work, we go beyond by considering the multi-graded
relevance case and investigating interval scales instead.

We started to explore interval scales in the binary rel-
evance case in [28], where we investigated the total order
for the set-based IR measures and the total and partial
orders for the rank-based IR measures. In this work, we go
beyond by considering the multi-graded relevance case, by
investigating the partial order for the set-based IR measures.

Overall, this work not only extends in several respects
our previous works [26], [28] but it also provides a sin-
gle coherent framework where all the different types of
relevance types and ordering among runs are dealt with.
Moreover, we also provide a better and more abstract model,
expressing the whole framework and its proofs in a fully

symbolic way, while in previous works [26], [28] we relied
on specific numerical values of the gain function g to state
the definitions and demonstrate the properties.

8 CONCLUSIONS AND FUTURE WORK

We developed a theory of IR evaluation measures to ex-
plore whether and when both set-based and rank-based IR
measures are interval scales. This is a fundamental question
since the validity of the descriptive statistics, such as mean
and variance, and the statistical significance tests we daily
use to compare IR systems depends on its answer.

The main findings and contributions of the paper are:

• a fully formal framework, based on the representa-
tional theory of measurement, accounting for both
set-based and rank-based IR evaluation measures
as well as both binary and multi-graded relevance,
exploring three kinds of ordering: a total order, a
partial order, and the order induced by the measures
themselves;

• in the case of set-based IR measures:

– binary relevance: Precision, Recall, and F-
measure are interval scales, independently
from the adopted order;

– multi-graded relevance: gP and gR are interval
scales only when using a partial order and
when the relevance degrees themselves are a
ratio scale; when using a total order instead,
they are not interval scales;

• in the case of rank-based IR measures

– binary relevance: when using a total order,
RBP is an interval scale only if p = 1

2 while all
the other measures – namely AP, DCG, ERR,
and RBP for other values of p – are not. When
using a partial order, none of these measures
is an interval scale;

– multi-graded relevance: when using a total
order, RBP is an interval scale only if p =
(c + 1)−1 and when the relevance degrees
themselves are a ratio scale while all the other
measures – namely AP, DCG, ERR, and RBP
for other values of p – are not. In the case
of the partial order, we have shown that the
multi-graded relevance case produces an over-
whelmingly complex structure on the set of
runs which cannot be dealt with in the current
framework;

• brand new IR measures which guarantee to interval
scales – see eq. (3), (5), (7), and (9) – according to the
developed framework.

The impact of the findings of this paper goes beyond
IR itself since many of the studied measures are widely
used also in neighboring fields, such as databases and data
mining, which can benefit from a better understanding of
the measures they daily use in benchmarking.

As future work, we will investigate these new interval
scale measures from an experimental point of view, e.g. by
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performing an analysis of their robustness to pool down-
sampling or of their discriminative power, as well as the
exploration of how they behave in statistical significance
testing with respect to the traditional IR measures which,
instead, violate the interval scale assumption.

Furthermore, we will explore alternative notions of dis-
tance to possibly achieve interval-like properties. We just
started this exploration in the binary relevance case [32]
by introducing a notion of distance as a vector instead of
as a number, as done in this paper, but we still have to
understand what happens in the general multi-graded case.

Finally, a completely new line a research stemming from
the foundations laid in this paper could be investigating and
formalizing what happens when you have multiple possible
disagreeing orderings, as it happens in the case of inter-
assessor agreement and crowd-sourcing.
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Electronic Appendix
A General Theory of IR Evaluation Measures

Marco Ferrante, Nicola Ferro and Silvia Pontarollo

F

1 POSET, LATTICE, AND HASSE DIAGRAM

In this section, following [1], we recall some definitions and results about posets.
A partially ordered set P , poset for short, is a set with a partial order � defined on it. A partial order � is a binary

relation over P which is reflexive, antisymmetric and transitive (see Table 1). Given s, t ∈ P , we say that s and t are
comparable if s � t or t � s, otherwise they are incomparable. P is called bounded if it has a maximum and a minimum
element, namely 1̂, 0̂ ∈ P such that for every s ∈ P , s � 1̂ and 0̂ � s.
Example 1. Given a set A, let us consider the power set {E : E ⊆ A} = 2A and then define the following ordering: given

E,F ∈ 2A, we say that E � F if E ⊆ F . 2A is the set of all subsets of A ordered by inclusion and it is a poset.

A total order over a set P is a partial order where every pair of elements are comparable, whereas a weak order is a
total order without the antisymmetric relation (see Table 1).
Example 2. The power set 2A with the ordering defined before is not totally ordered unless |A| = 1, i.e. it contains just one

element.
A further example of a weak order is given by the order induced on a set A by a non injective real function f , for
example the height of a set of people. Indeed, if we define the ordering on A: a � b iff f(a) ≤ f(b), the antisymmetry
holds true iff f is injective. In the height case, the ordering is weak iff there are at least two individuals with the same
height.

Table 1
Characterization of possible ordering, namely weak, partial and total orders, on a given set P , using a, b, c ∈ P .

Weak Partial Total
Reflexivity
a � a ∀a ∈ P

X X X

Antisymmetry
a � b and b � a⇒ a = b

X X X

Transitivity
a � b, b � c⇒ a � c

X X X

Comparability
for any a, b ∈ P, a � b or b � a

X X X

A (closed) interval is a subset of P defined as [s, t] := {u ∈ P : s � u � t}, where s, t ∈ P and s � t. Moreover, we say
that t covers s if s � t and [s, t] = {s, t}, that is there does not exist u ∈ P such that s ≺ u ≺ t.

We can represent a finite poset P by using the Hasse diagram which is a graph where vertices are the elements of P ,
edges represent the covers relations, and if s ≺ t then s is below t in the diagram. Note that if s, t ∈ P lie on the same
horizontal level of the diagram, then they are incomparable by construction. Furthermore, elements on different levels may
be incomparable as well.
Example 3. Let N = 30 and P the set of all divisors of N, that is P = {1, 2, 3, 5, 6, 10, 15, 30}. Let us define the following

ordering on P : given a, b ∈ P we say that a � b if a divide b. P is a poset with respect to the ordering �, and its Hasse
diagram is:
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2 covers 1, since [1, 2] = {1, 2}, while 6 doesn’t, since [1, 6] = {1, 2, 6}. 2, 3 and 5 are on the same horizontal level and
they are incomparable since, for example, neither 2 divides 3 nor 3 divides 2. Moreover 3 and 10 lie on different levels
and they are incomparable.

A subset C of a poset P is a chain if any two elements of C are comparable: a chain is a totally ordered subset of a
poset. If C is a finite chain, the length of C , `(C), is defined by `(C) = |C| − 1. A maximal chain of P is a chain that is
not a proper subset of any other chain of P . P is a poset of finite rank if the length of the longest maximal chain of P is
finite. Referring to the previous example, a chain is the subset {1, 10, 30}, while an example of maximal chain is the subset
{1, 2, 10, 30}; moreover P is of finite rank since every maximal chain has length equal to 3.

If every maximal chain of P has the same length n, we say that P is graded of rank n; in particular there exists a
unique function ρ : P → {0, 1, . . . , n}, called the rank function, such that ρ(s) = 0, if s is a minimal element of P , and
ρ(t) = ρ(s) + 1, if t covers s.
Example 4. The poset P = {1, 2, 3, 5, 6, 10, 15, 30} defined in the previous example is graded of rank 3 since any maximal

chain of P , which are {1, 2, 6, 30}, {1, 2, 10, 30}, {1, 3, 6, 30}, {1, 3, 15, 30}, {1, 5, 10, 30}{1, 5, 15, 30}, has length equal
to 3. The rank function ρ is defined as follows: ρ(1) = 0, ρ(2) = ρ(3) = ρ(5) = 1, ρ(6) = ρ(10) = ρ(15) = 2 and
ρ(30) = 3.

Finally, since any interval on a graded poset is graded, the length of an interval [s, t] is given by `(s, t) := `([s, t]) =
ρ(t)− ρ(s).

