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Abstract Evaluation measures are the basis for quantifying the performance of IR
systems and the way in which their values can be processed to perform statistical
analyses depends on the scales on which these measures are defined. For example,
mean and variance should be computed only when relying on interval scales.

In our previous work we defined a theory of IR evaluation measures, based
on the representational theory of measurement, which allowed us to determine
whether and when IR measures are interval scales. We found that common set-
based retrieval measures – namely Precision, Recall, and F-measure – always are
interval scales in the case of binary relevance while this does not happen in the
multi-graded relevance case. In the case of rank-based retrieval measures – namely
AP, gRBP, DCG, and ERR – only gRBP is an interval scale when we choose a
specific value of the parameter p and define a specific total order among systems
while all the other IR measures are not interval scales.

In this work, we build on our previous findings and we carry out an exten-
sive evaluation, based on standard TREC collections, to study how our theoretical
findings impact on the experimental ones. In particular, we conduct a correlation
analysis to study the relationship among the above-mentioned state-of-the-art eval-
uation measures and their scales. We study how the scales of evaluation measures
impact on non parametric and parametric statistical tests for multiple compar-
isons of IR system performance. Finally, we analyse how incomplete information
and pool downsampling affect different scales and evaluation measures.
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1 Introduction

Information Retrieval (IR) faces an extremely challenging task, i.e., ranking typ-
ically heterogeneous and very diverse information sources with respect to often
vague user information needs for tasks which are more and more demanding and
complex. Therefore, even if laying solid foundations has always been a goal of the
discipline, the development of formal theories has been always partnered with very
systematic and thorough experimentation, needed to assess the performance of IR
systems and understand their behaviour.

Recently, there has been a return and a new raise of interest for developing
and applying axiomatic methods to IR (Amigó et al., 2017, 2018a) by focusing,
for example, on the definition of ranking functions based on axiomatic constraints
and on the development of frameworks to model IR evaluation measures. This
renewed interest is motivated not only by the push to strengthen the field and lay
more rigorous foundations, but also, and mostly, by the need to face new and hard
challenges, such as the possibility of predicting the performance of IR systems
before developing and experimenting with them (Allan et al., 2018a; Ferro et al.,
2018), which calls for better theoretical foundations in the field.

In this context, we have recently developed a general theory of offline IR evalu-
ation measures (Ferrante et al., 2019), which is based on the representational theory

of measurement adopted in physics (Krantz et al., 1971). Measurement scales are
central notion in the representational theory of measurement and Stevens (1946)
identifies four major types of scales with increasing properties: (i) the nominal

scale consists of discrete unordered values, i.e. categories; (ii) the ordinal scale in-
troduces a natural order among the values; (iii) the interval scale preserves the
equality of intervals or differences; and, (iv) the ratio scale preserves the equality
of ratios. Measurement scales are important, since they determine the operations
that can be performed with the measured values and, as a consequence, the sta-
tistical analyses that can be applied; for example, mean and variance should be
computed only if your measurement is an interval scale.

Our theory provides us with a constructive way to define interval scales, in the
case of both set-based and rank-based evaluation measures, accommodating both
binary and multi-graded relevance judgements. It allows us to formally determine
the scale of an evaluation measure and it also introduces new evaluation measures
which guarantee to be interval scales.

In this paper, we move a step forward and complement our theory of offline
evaluation measures with a thorough experimentation whose overall goal is to ex-
plore the effects of meeting or not the assumptions of the scales behind evaluation
measures. In particular, we consider several state-of-the-art offline evaluation mea-
sures – namely precision, recall, F-measure, AP, RBP, DCG, and ERR – and we
compare them to the behaviour of our interval scale measures, namely SBTO in
the set-based retrieval case and RBTO in the rank-based retrieval case. We rely on
standard TREC collections with both binary and multi-graded relevance judge-
ments to break down our overall goal into the following three research questions:

RQ1 what is the relationship between the different evaluation measures and how
are these affected by their scales?

RQ2 what is the impact of violating the scale assumptions behind statistical sig-
nificance tests for comparing IR systems?
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RQ3 how much do less and less complete pools affect evaluation measures and to
what extent do the used scales play a role in this?