Given s, t ∈ P , an upper bound of {s,t} is any u ∈ P such that s � u and t � u. A least upper bound (or supremum)
of {s,t}, denoted by s ∨ t, is an upper bound u such that every other upper bound v ∈ P of {s,t} satisfies v � u. Dually
it is defined the greatest lower bound (or infimum) s ∧ t. Note that not every pair of elements in a poset has necessarily the
infimum or the supremum. A poset L for which every pair of elements has a least upper bound and a greatest lower bound
is called lattice.
Example 5. The poset P from the previous example is a lattice: for example given the elements 2, 15 ∈ P , we get that

2∨ 15 = 30 and 2∧ 15 = 1, and for any other pair of elements s, t ∈ P one has s∨ t = least common multiple and s∧ t =
greatest common divisor.

Thanks to the following Lemma, see [2] for its proof, we have a easy-to-prove sufficient condition for a poset to be a
lattice.
Lemma 1. Let P be a bounded poset of finite rank such that, for any s, t ∈ P , if both s and t cover an element u, then s ∨ t

exists in P . Then P is a lattice.

Moreover, as Stanley [1] shows, the Proposition below give us a necessary and sufficient condition for a finite lattice to
be graded.
Proposition 2. Let L be a finite lattice. The following two conditions are equivalent:

i. L is graded, and the rank function ρ of L satisfies

ρ(s) + ρ(t) ≥ ρ(s ∧ t) + ρ(s ∨ t),
for all s, t ∈ L.

ii. If s and t both covers s ∧ t, then s ∨ t covers both s and t.

Finally, Foldes [3] proves that in a graded poset P the length `(·, ·) of any interval, also called the natural distance,
equals the length of the shortest path connecting the two endpoints of the interval in its Hasse diagram.

2 REPRESENTATIONAL THEORY OF MEASUREMENT

2.1 Measurement

Measurement is the process by which numbers or symbols are assigned to attributes of entities in the real world
in such a way as to describe them accordingly to clearly defined rules.

The above definition of measurement [4] highlights several important facts about it. An entity is an object or an event
existing in the real world, which is described by means of its identifying characteristics – the attributes – that allow us
to distinguish one entity from another. Therefore, neither we measure things nor we measure attributes but rather we
measure attributes of things. In order to make it easier to work with and process them, we often define the attributes in
terms of numbers or, more in general, symbols. In doing this, we have to take care of preserving in the numerical domain the
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Figure 1. Example of an empirical relations for the attribute “height” of a tree and its representation condition.

relationships we see among the (attributes of the) entities in the real world. In other terms, consider that a number or symbol
is assigned by measurement to the attribute of an entity, and other number or symbols are assigned by the same process
to other manifestations of that attribute. Then the logical relations between the numbers or symbols, in the symbolisation
system adopted, have to imply and to be implied by empirical relations between the attribute manifestations [5]. This
allows us to reason about and work with entities by means of the numeric (symbolic) representation of their attributes and
to guarantee that the conclusions we draw about the entities via this numeric processing are valid. The construction of
such a suitable mapping between the real and symbolic worlds is known as the representation problem.

The representational theory of measurement [4], [6] aims at providing a formal basis to our intuition about the way the
world works. According to the above definition of measurement, the numbers or symbols we collect as measures about
the attributes of the entities we examine should be such that their processing and manipulation maintain the relationships
among the actual entities under examination in the real world. Therefore, at the basis of measurement, there are the
relationships among entities and how we empirically observe them. This way of proceeding frees us from dealing directly
with real world entities but we can manipulate the measures associated to them in order to understand and learn about
them and it is part of that “measurement as knowledge advancement” discussed in the previous section.

Consider the example shown in Figure 1 about the attribute “heigth” of a tree, where the real world is constituted by
just three entities: a Papaya tree, a Banana tree, and an Ananas tree. We can easily see that some trees are “taller than”
others: for example, we can see that the Papaya tree is “taller than” the Banana and Ananas ones while the the Banana tree
is “taller than” the Ananas one. Moreover, we can have multiple relations on the same set of entities. For example, we can
see that both a Papaya and a Banana tree are “much taller than” an Ananas one.

“Taller than” and “much taller than” are empirical relations for height (of a tree) and we can think at them as a mappings
from the real world to a formal mathematical world. Indeed, they can be considered as a mapping from the set of trees to
the set of real numbers, provided that, for example, whenever a Papaya tree is “taller than” a Banana one, any measure of
height assigns a higher number to the Banana tree than to the Papaya one.

This is the so called representation condition which ensures that a measurement must map attributes of entities into
numbers (symbols) and empirical relations into numerical (symbolic)ones so that the empirical relations imply and are
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implied by the numerical (symbolic) ones.
More formally [6], [7], a relational structure is an ordered pair X =

〈
X,RX

〉
of a domain set X and a set of relations

RX on X , where the relations in RX may have different arities, i.e. they can be unary, binary, ternary relations and so on.
Given two relational structures X and Y, a homomorphism M : X→ Y from X to Y is a mapping M =

〈
M,MR

〉
where:

• M is a function that maps X into M(X) ⊆ Y , i.e. for each element of the domain set there exists at least one, but
not necessarily only one, corresponding image element;

• MR is a function that maps RX into MR(RX) ⊆ RY such that ∀r ∈ RX , r and MR(r) have the same arity, i.e.
for each relation on the domain set there exists one (and it is usually, and often implicitly, assumed: and only one)
corresponding image relation,

with the condition that ∀r ∈ RX ,∀xi ∈ X , if r(x1, . . . , xn) then MR(r)
(

M(x1), . . . ,M(xn)
)

, i.e. if a relation holds for
some elements of the domain set then the image relation must hold for the image elements.

Note that we talk about a homomorphism rather than an isomorphism becauseM is generally not one-to-one; in general
M(a) = M(b) does not mean that two trees are identical but merely of equal height.

A relational structure E is called empirical if its domain set E spans over the entities under consideration, e.g. the set of
trees in Figure 1; a relational structure S is called symbolic if its domain set S spans over a given set of symbols, e.g. the set
of positive real numbers R+

0 =
{
x ∈ R | x ≥ 0

}
in Figure 1.

We can now provide a more precise definition of measurement on the basis of the just introduced concepts [4].

We define measurement as a homomorphism M =
〈
M,MR

〉
from the real world to a symbolic world. Conse-

quently, a measure is the number or symbol assigned to an entity by this mapping in order to characterize an
attribute.

In the case of the example of Figure 1 we have the following measurement homomorphism:

• empirical relational structure E =
〈
E,RE

〉
, whereE =

{
Ananas Tree,Banana Tree,Papaya Tree

}
andRE =

{
RE1

, RE2

}
with the relation “taller than” expressed by the relationRE1

=
{

(Papaya Tree,Banana Tree), (Papaya Tree,Ananas Tree),
(Banana Tree,Ananas Tree)

}
and the relation “much taller than” expressed by the relation

RE2
=
{

(Papaya Tree,Ananas Tree), (Banana Tree,Ananas Tree)
}

;
• symbolic relational structure S =

〈
S,RS

〉
, where S = R+

0 =
{
x ∈ R | x ≥ 0

}
and and RS =

{
RS1

, RS2

}
with

RS1
=
{

(x, y) ∈ S × S | x > y
}

and RS2
=
{

(x, y) ∈ S × S | x > y + 50
}

;
• representation condition with M such that M(Ananas Tree) = 15.47, M(Banana Tree) = 67.13, and M(Papaya Tree) =

93.00; and with MR such that MR(RE1
) = RS1

and MR(RE2
) = RS2

.

Note that the representation condition complies with the additional constraint ∀r ∈ RX ,∀xi ∈ X , if r(x1, . . . , xn)

then MR(r)
(

M(x1), . . . ,M(xn)
)

; for example rE1 = (Papaya Tree,Banana Tree) ∈ RE1 corresponds to 93.00 > 67.13,
i.e. rS1

= (93.00, 67.13) ∈ RS1
and rE2

= (Papaya Tree,Ananas Tree) ∈ RE2
corresponds to 93.00 > 15.47 + 50.00, i.e.

rS2
= (93.00, 15.47) ∈ RS2

.
As an additional example, consider a set of rods A [6] where a comparison relation � and a concatenation operation

◦ among rods exist. Note that � is a binary relation on the set of rods A while ◦ is a ternary one which assigns to each
pair of rods a third rod representing their concatenation. Then, the empirical relational structure E =

〈
A,�, ◦

〉
can be

mapped into the symbolic relational structure S =
〈
R+
0 , >,+

〉
, using as mapping function M(·) the length of a rod so that

a � b⇔M(a) > M(b) and M(a ◦ b) = M(a) +M(b).

2.2 Scales
As discussed in the previous section, the goal of measurement is to be able to process and manipulate data in the numerical
system in order to understand and learn about attributes of entities in real world.

It is thus natural to wonder whether all the measurements are the same from the point of view of the processing and
manipulation you can perform with them and how they affect the kind of analyses that can be conducted. To this end,
we refer to the previously introduced measurement homomorphism M as a measurement scale [4]; when the empirical
and symbolic relational structures are well known and understood, they are often left implicit and we talk about M(·) as a
(measurement) scale.

The idea behind the formal definition of scale types is that if we have a measurement homomorphism M for an attribute
of an entity with respect to an empirical relational structure, we want to know what other measurements, i.e. what other
homomorphisms, exist that are also acceptable. In order to clearly define what “acceptable” means, we introduce the notion
of permissible transformations.

A permissible transformation [6] is a mapping M → M′ where M and M′ are both homomorphisms of an empirical
relational structure E =

〈
E,RE

〉
into the same symbolic relational structure S =

〈
S,RS

〉
. In other terms we seek

out a transformation M → M′ between two mappings (scales) M and M′ of the attributes of real world entities into
numbers/symbols which preserves the correspondence MR between the empirical and symbolic relational structures.
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This is known as the uniqueness problem since it boils down to identify the family of measurement homomorphisms
between an empirical relational structure and a symbolic one which can be univocally mapped one into another by means
of a permissible transformation.

Therefore, the complete and formal definition of a measurement usually consists of two parts: a representation theorem
which asserts the existence of a homomorphism M into a particular symbolic relational structure (and usually provides
also the means to construct it) and a uniqueness theorem which sets forth the permissible transformations M→M′ that also
yield homomorphisms into the same symbolic relational structure [6].

A statement involving measurement scales is meaningful if and only if its truth value is unchanged whenever
permissible transformations are applied to all scales in question.

Meaningfulness [8], [9], [10] is a central concept to clearly shape and define the questions discussed above: according
to the adopted measurement scales, what processing, manipulation, and analyses can be conducted and what can we tell
about the conclusions drawn from such processing?

For example, the statement “A banana weights more than an ananas” is meaningful even if it is clearly false; indeed, its
truth value, i.e. false, does not change whatever weight scale you use (kilograms, pounds, and so on). On the other hand,
the statement “Today, the temperature in Rome is twice as the one in Oslo” is not meaningful even it might be true on
some days; indeed, if, on the Celsius scale, the temperature today in Rome is 20 ◦C and in Oslo is 10 ◦C then it is true but
the same temperature becomes, on the Fahrenheit scale, 68 ◦F in Rome and 50 ◦F in Oslo and so the statement becomes
false; therefore it is not meaningful since it changes its truth value passing from a scale to another one.

Therefore, meaningfulness is a distinct concept from the one of truth of a statement and it is somehow close to the
notion of invariance in geometry, since the truth value of a statement stays the same independently from the permissible
scales used to express it.

We can classify five major types of scales [4], [11]:

• nominal;
• ordinal;
• interval;
• ratio.

which will be discussed in detail in the following sections. As we will see, these scales introduce increasing constraints
in terms of permissible transformations among them, i.e. the functions mapping from one to another are lesser and lesser
generic. On the other hand, we can consider these scales to be in increasing order of richness, since they allow us to perform
more and more sophisticated operations on them.

2.2.1 Nominal Scale
A nominal scale is used when entities of the real world can be placed into different classes or categories on the basis of their
attribute under examination. The main characteristics of the nominal scale are [4]:

• the empirical relational structure consists only of different classes without any notion of ordering among them;
• any distinct numeric (symbolic) representation of the classes is an acceptable measure but there is no notion of

magnitude associated with numbers or symbols;
• the class of permissible transformations is the set of all one-to-one mappings, i.e. bijective functions

M′ = f(M)

From the properties of the nominal scales, it turns out that any arithmetic operation on the numeric representation is
not meaningful and the only allowable operations basically are counting number of items in each class that is, in statistical
terms, mode and frequency.

As an example, consider a classification of people by their spoken language (English, French, German, Italian, and so
on). We could define the two following measurements:

M1 =



1 if English
2 if French
3 if German
4 if Italian
· · · if · · ·

M2 =



20 if English
30 if French
13 if German
11 if Italian
· · · if · · ·

both M1 and M2 are valid measures, which can be related with a one-to-one mapping.
Suppose now that we have observe a set of 10 people, where 5 people speak English, 3 German, 1 French, and 1

Italian. According to M1 we would have P1 = [1 1 1 1 1 3 3 3 2 4] while according to M2 we would have P2 =
[20 20 20 20 20 13 13 13 30 11]. In both cases, the statement “The most spoken language is English” is meaningful
since, if we compute the mode of the values, it is 1 in the case of M1 and 20 in the case of M2 which both correspond to
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English speaking people. On the other hand, the statement “The highest quartile consist of Italian speaking people” is not
meaningful, since it is true with 4 corresponding to Italian in the case of M1 but is is false with 30 corresponding to French
in the case of M2. Indeed, the first statement about the mode involves just counting, which is an allowable operation for a
nominal scale, while the second statement about the highest quartile requires a notion of ordering not present in a nominal
scale.

2.2.2 Ordinal Scale
The ordinal scale can be considered as a nominal scale where, in addition, there is a notion of ordering among the different
classes or categories. Its main characteristics are [4]:

• the empirical relational structure consists of classes that are ordered with respect to the attribute under examination;
• any distinct numeric (symbolic) representation which preserves the ordering is acceptable but numbers (symbols)

represent only ranking. Therefore, addition, subtraction or other operations have no meaning;
• the class of permissible transformations is the set of all the monotonic increasing functions, since they preserve ordering

M′ = g(M)

From the properties of the ordinal scales, it turns out that, besides the operations already allowed for nominal scales,
i.e. mode and frequency, also quantiles and percentiles are appropriate, since there is a notion of ordering.

As an example, the European Commission Regulation 607/2009 [12] sets the following increasing scale of taste to
classify sparkling wines on the basis of their sugar content: pas dosè (brut nature), extra brut, brut, extra dry, sec (dry),
demi-sec (medium dry), and doux (sweet).

We could introduce two alternative mappings M1 and M2 of the above wine scale which can be transformed one into
another by means of a monotonic transformation M2 = fibonacci(M1 + 1).

M1 =



1 if pas dosè
2 if extra brut
3 if brut
4 if extra dry
5 if sec
6 if demi-sec
7 if doux

M2 =



1 if pas dosè
2 if extra brut
3 if brut
5 if extra dry
8 if sec
13 if demi-sec
21 if doux

Suppose now that we have two wineries. The first winery WA produced five bottles as follows: pas dosè, extra brut,
brut, extra dry, and doux; the second one WB produced five bottles as follows: pas dosè, pas dosè, pas dosè, demi-sec, and doux.
Therefore, according to the scale M1, we have WA

1 = [1 2 3 4 7] and WB
1 = [1 1 1 6 7 ]; while according to the scale M2,

we have WA
2 = [1 2 3 5 21] and WB

2 = [1 1 1 13 21 ]. The statement “The median of the first winery is greater than the
one of the second winery” is meaningful since 3 > 1 with M1 is true as well as 3 > 1 with M2; so we could safely say
that the first winery tends to produce little more sweet wines than the second one. On the other hand, the statement ”The
average of the first winery is greater than the one of the second winery” is not meaningful since 3.40 > 3.20 with M1 is
true but 6.40 > 7.40 with M2 is false, which would lead us to draw basically opposite conclusions based on the scale we
use. Indeed, the first statement about the median involves just a notion of ordering which is present in an ordinal scale,
while the second statement about the average requires to sum values, which is not an allowable operation for an ordinal
scale.