To the best of our knowledge, this paper represents the first experimental
study aimed at quantifying the impact of the scale assumptions behind evaluation
measures. Moreover, it also represents the first attempt to turn the findings of a
formal theory of IR evaluation measures into an actual experimental validation.

The paper is organized as follows. Section 2 discusses the related works; Sec-
tion 3 reports some background information about set theory and the representa-
tional theory of measurement; Section 4 briefly summarizes the main points of our
theory of IR evaluation measures, only those relevant to the subsequent experi-
mentation; Section 5 introduces our experiments and discusses the experimental
findings; finally, Section 6 wraps up the discussion and outlooks some future work.

2 Related Work

The relation between the representational theory of measurements and IR evalu-
ation measures has been early investigated by van Rijsbergen (1974, 1979) in the
context of set-based IR measures. In particular, van Rijsbergen (1974) exploited
conjoint structures (Krantz et al., 1971) to study Precision and Recall.

Bollmann and Cherniavsky (1980) introduced the MZ-metric and, following
the example of van Rijsbergen, they defined a conjoint structure on the contin-
gency table relevant/not relevant and retrieved/not retrieved in order to determine
under which transformations the MZ-metric was on an interval scale. Bollmann
(1984) studied set-based measures by showing that measures complying with a
monotonicity and an Archimedean axiom are a linear combination of the num-
ber of relevant retrieved documents and the number of not relevant not retrieved
documents.

Amigó et al. (2009, 2013) and Moffat (2013) studied the properties of rank-
based IR measures, in a formal and numeric way respectively, defining, e.g., how
an IR measure should behave when a relevant document is added or removed from
a system run. Recently, Amigó et al. (2018b) extended this approach to diversity-
oriented evaluation measures.

Busin and Mizzaro (2013) and Maddalena and Mizzaro (2014) used the notion
of scale and mapping among scales to model different kinds of similarity and to
introduce constraints over them.

We developed our theory of evaluation measures starting from the exploration
of ordinal scales (Ferrante et al., 2015) and then we moved to interval scales in
the binary relevance case (Ferrante et al., 2017a). Finally, we consolidated our
findings into a single coherent framework and we generalized it to consider also
multi-graded relevance and different types of orders among runs (Ferrante et al.,
2019). We also started to explore whether it is possible to define semi-interval
scales (Ferrante et al., 2017b) and to accommodate IR evaluation measures over
them. This paper complements our previous work with the first experimental in-
vestigation ever on assessing the impact of scale assumptions and quantifying it
from different points of view, i.e. the three research questions. Moreover, it is
the first experimental study on evaluation measures motivated and backed by the
findings of a formal theory of IR evaluation measures.
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3 Background

In this section we summarize some background information about poset, measure-
ment scales, and how to proceed to define interval scales for IR.

3.1 Poset, Totally Ordered Sets, Intervals and their Length

A partially ordered set P , poset for short, is a set with a partial order � defined on
it (Stanley, 2012). A partial order � is a binary relation over P which is reflexive,
antisymmetric and transitive. Given s, t ∈ P , we say that s and t are comparable

if s � t or t � s, otherwise they are incomparable. P is called bounded if it has
a maximum and a minimum element, namely 1̂, 0̂ ∈ P such that for every s ∈ P ,
s � 1̂ and 0̂ � s.

A total order over a poset P is a partial order where every pair of elements
are comparable.

A closed interval is a subset of a poset P defined as [s, t] := {u ∈ P : s � u � t},
where s, t ∈ P and s � t. Moreover, we say that t covers s if s � t and [s, t] = {s, t},
which means that there is no u ∈ P such that s ≺ u ≺ t.

A subset C of a poset P is a chain if any two elements of C are comparable: a
chain is a totally ordered subset of a poset. If C is a finite chain, the length of C,
`(C), is defined by `(C) = |C| − 1. A maximal chain of P is a chain that is not a
proper subset of any other chain of P . If the order is total, the unique maximal

chain is the whole set P .
If every maximal chain of P has the same length n, we say that the poset P is

graded of rank n; in particular there exists a unique function ρ : P → {0, 1, . . . , n},
called the rank function, such that ρ(s) = 0, if s is a minimal element of P , and
ρ(t) = ρ(s) + 1, if t covers s.

Finally, since any interval on a graded poset is graded, the length of an in-

terval [s, t] is given by `(s, t) := `([s, t]) = ρ(t)− ρ(s).