2.2.3 Interval Scale
Besides relying on ordered classes, the interval scale also captures information about the size of the intervals that separate
the classes. Its main characteristics are [4]:

• the empirical relational structure consists of classes that are ordered with respect to the attribute under examination
and where the size of the “gap” among two classes is somehow understood;

• it preserves order, as an ordinal scale, and differences among classes but not ratios are meaningful. Therefore,
addition and subtraction are acceptable operations but not multiplication and division;

• the class of permissible transformations is the set of all affine transformations

M′ = αM + β, α > 0

which is equivalent to say that ratios of intervals are invariant:

M′(a)−M′(b)

M′(c)−M′(d)
=

[
αM(a) + β

]
−
[
αM(b) + β

][
αM(c) + β

]
−
[
αM(d) + β

] =
M(a)−M(b)

M(c)−M(d)

From the properties of the interval scales, it turns out that, besides the operations of nominal and ordinal scales, also
mean and standard deviation are allowable since they depend on sum and subtraction.
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To show this in the case of the mean, let {x1, x2, . . . , xn} and {y1, y2, . . . , yn} be two sets of entities for which some
attribute can be measured on an interval scale. Our goal is to demonstrate that the statement “The mean of xi is greater
than the mean of yi” is meaningful, as it is shown below:

1

n

n∑
i=1

M′(xi) >
1

n

n∑
i=1

M′(yi) ⇔
1

n

n∑
i=1

[
αM(xi) + β

]
>

1

n

n∑
i=1

[
αM(yi) + β

]
⇔

α

(
1

n

n∑
i=1

M(xi)

)
+ β > α

(
1

n

n∑
i=1

M(yi)

)
+ β ⇔ 1

n

n∑
i=1

M(xi) >
1

n

n∑
i=1

M(yi)

A typical example of interval scale is temperature on the Fahrenheit or Celsius scales where the affine transformation
F = 9

5C + 32 allows us to pass from one to the another. As previously discussed the statement ‘Today, the temperature
in Rome is twice as the one in Oslo” is not meaningful. Nevertheless, interval scales preserve ratios among intervals, so
the statement ‘Today the difference in temperature between Rome and Oslo is twice as the one month ago” is meaningful.
Indeed, if, on the Celsius scale, the temperature today in Rome is 20 ◦C and in Oslo is 10 ◦C while one month ago it was
12 ◦C and 7 ◦C, leading to 20 − 10 = 10 which is twice 12 − 7 = 5, on the Fahrenheit scale we would have 68 − 50 = 18
which is twice 53.6− 44.6 = 9.

2.2.4 Ratio Scale
The ratio scale is the most powerful one since it allows us to compute ratios among the different classes to say statements
like “entity x is twice as entity y”. Its main characteristics are [4]:

• the empirical relational structure consists of classes that are ordered, where there is a notion of “gap” among two
classes and where the “proportion” among two classes is somehow understood;

• there is a zero element, representing the total lack of the attribute;
• it preserves order and differences as well as ratios are meaningful. Therefore, all the arithmetic operations are

allowed;
• the class of permissible transformations is the set of all similarity transformations

M′ = αM, α > 0

From the properties of the ratio scales, it turns out that, besides the operations of nominal, ordinal and interval scales,
also geometric and harmonic mean are allowable since they depend on multiplication and division.

To show this in the case of the geometric mean, let {x1, x2, . . . , xn} and {y1, y2, . . . , yn} be two sets of entities for which
some attribute can be measured on an interval scale. Our goal is to demonstrate that the statement “The geometric mean
of xi is greater than the mean of yi” is meaningful, as it is shown below:

n

√√√√ n∏
i=1

M′(xi) >
n

√√√√ n∏
i=1

M′(yi) ⇔ n

√√√√ n∏
i=1

αM(xi) >
n

√√√√ n∏
i=1

αM(yi) ⇔

α n

√√√√ n∏
i=1

M(xi) > α n

√√√√ n∏
i=1

M(yi) ⇔ n

√√√√ n∏
i=1

M(xi) >
n

√√√√ n∏
i=1

M(yi)

A typical example of ratio scale is length which can be expressed on different scales (kilometers, meters, centimeters,
miles, feet, inches, and so on) which can all be mapped one into another via a similarity transformation. For example,
to pass from kilometers (M1) to miles (M2), we have the following transformation M2 = 0.62M1. Moreover, there is a
zero element, somewhat abstract, which is an entity with zero-length intended as the limit for things that get smaller and
smaller.

For example, if the air distance between Rome and Padua is (about) 400 kilometers and the air distance among Rome
and Oslo is (about) 2, 000 kilometers, the statement “Rome and Oslo are five times as distant as Rome and Padua” is
meaningful, even expressed in miles, since 248.54 v 5 · 1, 242.74.

Another example of ratio scale is the absolute temperature on the Kelvin scale where there is a zero element, which
represents the absence of any thermal motion. On this scale, it does make sense to say that a thing is twice as hot as another
thing if, for example, the first one is 273 K (almost 0 ◦C, 32 ◦F) and the second one is 546 K (almost 273 ◦C, 523.4 ◦F).

2.2.5 Overall Considerations
Table 2 summarizes the discussion about measurement scales reporting the empirical relations they are based on, the
permissible transformation for each of them as well as the appropriate statistics and statistical test for each. The scales of
Table 2 are ordered by their increasing richness, i.e. by their capability of allowing more and more sophisticated operations;
therefore, all the appropriate statistics reported for a lower richness scale can be applied to a higher richness one, even if
they are not explicitly repeated in the table to save space.
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Table 2
Summary of measurement scales, empirical relations they are based on, permissible transformations, and statistics relevant to each [4].

Scale
Type Empirical Relations Permissible

Transformation
Appropriate

Statistics
Appropriate

Statistical Tests

Nominal Equivalence bijective function f
Mode
Frequency Non-parametric

Ordinal Equivalence
Greater than

monotonic increas-
ing function g

Median
Percentile
Spearman ρ
Kendall τ
Kendall W

Non-parameteric

Interval
Equivalence
Greater than
Ratio of any interval

M′ = αM + β, α >
0

Mean
Standard deviation
Pearson product-
moment correlation
Multiple product-
moment correlation

Non-parametric

Ratio

Equivalence
Greater than
Ratio of any interval
Ratio of any values

M′ = αM, α > 0

Geometric mean
Harmonic mean
Coefficient of varia-
tion

Non-parametric
Parametric

It should be noted that the indications about which arithmetic operations, statistics and statistical tests are allowable
for each scale type should not be taken in the most restrictive way possible. Stevens, who proposed the above distinctions
for the first time, already noted [11]:

In the strictest propriety the ordinary statistics involving means and standard deviations ought not to be used with these
[ordinal] scales, for these statistics imply a knowledge of something more than the relative rank-order of data. On the other
hand, for this “illegal” statisticizing there can be invoked a kind of pragmatic sanction: in numerous instances it leads to
fruitful results.

This and similar lines of reasoning have led to a whole debate about whether measurement scales should or should not
be used to prescribe and proscribe statistics and statistical tests [13]. It is well beyond the scope of this paper to get into the
details of this discussion.

However, it should be noted that the notions of scale types and meaningfulness should be constantly kept present, at
least, in order to always wonder and check whether the manipulation and analyses we are performing are licit as well
as the conclusions we draw from them. On the other hand, careful thinking and consideration can indicate us when it is
actually the case to go beyond the strict rules of measurement scales and meaningfulness for our experimentation, even if
there should be clear motivations, which need to be explicitly reported and explained.

Coming back to the case of Information Retrieval (IR) and the claim of Robertson [14] that the assumption of Average
Precision (AP) being an interval scale is somehow arbitrary, according to the above discussion, it means that we may
find even disagreeing conclusions when, to compare systems, we perform operations which assume such kind of scale,
such as the arithmetic mean, i.e. when we compute the Mean Average Precision (MAP) , or when we perform operations
which assume even a ratio scale, such as the geometric mean, i.e. when we compute the Geometric Mean Average Precision
(GMAP) . However, being the interval scale assumption violated in both cases, we should consider both conclusions equally
valid and we should to resort to external considerations to understand which conclusions are actually meaningful for our
needs.

3 SUMMARY OF USED SYMBOLS

Table 3 summarizes the main symbols used through the paper. For each symbol it is reported its meaning and where it has
been defined in the main paper.