3.2 Representational Theory of Measurement

The representational theory of measurement (Krantz et al., 1971) sees measurement
as the process of assigning numbers to entities in the real world conforming to
some property under examination. According to this framework, the key point
is to understand how real world objects are related to each other since measure
properties are then derived from these relations.

Moving to the IR context, being an interval scale is not just a numeric property
of an evaluation measure, but firstly we need to understand how system runs are
ordered among themselves, then what intervals of system runs are, and finally
how these intervals are ordered too. Only at this point, we can verify whether an
evaluation measure complies with these notions and determine whether it is an
interval scale.

More precisely, a relational structure (Krantz et al., 1971; Rossi, 2014) is
an ordered pair X =

〈
X,RX

〉
of a domain set X and a set of relations RX on

X, where the relations in RX may have different arities, i.e. they can be unary,
binary, ternary relations and so on. Given two relational structures X and Y, a
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homomorphism M : X → Y from X to Y is a mapping M =
〈
M,MR

〉
where:

(i) M is a function that maps X into M(X) ⊆ Y , i.e., for each element of the
domain set there exists one corresponding image element; (ii) MR is a function
that maps RX into MR(RX) ⊆ RY such that ∀r ∈ RX , r and MR(r) have the
same arity, i.e., for each relation on the domain set there exists one (and it is
usually, and often implicitly, assumed) and only one corresponding image relation;

(iii) ∀r ∈ RX , ∀xi ∈ X, if r(x1, . . . , xn) then MR(r)
(

M(x1), . . . ,M(xn)
)

, i.e., if a

relation holds for some elements of the domain set then the image relation must
hold for the image elements.

A relational structure E is called empirical if its domain set E spans over entities
in the real world, i.e. system runs in our case; a relational structure S is called
symbolic if its domain set S spans over a given set of numbers. A measurement

(scale) is the homomorphism M =
〈
M,MR

〉
from the real world to the symbolic

world and a measure is the number assigned to an entity by this mapping.

3.3 Measurement Scales

There are four major types of measurement scales (Stevens, 1946) which can be or-
dered by their increasing properties and allows for different computations: nominal

scales allow us to compute the number of cases and the mode; in addition, ordinal

scales allow us to compute median and percentiles; interval scales add the possibil-
ity to compute mean, variance, product-moment correlation and rank correlation;
finally, ratio scales add the capability to compute the coefficient of variation. Over
the years, there has been debate (Velleman and Wilkinson, 1993) on whether these
rules are too strict or not but they are applied widely.

If we already know that on an empirical structure there is an interval scale M,
the uniqueness theorem – see e.g. Theorem 3.18 in (Rossi, 2014) – ensures that
any other measurement M′ on that structure is a linear positive transformation of
M, that is M′ = αM + β, α, β ∈ R and α > 0.

However, in the case of IR evaluation measures, we lacked a known interval
scale M to be used to compare all the other IR measures against. Actually, the
core issue was even more severe: we lacked any notion of order on the empirical
set E of the IR system runs, thus we also lacked the notion of interval of system
runs and, consequently, it was not possible to define an interval scale M too.

In our theory of IR evaluation measures (Ferrante et al., 2019), we overcame
these issues by relying on the notion of difference structure (Krantz et al., 1971;
Rossi, 2014) to introduce a definition of interval among system runs and to ensure
the existence of an interval scale.

Given E, a weakly ordered empirical structure is a pair (E,�) where, for every
a, b, c ∈ E,

• a � b or b � a;
• a � b and b � c ⇒ a � c (transitivity).

Note that if a, b ∈ E are such that a � b and b � a, then we write a ∼ b and
we say that a and b are equivalent elements of E for �. This does not necessarily
mean that a and b are equal, i.e. a = b, since they might be two distinct objects.
When the antisymmetric relation holds, that is when a � b and b � a implies that
a and b are the same element (namely a = b), we talk about a total order.
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An interval on the empirical structure is an element (a, b) ∈ E × E and we
introduce a notion of difference ∆ab over intervals, to act as a signed distance
we exploit to compare intervals. Once we have a notion of difference ∆ab, we can
define a weak order �d between the ∆ab differences and, consequently, among
intervals. We can proceed as follows: if two elements a, b ∈ E are such that a ∼ b,
then the interval [a, b] is null and, consequently, we set ∆ab ∼d ∆ba; if a ≺ b we
agree upon choosing ∆aa ≺d ∆ab which, in turn implies that ∆aa �d ∆ba, that is
there exist a kind of “zero” and the inverse with respect to this “zero”.