4 SET-BASED MEASURES

4.1 Partial Ordering
Proposition 3. Let N ∈ N be fixed and let REL = {a0, . . . ,ac} with c > 1. The poset R(N) is graded, i.e. every maximal

chain of R(N) has the same length.

Proof: Let us prove that R(N) is a lattice using Lemma 1. Firstly. let us study the cover relation, i.e. the operation
which passes from a run in R(N) to a new run that covers the first one.
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Table 3
Summary of the main symbols use through the paper. For each symbol it is reported its meaning and where it has been defined in the main paper.

Symbol Meaning Definition
P A poset Section 2
� An ordering Section 2
C A subset of a poset P that is a chain Section 2
`(C) The length of a chain C Section 2
ρ The rank function of a poset P Section 2
`([s, t]) The length of an interval, which is the natural distance in case of a graded poset Section 2
M A measure Section 3.1 and 4
E A set of empirical objectes, whic is the doamin of a measure Section 3.1
∆ab A difference over intervals Section 3.2
�d An ordering among intervals Section 3.2
≤ An ordering among real numbers Section 3.3
REL The (totally ordered) set of relevance degrees Section 4
ai A relevance degree Section 4
D The set of documents Section 4
d A document Section 4
T The set of topics Section 4
t A topic Section 4
GT The ground-truth Section 4
N The length of an IR system run Section 4
D(N) The set of all the possible N retrieved documents Section 4, 4.1, and 4.2
r A run of an IR system Section 4, 4.1, and 4.2
rj the j-th element of the a run in the set-based retrieval case, i.e. rj = dj Section 4.1
r[j] the j-th element of the a run in the rank-based retrieval case, i.e. r[j] = dj Section 4.2
R(N) The set of N judged documents Section 4, 4.1, and 4.2
r̂ A judged run of an IR system Section 4, 4.1, and 4.2
r̂j the j-th element of the a judged run in the set-based retrieval case, i.e. r̂j = aj Section 4.1
r̂[j] the j-th element of the a judged run in the rank-based retrieval case, i.e. r̂[j] = aj Section 4.2
g The gain function Section 4
δa The indicator function for relevance degrees Section 4
RB The recall base Section 4
m the multiplicity of a relevance degree in the case of set-based retrieval Section 4.1
p The persistence parameter in Rank-Biased Precision (RBP) Section 4.2.2
b The logarithm base in Discounted Cumulated Gain (DCG) Section 4.2.3
xk The probability that a user leaves their search after considering the document at

position k in Expected Reciprocal Rank (ERR)
Section 4.2.4

The partial order defined in Section 5.2 of the main paper is:

r̂ � ŝ ⇔
∣∣{i : r̂i � aj}

∣∣ ≤ ∣∣{i : ŝi � aj}
∣∣ ∀j ∈ {0, . . . , c} (1)

for r̂, ŝ ∈ R(N).
Recall that the replacement property consists in replacing an element of a judged run with one of higher relevance,

i.e. if r̂ = {r̂1, . . . , r̂i−1, r̂i, r̂i+1 . . . , r̂N}, we can replace r̂i with a document with higher relevance degree, that is r̂ =
{r̂1, . . . , r̂i−1,aj , r̂i+1 . . . , r̂N}, with r̂i � aj . Note that:

• for every 0 ≤ k ≤ δa(r̂i),
∣∣{n : r̂n � ak}

∣∣ =
∣∣{n : r̂n � ak}

∣∣, by construction of r̂ and r̂;
• for δa(r̂i) < k ≤ j,

∣∣{n : r̂n � aj}
∣∣ ≤ ∣∣{n : r̂n � aj}

∣∣, since r̂i � aj ;
• for every j < k ≤ c,

∣∣{n : r̂n � ak}
∣∣ =

∣∣{n : r̂n � ak}
∣∣, since r̂ and r̂ have the same number of elements with

relevance degree above aj .

Therefore we proved that r̂ � r̂.
We can iterate the replacement operation to pass from any run r̂ ∈ R(N) to any another run ŝ in the same set such that

r̂ � ŝ. Let us show that the “cover” relations are given by the replacement of an element of a run with relevance degree
ai with the relevance degree ai+1; remember that since ai and ai+1 are two successive relevance degrees, by definition,
it holds ai ≺ ai+1.

Given two runs r̂, ŝ ∈ R(N) such that r̂ ≺ ŝ, ŝ can different from r̂ by one or more replacements.
Let us suppose that only one replacement has been performed, that is an element of r̂ – let’s say r̂k with relevance

degree ai – has been exchanged with another one with relevance degree of aj such that ai ≺ aj ; in other terms, we have
r̂ = {r̂1, . . . , r̂k−1,ai, r̂k+1, . . . , r̂N} and ŝ = {r̂1, . . . , r̂k−1,aj , r̂k+1, . . . , r̂N}.

Recall that the rank function, defined in the main paper, is given by ρ(t̂) =
∑N

n=1 δa(t̂n), for t̂ ∈ R(N). Therefore
ρ(ŝ)−ρ(r̂) =

∑N
n=1 (δa(ŝn)− δa(r̂n)) =

∑N
n=1
n 6=k

(δa(r̂n)− δa(r̂n)) + (δa(aj)− δa(ai)) = j− i. Therefore the replacement

is a “cover” relation if and only if ρ(ŝ)− ρ(r̂) = 1, by definition of rank function, that is if j = i+ 1.
Therefore, if r̂ and ŝ are such that r̂ ≺ ŝ and the two runs differ by only one replacement, than the two relevance

degrees exchanged have to be consecutive in order for ŝ to cover r̂.
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If r̂ and ŝ differ for more than one replacement, then we can always find a third run v̂ such that r̂ ≺ v̂ ≺ ŝ. Let us
suppose that they differ for exactly two replacements, one in r̂k1

and one in r̂k2
; the case with more replacements follows

analogously. Hence we can write the two runs as

ŝ = {r̂1, . . . , r̂k1−1,aj , r̂k1+1, . . . , r̂k2−1,am, r̂k2+1, . . . , r̂N} ,
r̂ = {r̂1, . . . , r̂k1−1,ai, r̂k+1, . . . , r̂k2−1,al, r̂k2+1, . . . r̂N} ,

with ai ≺ aj and al ≺ am. By construction (and the above discussion) follows that r̂ ≺ ŝ.
Therefore the run v̂ such that

v̂ = {r̂1, . . . , r̂k1−1,aj , r̂k+1, . . . , r̂k2−1,al, r̂k2+1, . . . r̂N} ,
is clearly such that r̂ ≺ v̂, since the two runs differs by only one replacement. Moreover v̂ ≺ ŝ since v̂ is ŝ where a
replacement with a higher relevance degree has been performed.

Hence ŝ covers r̂ if and only if one replacement has been performed between two consecutive relevance degrees. In the
following, we call this operation replacement of weight one, for simplicity.

Then, we show that r̂, ŝ ∈ RELN such that both cover a run û ∈ R(N) are uniquely identified using û.
Since r̂ and ŝ both cover û, r̂ 6= ŝ and R(N) has a partial order, r̂ and ŝ are incomparable, and it does not exists a run

ẑ ∈ R(N) such that û ≺ ẑ ≺ r̂ nor û ≺ ẑ ≺ ŝ. Let us set û := (û[1], . . . , û[N ]). Since r̂ and ŝ covers û and replacement of
weight one is the only “cover” relation, then û differs from both by a replacement of weight one made between different
relevance degrees for r̂ and ŝ.

Thus, if û = (û[1], . . . , û[N ]), there exist two distinct indexes k1, k2 ∈ {1, . . . , N} such that u[k1] = ai and u[k2] = aj

with aj ≺ ai ≺ ac, that is

û = {û1, . . . , ûk1−1,ai, ŝk1+1, . . . , ûk2−1,aj , ûk2+1, . . . , ûN} ,
Then, the two runs r̂ and ŝ can only have the following expression:

ŝ = {û1, . . . , ûk1−1,ai+1, ŝk1+1, . . . , ûk2−1,aj , ûk2+1, . . . , ûN} ,
r̂ = {û1, . . . , ûk1−1,ai, ŝk1+1, . . . , ûk2−1,aj+1, ûk2+1, . . . , ûN} .