The following notion of difference structure allows us to verify whether a mea-
surement is an interval scale or not.

Definition 1 Let E be a finite (not empty) set of objects. Let �d be a binary
relation on E×E that satisfies, for each a, b, c, d, a′, b′, c′ ∈ E, the following axioms:

i. �d is weak order ;
ii. if ∆ab �d ∆cd, then ∆dc �d ∆ba;
iii. Weak Monotonicity: if ∆ab �d ∆a′b′ and ∆bc �d ∆b′c′ then ∆ac �d ∆a′c′ ;
iv. Solvability Condition: if ∆aa �d ∆cd �d ∆ab, then there exists d′, d′′ ∈ R such

that ∆ad′ ∼d ∆cd ∼d ∆d′′b.

Then (E,�d) is a difference structure.

The first condition defines an ordering among intervals while the second one
sets a sign for differences. The Weak Monotonicity condition gives us a rule to
compose adjacent intervals; among other things, it tells us that adding a non-
null interval to an interval produces a greater interval. The Solvability Condition

ensures the existence of an equally spaced gradation between the elements of E,
indispensable to construct an interval scale measurement.

The representation theorem for difference structures states:

Theorem 1 Let E be a finite (not empty) set of objects and let (E,�d) be a difference

structure. Then, there exist an interval scale measurement M : E → R such that for

every a, b, c, d ∈ E

∆ab �d ∆cd ⇔M(b)−M(a) ≤M(d)−M(c) .

This theorem ensures us that, if there is a difference structure on the empirical
set E, then there exists an interval scale M over it.

Therefore, to study whether IR measures are interval scales or not, Ferrante
et al. (2019) proceeded as follows:

1. Define a total ordering among system runs, which allows us also to introduce
the notion of interval among runs;

2. Since this set is graded of a given rank n, there exists a unique rank function
ρ which assigns a natural number to each run;

3. Define the length of an interval as the natural distance ∆ab := `(a, b) :=
`([a, b]) = ρ(b)− ρ(a);

4. Check whether the set with the above natural length is a difference structure
or not;

5. In this case we have a difference structure and we can define an interval scale
M as the rank function ρ itself;
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6. We can eventually check whether IR measures are a linear positive transfor-
mation of this interval scale M and determine whether they are an interval
scale.

4 Formal Framework

We summarize here a part of our theory for IR evaluation measures (Ferrante
et al., 2019) in order to give the reader an idea of how it works and to better
understand the foundations which the subsequent experimental part and research
questions are built on. Details, examples, and proofs are omitted for space reasons
and can be found in (Ferrante et al., 2019).

We also introduce several state-of-the-art IR evaluation measures, which will
be then investigated in the experimentation, to show how they can be expressed
within our framework and how you can determine the scales they use.

4.1 Basic Formalism

Let (REL, �) be a finite and totally ordered set of relevance degrees. We set
REL = {a0,a1, . . . ,ac} with ai ≺ ai+1 for all i ∈ {0, . . . , c − 1}; REL has a
minimum a0, called the “not relevant” relevance degree.

Let us consider a finite set of documents D and a set of topics T . For each
pair (t, d) ∈ T×D, the ground-truth GT is a map which assigns a relevance degree
rel ∈ REL to a document d with respect to a topic t.

Let N be a positive natural number called the length of the run. We assume
that all the runs have same length N , since this is what typically happens in real
evaluation settings when you compare IR systems.

We define D(N) as the set of all the possible N retrieved documents.
A run r : T → D(N) retrieves N documents belonging to D(N) in response to

a topic t ∈ T.
Let R(N) be the set of N judged documents, that is the set of all the N

possible combinations of relevance degrees.
We call judged run of length N the function r̂ from T×D(N) into R(N) which

assigns a relevance degree to each retrieved document, i.e. a judged run r̂ is the
application of the ground-truth GT function to each element of the run r.

We define the gain function g : REL→ R+ as the map that assigns a positive
real number to any relevance degree. We set, without loss of generality, g(a0) = 0
and we require g to be strictly increasing.

We define the indicator function for the relevance degrees as δa(aj) = j ∀j ∈
{0, . . . , c}. Note that δa is a particular gain function.

Given the gain function g, the recall base RB : T → R+ is the map defined as

RB(t) =
∑|D|

j=1 g(GT (t, dj)). In the binary relevance case when c = 1 and REL =

{a0,a1}, the gain function usually is g(a1) = δa(a1) = 1 and RB counts the
total number of relevant documents for a topic.

An evaluation measure is a function M : R(N) → R+ which maps a judged
run r̂ into a positive real number which quantifies its effectiveness. Note that most
of the evaluation measures are normalized and thus the co-domain is the [0, 1]
interval.
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In the following, we specialize the above definitions to the case of both set-based
and rank-based retrieval.

4.1.1 Set-Based Retrieval

The set of all the possible unorderedN retrieved documents isD(N) =
{
{d1, . . . , dN} :

di ∈ D
}

. A run r is given by r = {d1, . . . , dN}. We denote by rj the j-th element
of the set r, i.e. rj = dj .

A multiset (or bag) is a set which may contain the same element several
times (Knuth, 1981). The set of judged documents is a multiset (REL, m) =
{a1,a1,a0, . . . ,ac,a2,ac, . . .}, where m is a function from REL into N0 repre-
senting the multiplicity of every relevance degree aj (Miyamoto, 2004); if the mul-
tiplicity is 0, a given relevance degree is not present in the multiset. Let M be the
set of all the possible multiplicity functions m, then REL(M) :=

⋃
m∈M(REL,m)

is the universe set of judged documents, i.e. the set of all the possible sets of
judged documents (REL,m). We can define the set of N judged documents as
R(N) := {r̂ ∈ REL(M) : |r̂| = N}.

Note that, since each judged run in R(N) is an unordered set of N relevance
degrees, R(N) consists of all the N combinations of c + 1 = |REL| objects with
repetition.

We now introduce the definitions of generalized precision and recall (Kekäläinen
and Järvelin, 2002), which extend precision and recall to the multi-graded rele-
vance case, and of F-measure.

Generalized Precision (gP) is defined as

gP(r̂) =
1

N

N∑
i=1

g(r̂i)

g(ac)
,

while Generalized Recall (gR) as

gR(r̂) =
1

RB

N∑
i=1

g(r̂i)

g(ac)
,

where 1/g(ac) is needed to normalize the gain function and RB is recall base.
Note that gP coincides with Precision (P) and gR coincides with Recall (R) when
binary relevance (c = 1) is considered.

The F-measure works with binary relevance when REL = {a0,a1} and is the
harmonic mean of Precision (P) and Recall (R) given by

F(r̂) = 2
P(r̂) ·R(r̂)

P(r̂) + R(r̂)
.

4.1.2 Rank-Based Retrieval

The set of all the possible ordered list of N retrieved documents is D(N) =
{(d1, . . . , dN ) : di ∈ D, di 6= dj for any i 6= j}, i.e. a set of ranked lists of re-
trieved documents without duplicates. A run r is the vector r = (d1, . . . , dN ) and
we denote by r[j] its j-th element, i.e. r[j] = dj . Similarly, a judged run is the vec-
tor r̂ =

(
GT (t, d1), . . . , GT (t, dN )

)
, i.e. an ordered list of relevance degrees, where

we denote by r̂[j] its j-th element, i.e. r̂[j] = GT (t, dj).
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Let us introduce the definitions of some of the most popular rank-based mea-
sures:

– Average Precision (AP) (Buckley and Voorhees, 2005) is a binary measure given
by

AP(r̂) =
1

RB

N∑
i=1

1

i

i∑
j=1

g(r̂[j])

 g(r̂t[i]) ,

where g(a1) = 1 and RB is the recall base.
– Defined p ∈ (0, 1) the persistence parameter, Graded Rank-Biased Precision

(gRBP) (Moffat and Zobel, 2008; Sakai and Kando, 2008) is a multi-graded
relevance measure given by

gRBP(r̂) =
(1− p)
g(ac)

N∑
i=1

pi−1g(r̂[i]) .