Note that r̂ and ŝ are incomparable for the ordering (1) since aj ≺ ai, indeed

•
∣∣{n ≤ N : ŝn � ai+1}

∣∣ =
∣∣{n ≤ N : r̂n � ai+1}

∣∣+ 1 ≥
∣∣{n ≤ N : r̂n � ai+1}

∣∣;
• while

∣∣{n ≤ N : ŝn � aj+1}
∣∣ =

∣∣{n ≤ N : r̂n � aj+1}
∣∣− 1 ≤

∣∣{n ≤ N : r̂n � aj+1}
∣∣.

Now, given r̂ and ŝ as defined above such that both covers û, we show that the joint r̂ ∨ ŝ exists.
Therefore let us define t̂ ∈ R(N) as

t̂ = {û1, . . . , ûk1−1,ai+1, ŝk1+1, . . . , ûk2−1,aj+1, ûk2+1, . . . , ûN} .
The above observations entail that t̂ covers both r̂ and ŝ, since t̂ differs from both by just a replacement of weight one.

The question is: is t̂ the least upper bound, that is t̂ = r̂ ∨ ŝ?
Let v̂ ∈ R(N) be such that r̂ ≺ v̂ and ŝ ≺ v̂. Thanks to the ordering (1), we can note that v̂ has to be such that

• for any 1 ≤ k ≤ i,
∣∣{n ≤ N : r̂n � ak}

∣∣ ≤ ∣∣{n ≤ N : v̂n � ak}
∣∣;

• for any i+ 1 ≤ k ≤ c,
∣∣{n ≤ N : ŝn � ak}

∣∣ ≤ ∣∣{n ≤ N : v̂n � ak}
∣∣;

since r̂, ŝ ≺ v̂. But t̂ is built in such a way that

• for any 1 ≤ k ≤ i,
∣∣{n ≤ N : r̂n � ak}

∣∣ =
∣∣{n ≤ N : t̂n � ak}

∣∣;
• for any i+ 1 ≤ k ≤ c,

∣∣{n ≤ N : ŝn � ak}
∣∣ =

∣∣{n ≤ N : t̂n � ak}
∣∣;

Therefore
∣∣{n ≤ N : t̂n � ak}

∣∣ ≤ ∣∣{n ≤ N : v̂n � ak}
∣∣ for any k ∈ {1, . . . , c}, that is v̂ � t̂ and this holds for any

judged run v̂ ∈ R(N) such that r̂, ŝ ≺ v̂. Hence t̂ = r̂ ∨ ŝ, and R(N) is a lattice since r̂, ŝ where chosen arbitrarily.
Moreover t̂ = r̂ ∨ ŝ covers, by construction as showed above, both r̂ and ŝ. Then Proposition 2 let us state that R(N) is

graded, and the proof of Proposition 3 is complete.

5 RANK-BASED MEASURES

5.1 Total Ordering
Proposition 4. Let REL = {a0, . . . ,ac} and let G = mini∈{1,...,c}(g(ai) − g(ai−1))/g(ac) . Given the ordering char-

acterized by the strong top-heaviness, Graded Rank-Biased Precision (gRBP)p is ordinal scale on R(N) if and only if
p ≤ G/(G+ 1).

Proof:
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Even though we work with N fixed, we want gRBPp to be ordinal for some p ≥ 0 regardless of the chosen value of N .
Moreover, we assume p ∈ (0, 1) in order to remove trivial cases, since for p ∈ {0, 1}, gRBPp is constantly equal to 0. Recall
that gRBPp is an ordinal scale for a given value of p if and only if

r̂ � ŝ⇔ gRBPp(r̂) ≤ gRBPp(ŝ),

for any r̂, ŝ ∈ R(N).
Let us consider r̂, ŝ ∈ R(N) such that r̂ ≺ ŝ. Since the ordering is given by the strong top-heaviness, there exists

k ∈ {1, . . . , N} such that

r̂ = (r̂[1], . . . , r̂[k − 1],ai, r̂[k + 1], . . . , r̂[N ]) and ŝ = (r̂[1], . . . , r̂[k − 1],aj , ŝ[k + 1], . . . , ŝ[N ]) ,

with i < j (that is ai ≺ aj).
Let moreover r̂, ŝ ∈ R(N) be such that

r̂ = (r̂[1], . . . , r̂[k − 1],ai,ac, . . . ,ac) and ŝ = (r̂[1], . . . , r̂[k − 1],aj ,a0, . . . ,a0) .

Clearly r̂ � r̂ ≺ ŝ � ŝ, let us prove that gRBPp(r̂) < gRBPp(ŝ) iff p ≤ G/(G+ 1).

gRBPp(r̂)− gRBPp(ŝ) =
1− p
g(ac)

(
k−1∑
n=1

g(r̂[n])pn−1 + g(ai)p
k−1 +

N∑
n=k+1

g(ac)p
n−1

)

− 1− p
g(ac)

(
k−1∑
n=1

g(r̂[n])pn−1 + g(aj)p
k−1 +

N∑
n=k+1

g(a0)pn−1
)

=
1− p
g(ac)

(
(g(ai)− g(aj)) p

k−1 +
N∑

n=k+1

g(ac)p
n−1

)
,

where we used g(a0) = 0.
Note that gRBPp(r̂)− gRBPp(ŝ) < 0 iff

g(ai)− g(aj)

g(ac)
pk−1 +

N∑
n=k+1

pn−1 < 0 . (2)

Since the proof has to be independent from any pair of chosen runs, as long as r̂ ≺ ŝ, we can maximize the Left Hand
Side (LHS) of the inequality above by choosing

max
i,j∈{0,...,c},i<j

g(ai)− g(aj)

g(ac)
= − min

i,j∈{0,...,c},i<j

g(aj)− g(ai)

g(ac)
= − min

i∈{1,...,c}

g(ai+1)− g(ai)

g(ac)
=: −G .

Therefore, (2) holds iff

Gpk−1 −
N∑

n=k+1

pn−1 > 0 ⇔ Gpk−1 − pk − pN
1− p > 0 ⇔ pN−k+1 − (1 +G) p+G > 0 .

Clearly, if p ≤ G/(G+ 1)
pN−k+1 − (1 +G) p+G ≥ pN−k+1 > 0 ,

for any N and k ≤ N . On the other hand, if p > G/(G+ 1), then there exists N big enough that

pN−k+1 − (1 +G) p+G < 0 .

Indeed letting N go to infinity, the LHS of the above inequality becomes strictly smaller than 0 since −(1 +G)p+G < 0 if
p < G/(G + 1), and this means that there exists N big enough that gRBPp(r̂)− gRBPp(ŝ) > 0. Therefore, we proved that
gRBPp(r̂) < gRBPp(ŝ) ⇔ p ≤ G/(G+ 1).

Moreover, gRBPp(r̂) ≤ gRBPp(r̂), since g(r̂[i]) ≤ g(r̂[i]) for all i ∈ {1, . . . , N}, and analogously gRBPp(ŝ) ≤ gRBPp(ŝ).
Thus, we can conclude that only when p ≤ G/(G + 1), r̂ ≺ ŝ ⇒ gRBPp(r̂) < gRBPp(ŝ). Furthermore, since if r̂ = ŝ, then
simply gRBPp(r̂) = gRBPp(ŝ) and we proved that for p ≤ G/(G+ 1), r̂ � ŝ⇒ gRBPp(r̂) < gRBPp(ŝ).

To show the other implication of the iff, that is gRBPp(r̂) ≤ gRBPp(ŝ) ⇒ r̂ � ŝ, we just prove that not{r̂ � ŝ} ⇒
not{gRBPp(r̂) ≤ gRBPp(ŝ)}, i.e. we need to prove that r̂ � ŝ ⇒ gRBPp(r̂) > gRBPp(ŝ). But this last relation is exactly
what we have already proved above, exchanging r̂ with ŝ. Hence, the proof is complete.
Proposition 5. Let REL = {a0, . . . ,ac} and g(aj) 6= Kδa(aj) for at least one j ∈ {1, . . . , c}, with K > 0. Given the

ordering characterized by the strong top-heaviness, gRBP(c+1)−1 is not an interval scale on R(N).
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Proof: In order for gRBP(c+1)−1 to be on an interval scale we should prove that there exist a positive constant α ∈ R
and a constant β ∈ R such that for every r̂ ∈ R(N), gRBP(c+1)−1(r̂) = αM(r̂)+β, where M(r̂) =

∑N
i=1 δa(r̂[i])(c+1)N−i.

Note that β = 0 since gRBP(c+1)−1(0̂) = 0 = M(0̂). Therefore, since

gRBP(c+1)−1(r̂) =
c

c+ 1

1

g(ac)

N∑
i=1

g(r̂[i])(c+ 1)−i+1

=
c

g(ac)

N∑
i=1

g(r̂[i])(c+ 1)−i ,

and

M(r̂) =
N∑
i=1

δa(r̂[i])(c+ 1)N−i = (c+ 1)N
N∑
i=1

δa(r̂[i])(c+ 1)−i ,

we should prove that there exist α > 0 such that

c

g(ac)

N∑
i=1

g(r̂[i])(c+ 1)−i = α ∗ (c+ 1)N
N∑
i=1

δa(r̂[i])(c+ 1)−i ,

that is
N∑
i=1

g(r̂[i])(c+ 1)−i = α̃ ∗
N∑
i=1

δa(r̂[i])(c+ 1)−i ,

where α̃ = α ∗ (c+ 1)Ng(ac)/c.
Let us consider for exampleN = 5, c = 2 and r̂, ŝ ∈ R(N) such that r̂ = (a1,a0,a0,a0,a0) and ŝ = (a2,a0,a0,a0,a0).

Clearly
∑N

i=1 g(r̂[i])(c+ 1)−i = g(a1)/(c+ 1) = α̃ ∗ 1/(c+ 1) and it implies that α̃ = g(a1). But
∑N

i=1 g(ŝ[i])(c+ 1)−i =
g(a2)/(c+1) = α̃∗2/(c+1) = (g(a1)/(c+1))∗2. Therefore, gRBP(c+1)−1 is interval scale for c = 2 only if g(a2) = 2g(a1)
that is only if the gain function is the indicator function. For every c ≥ 1 and for every N we can find an example that
shows that gRBP(c+1)−1 is interval scale measure only when the g(aj) = Kj.

5.2 Partial Ordering
Proposition 6. Let N ∈ N be fixed and let REL = {a0,a1}. The poset R(N) is graded, i.e. every maximal chain of R(N)

has the same length.

Proof: Note that R(N) is a bounded, since for every r̂ ∈ R(N), r̂ � (a0, . . . ,a0) and r̂ � (a1, . . . ,a1).; moreover it
is of finite rank since |R(N)| = 2N <∞.

Let us prove that R(N) is a lattice using Lemma 1, firstly studying the “cover” relation, i.e. the operation which passes
from a run in R(N) to a new run that covers the first one.

Note that, since in the binary case REL has only two relevance degrees – the not relevant degree a0 and the relevant
one a1, the partial ordering defined in Section 6.2 of the main paper can be expressed as:

r̂ � ŝ ⇔
∣∣{i ≤ k : r̂[i] = a1}

∣∣ ≤ ∣∣{i ≤ k : ŝ[i] = a1}
∣∣ ∀k ∈ {1, . . . , N} . (3)

Let r̂, ŝ ∈ R(N) be such that r̂ ≺ ŝ, define m =
∣∣{k ≤ N : |{i ≤ k : r̂[i] = a1}| < |{i ≤ k : ŝ[i] = a1}|}

∣∣ and denote
with k1 < · · · < km the depths where the strict inequality (3) holds. Firstly, note that if r̂ ≺ ŝ then m ≥ 1.

If m = 1 and k1 < N , then ŝ and r̂ have to be such that;

•
∣∣{i ≤ k : r̂[i] = a1}

∣∣ =
∣∣{i ≤ k : ŝ[i] = a1}

∣∣ for any k < k1, that is r̂[k] = ŝ[k] for any k < k1;
•

∣∣{i ≤ k1 : r̂[i] = a1}
∣∣ < ∣∣{i ≤ k1 : ŝ[i] = a1}

∣∣, that is r̂[k1] = a0 and ŝ[k1] = a1;
•

∣∣{i ≤ k : r̂[i] = a1}
∣∣ =

∣∣{i ≤ k : ŝ[i] = a1}
∣∣ for any k1 < k ≤ N, and this is possible only if r̂[k1 + 1] = a1,

ŝ[k1 + 1] = a0 and the two runs are equal from depth k1 + 2 to N , since m = 1.

In particular, r̂ and ŝ have to differ by a swap of length one:

ŝ = (. . . , ŝ[k1 − 1],a1,a0, ŝ[k1 + 2], . . . ) and r̂ = (. . . , ŝ[k1 − 1],a0,a1, ŝ[k1 + 2], . . . ) .

Similarly, if m = 1 and k1 = N :

•
∣∣{i ≤ k : r̂[i] = a1}

∣∣ =
∣∣{i ≤ k : ŝ[i] = a1}

∣∣ for any k < N , that is r̂[k] = ŝ[k] for any k < N ;
•

∣∣{i ≤ N : r̂[i] = a1}
∣∣ < ∣∣{i ≤ N : ŝ[i] = a1}

∣∣, that is r̂[N ] = a0 and ŝ[N ] = a1.

Therefore, ŝ and r̂ differ by a replacement in the last position:

ŝ = (ŝ[1], . . . , ŝ[k1 − 1],a1) and r̂ = (ŝ[1], . . . , ŝ[k1 − 1],a0) .
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In both cases, namely the swap and the replacement, for every û ∈ R(N) such that r̂ � û � ŝ, then û = r̂ or û = ŝ, that
is ŝ covers r̂. This follows immediately from the partial order recalled above and from the fact that m = 1. Indeed, in the
case of a replacement in the last position, a run û ∈ R(N) such that r̂ ≺ û ≺ ŝ has to be such that

•
∣∣{i ≤ k : r̂[i] = a1}

∣∣ =
∣∣{i ≤ k : û[i] = a1}

∣∣ =
∣∣{i ≤ k : ŝ[i] = a1}

∣∣ for any k < N , that is r̂[k] = û[k] = ŝ[k] for
any k < N ;

•
∣∣{i ≤ N : r̂[i] = a1}

∣∣ < ∣∣{i ≤ N : û[i] = a1}
∣∣ < ∣∣{i ≤ N : ŝ[i] = a1}

∣∣, and this is impossible since∣∣{i ≤ N : r̂[i] = a1}
∣∣ = 1 +

∣∣{i ≤ N : ŝ[i] = a1}
∣∣.

Then û = r̂ or û = ŝ, and the proof in the case of a swap of length one follows analogously.
If m > 1, there are two cases to study: k2 > k1 + 1 or k2 = k1 + 1.
In the first case, k2 > k1 + 1, we have the following situation:

•
∣∣{i ≤ k : r̂[i] = a1}

∣∣ =
∣∣{i ≤ k : ŝ[i] = a1}

∣∣ for any k < k1, that is r̂[k] = ŝ[k] for any k < k1;
•

∣∣{i ≤ k1 : r̂[i] = a1}
∣∣ < ∣∣{i ≤ k1 : ŝ[i] = a1}

∣∣, that is r̂[k1] = a0 and ŝ[k1] = a1;
•

∣∣{i ≤ k : r̂[i] = a1}
∣∣ =

∣∣{i ≤ k : ŝ[i] = a1}
∣∣ for any k1 < k < k2, and this is possible only if r̂[k1 + 1] = a1,

ŝ[k1 + 1] = a0 and the two runs are equal from depth k1 + 2 to k2 − 1, since m > 1 and k2 > k1 + 1;
•

∣∣{i ≤ k2 : r̂[i] = a1}
∣∣ < ∣∣{i ≤ k2 : ŝ[i] = a1}

∣∣, that is r̂[k2] = a0 and ŝ[k2] = a1;
•

∣∣{i ≤ k : r̂[i] = a1}
∣∣ ≤ ∣∣{i ≤ k : ŝ[i] = a1}

∣∣, for any k2 < k ≤ N , since r̂ � ŝ.