Typical values of p are 0.5 for a very impatient user, 0.8 for a relatively patient
user, and 0.95 for a user very persistent in deeply scanning the result list. gRBP
coincides with Rank-Biased Precision (RBP) when binary judgments (c = 1) are
considered and g(a1) = 1.

– Discounted Cumulated Gain (DCG) (Järvelin and Kekäläinen, 2002) is a multi-
graded relevance measure given by

DCGb(r̂) =
N∑
i=1

g(r̂[i])

max{1, logb i}
,

where base b of the logarithm is typically equal to 2 for an impatient user and
to 10 for a patient user.

– Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) is a cascaded multi-
graded relevance measure, given by

ERR(r̂) =
N∑
i=1

1

i
xi

i−1∏
j=1

(1− xj) ,

with the convention that
∏0

i=1 = 1 and xk represents the probability that a
user leaves their search after considering the document at position k. Here we
adopt the typical setting xk = (2g(r̂[k]) − 1)/2g(ac).

4.2 Set-based Measures

Let us start by introducing an order relation � on the set of judged runs. Let r̂, ŝ ∈
R(N) such that r̂ 6= ŝ, and let k be the biggest relevance degree at which the two
runs differ for the first time, i.e. k = max{j ≤ c :

∣∣{i : r̂i = aj}
∣∣ 6= ∣∣{i : ŝi = aj}

∣∣}.
We strictly order any pair of distinct system runs as follows

r̂ ≺ ŝ ⇔
∣∣{i : r̂i = ak}

∣∣ < ∣∣{i : ŝi = ak}
∣∣ . (1)

R(N) is a totally ordered set with respect to the ordering � defined by (1).
As for any totally order set, R(N) is a poset consisting of only one maximal chain
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(the whole set); therefore it is graded of rank |R(N)| − 1, where
∣∣R(N)

∣∣ = (N+c
N )

since it consists of all the N combinations of c+1 = |REL| objects with repetition.
Since R(N) is graded of rank |R(N)| − 1, there exists a unique rank function ρ(r̂) :
R(N) −→ N such that ρ(0̂) = 0 and ρ(ŝ) = ρ(r̂) + 1 if ŝ covers r̂:

ρ(r̂) =
N∑
j=1

(
δa(r̂j) +N − j
N − j + 1

)
, (2)

where r̂ = {r̂1, . . . , r̂N} ∈ R(N) with r̂i � r̂i+1 for any i < N .
The natural distance is then given by `(r̂, ŝ) = ρ(ŝ)− ρ(r̂), for r̂, ŝ ∈ R(N) such

that r̂ � ŝ, and we can define the difference as ∆r̂ŝ = `(r̂, ŝ) if r̂ � ŝ, otherwise
∆r̂ŝ = −`(ŝ, r̂). (R(N),�d) is a difference structure. Thus the rank function is an
interval scale and we are able to define a new measure that follows:

Definition 2 The Set-Based Total Order (SBTO) measure on (R(N),�d) is:

SBTO(r̂) = ρ(r̂) =
N∑
j=1

(
δa(r̂j) +N − j
N − j + 1

)
. (3)

This measure satisfies the condition imposed by Theorem 1. Thus, SBTO is an
interval scale on (R(N),�d).

Let us explore more deeply how the SBTO measure works. The first relevance
degree immediately above not relevant, i.e. a1, always gives a constant contribu-
tion, independently from how many a1 documents are retrieved, since:(

δa(a1) +N − j
N − j + 1

)
=

(
1 +N − j
N − j + 1

)
= 1 .

However, when we consider higher relevance degrees, i.e. ak with k > 1, the
binomial coefficient strictly depends and changes on the basis of how many of
them are retrieved. Indeed, δa(ak) is constant for all the documents with the
same relevance degree ak, but the term N − j decreases as the number of ak

retrieved documents increases due to N being constant and j increasing, i.e. the
binomial coefficient is decreasing in the number of ak retrieved documents. In
other terms, each additional ak retrieved document gives a contribution smaller
than the previously retrieved ones by a discount factor j. This somehow recalls
the idea that relevance is a dynamic notion which changes as far as more relevant
documents are inspected, see e.g. (Mizzaro, 1997). It can also be considered as a
consequence of the submodularity principle studied by (Chapelle et al., 2011). As
a consequence, given r̂, ŝ ∈ R(N), a replacement in r̂ may have a different effect
than the same replacement in ŝ, if the relevance degree of the new document is
greater than a1.