Therefore, r̂ and ŝ are such that:

ŝ = (. . . , ŝ[k1 − 1],a1,a0, ŝ[k1 + 2], . . . , ŝ[k2 − 1],a1, ŝ[k2 + 1], . . . ) ,

r̂ = (. . . , ŝ[k1 − 1],a0,a1, ŝ[k1 + 2], . . . , ŝ[k2 − 1],a0, r̂[k2 + 1], . . . ) .

Then, the following run

û = (. . . , ŝ[k1 − 1],a0,a1, ŝ[k1 + 2], . . . , ŝ[k2 − 1],a1, ŝ[k2 + 1], . . . )

is such that r̂ ≺ û ≺ ŝ. Indeed û ≺ ŝ since

• û[k] = ŝ[k] for k < k1, then
∣∣{i ≤ k : û[i] = a1}

∣∣ =
∣∣{i ≤ k : r̂[i] = a1}

∣∣ for k < k1;
• û[k1] = a0 and ŝ[k1] = a1, then

∣∣{i ≤ k1 : û[i] = a1}
∣∣ = 1 +

∣∣{i ≤ k1 : ŝ[i] = a1}
∣∣;

• û[k1 + 1] = a1 and ŝ[k1 + 1] = a0, then
∣∣{i ≤ k1 + 1 : û[i] = a1}

∣∣ =
∣∣{i ≤ k1 + 1 : ŝ[i] = a1}

∣∣;
• û[k] = ŝ[k] for k1 + 1 < k ≤ N, and hence

∣∣{i ≤ k : û[i] = a1}
∣∣ =

∣∣{i ≤ k : ŝ[i] = a1}
∣∣ for k1 + 1 < k ≤ N.

On the other hand, r̂ ≺ û since

• û[k] = r̂[k] for k < k2, then
∣∣{i ≤ k : r̂[i] = a1}

∣∣ =
∣∣{i ≤ k : û[i] = a1}

∣∣ for k < k2;
• û[k2] = a1 while r̂[k2] = a0, then

∣∣{i ≤ k2 : r̂[i] = a1}
∣∣ = 1 +

∣∣{i ≤ k2 : û[i] = a1}
∣∣;

•
∣∣{i ≤ k : r̂[i] = a1}

∣∣ = 1 +
∣∣{i ≤ k : û[i] = a1}

∣∣ for any k2 < k ≤ N since û[k] = r̂[k] for such values of k.

Therefore, if m > 1 and k2 > k1 + 1, ŝ cannot cover r̂.
When k2 = k1 + 1, we can have two cases:

s = (. . . , ŝ[k1 − 1],a1,a0, ŝ[k2 + 1], . . . ) ,

r̂ = (. . . , ŝ[k1 − 1],a0,a0, r̂[k2 + 1], . . . ) ,

or

ŝ = (. . . , ŝ[k1 − 1],a1,a1, ŝ[k2 + 1], . . . ) ,

r̂ = (. . . , ŝ[k1 − 1],a0,a0, r̂[k2 + 1], . . . ) .

In both cases, û given by
û = (. . . , ŝ[k1 − 1],a0,a1, ŝ[k2 + 1], . . . )

is such that r̂ ≺ û ≺ ŝ, and it follows analogously at what was done for k2 > k1 + 1. Then, also when k2 = k1 + 1, ŝ
cannot cover r̂.

Thus, we have shown that the “cover” relations are justs swaps of length one and replacements in the last position.
Then we show that r̂, ŝ ∈ R(N) such that both cover a run û ∈ R(N) are uniquely identified using û.
Since r̂ and ŝ both cover û, r̂ 6= ŝ and R(N) has a partial order, r̂ and ŝ are incomparable, and it does not exists a run

ẑ ∈ R(N) such that û ≺ ẑ ≺ r̂ nor û ≺ ẑ ≺ ŝ. Let us set û := (û[1], . . . , û[N ]). Since r̂ and ŝ cover û and replacement at
depth N and swaps of length one are the only two “cover” relations, then û differs from, e,g,, r̂ by a swap and from ŝ by a
swap made at a different depth or by a replacement in the last position.

Thus, if û = (û[1], . . . , û[N ]), there exists at least an index i ∈ {1, . . . , N − 1} such that u[i] = a0 and u[i + 1] = a1,
since û differs from one of the two runs (or both) by a swap of length one (a “cover” relation), and this is possible only
when a not relevant degree is followed by a relevant one.
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According to these observations, there exists at least an index i ∈ {1, . . . , N − 1} such that u[i] = a0 and u[i+ 1] = a1,
precisely

û = (û[1], . . . , û[i− 1],a0,a1, û[i+ 2], . . . , [̂N ]) ,

and we have two possibilities (up to symmetries) for r̂ and ŝ:

i. if there exists an index j ∈ {1, . . . , N − 1} \ {i − 1, i, i + 1} such that û[j] = a0 and û[j + 1] = a1 (we choose
j > i+ 1, but the case j < i− 1 is symmetric), then

ŝ = (û[1], . . . , û[i− 1],a0,a1, û[i+ 2], . . . , û[j − 1],a1,a0, û[j + 2], . . . , û[N ]) ,

r̂ = (û[1], . . . , û[i− 1],a1,a0, û[i+ 2], . . . , û[j − 1],a0,a1, û[j + 2], . . . , û[N ]) ,

since ŝ differs from û by a swap of length one made from depth j + 1 to depth j and r̂ differs from û by a swap of
length one made from depth i+ 1 to depth i;

ii. if û[N ] = a0, then

ŝ = (û[1], . . . , û[i− 1],a0,a1, û[i+ 2], . . . , û[N − 1],a1) ,

r̂ = (û[1], . . . , û[i− 1],a1,a0, û[i+ 2], . . . , û[N − 1],a0) ,

since ŝ differs from û by a replacement made at depth N and r̂ differs from û by a swap of length one made from
depth i+ 1 to depth i.

Now, given r̂ and ŝ as defined above such that both cover û, we show that the joint r̂ ∨ ŝ exists.
Therefore, let us define t̂ ∈ R(N) as

i.
t̂ = (û[1], . . . , û[i− 1],a1,a0, û[i+ 2], . . . , û[j − 1],a1,a0, û[j + 2], . . . , û[N − 1], û[N ]) ;

ii.
t̂ = (û[1], . . . , û[i− 1],a1,a0, û[i+ 2], . . . , û[N − 1],a1) .

The above observations entail that t̂ covers both r̂ and ŝ, since t̂ differs from r̂ by a swap of length one made at depth
i, and from ŝ respectively by a swap of length one at depth j or a replacement in the last position. The question is: is t̂ the
least upper bound, that is t̂ = r̂ ∨ ŝ?

Let v̂ ∈ R(N) be such that r̂ ≺ v̂ and ŝ ≺ v̂. Thanks to the ordering (3), v̂ has to be such that

• for any 1 ≤ k ≤ i,
∣∣{i ≤ k : r̂[i] = a1}

∣∣ ≤ ∣∣{i ≤ k : v̂[i] = a1}
∣∣;

• for any i+ 1 ≤ k ≤ N ,
∣∣{i ≤ k : ŝ[i] = a1}

∣∣ ≤ ∣∣{i ≤ k : v̂[i] = a1}
∣∣;

since r̂, ŝ ≺ v̂. But t̂ is built in such a way that

• for any 1 ≤ k ≤ i,
∣∣{i ≤ k : r̂[i] = a1}

∣∣ =
∣∣{i ≤ k : t̂[i] = a1}

∣∣;
• for any i+ 1 ≤ k ≤ N ,

∣∣{i ≤ k : ŝ[i] = a1}
∣∣ =

∣∣{i ≤ k : t̂[i] = a1}
∣∣.

Therefore,
∣∣{i ≤ k : t̂[i] = a1}

∣∣ ≤ ∣∣{i ≤ k : v̂[i] = a1}
∣∣ for any k ∈ {1, . . . , N}, that is v̂ � t̂ and this holds for any

judged run v̂ ∈ R(N) such that r̂, ŝ ≺ v̂. Hence, t̂ = r̂ ∨ ŝ, and R(N) is a lattice since r̂, ŝ where chosen arbitrarily.
Moreover t̂ = r̂ ∨ ŝ covers, by construction as showed above, both r̂ and ŝ. Then Proposition 2 let us state that R(N) is

graded, and the proof of Proposition 6 is complete.
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