4.2.1 Binary Relevance Case

When c = 1, i.e. in the binary relevance case, the ordering (1) just orders judged
runs by how many relevant documents they retrieve, i.e. by their total mass of
relevance:

r̂ � ŝ ⇔
N∑
i=1

δa(r̂i) ≤
N∑
i=1

δa(ŝi) ,
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since there is only one relevant relevance degree a1.
Therefore the rank function becomes

ρ(r̂) =
N∑
i=1

δa(r̂i) = M(r̂) .

This follows easily from (3), using the fact that δa(r̂i) ∈ {0, 1} for any i ≤ N when
c = 1.

Let now g be the gain function, and let us consider Precision

P(r̂) =
1

N

N∑
i=1

g(r̂i)

g(a1)
=

1

N

N∑
i=1

δa(r̂i) =
M(r̂)

N
,

since g(a0) = 0 = δa(a0) and c = 1. Thus Precision is an interval scale, as it is a
linear positive transformation of M.

Similarly, Recall

R(r̂) =
1

RB

N∑
i=1

g(r̂i)

g(a1)
=

1

RB

N∑
i=1

δa(r̂i) =
M(r̂)

RB

is an interval scale.
The F-measure, that is the harmonic mean of Precision and Recall,

F(r̂) = 2
P(r̂) ·R(r̂)

P(r̂) + R(r̂)
=

2

N +RB

N∑
i=1

δa(r̂i) =
2M(r̂)

N +RB

is an interval scale as well.

4.2.2 Multi-graded Relevance Case

Neither Generalized Precision nor Generalized Recall are a positive linear transfor-
mation of M defined in (3). Indeed, in these measures, the individual contribution
of each retrieved document r̂j is independent from the contribution of any other
retrieved document r̂k. However, the previous discussion on the measure defined
in (3) pointed out that, for each relevance degree ak with k > 1, the individual
contribution of an ak retrieved document depends on how many ak retrieved
documents there are in the run. Therefore neither gP nor gR are an interval scale,
since they cannot be a linear transformation of M.

Moreover they are not even an ordinal scale which, again, implies they cannot
be an interval scale too. Indeed, a measure M′ is an ordinal scale on R(N) if, for
every r̂, ŝ ∈ R(N), the following statement is true:

r̂ � ŝ ⇔ M′(r̂) ≤M′(ŝ) .

Let us consider r̂ = {a1, . . . ,a1} and ŝ = {a2,a0, . . . ,a0}, two runs of length
N . We have r̂ ≺ ŝ. Moreover, since gR and gP are both proportional to G(v̂) :=∑N

i=1 g(v̂i)/g(ac), for any v̂ ∈ R(N), we can prove that G(·) is not on an ordinal
scale with respect to the order (1). Since g(a0) = 0, G(r̂) = Ng(a1)/g(ac) while
G(ŝ) = g(a2)/g(ac). From the fact that the gain function g is a positive strictly
increasing function and it is defined independently from the length N of the runs,
by choosing a N big enough we can have G(r̂) > G(ŝ).



12 M. Ferrante, N. Ferro, and E. Losiouk

4.3 Rank-based Measures

Top-heaviness is a central property in IR, stating that the higher a system ranks
relevant documents the better it is. If we apply this property at each rank position
and we take to extremes the importance of having a relevant document ranked
higher, we can define a strong top-heaviness property which, in turn, will induce a
total ordering among runs.

Let r̂, ŝ ∈ R(N) such that r̂ 6= ŝ, then there exists k = min{j ≤ N : r̂[j] 6=
ŝ[j]} <∞, and we order system runs as follows

r̂ ≺ ŝ ⇔ r̂[k] ≺ ŝ[k] . (4)

This ordering prefers a single relevant document ranked higher to any number of
relevant documents, with the same relevance degree or higher, ranked just below
it; more formally,

(û[1], . . . , û[m],a0,ac, . . . ,ac),≺ (û[1], . . . , û[m],aj ,a0, . . . ,a0) ,

for any 1 ≤ j ≤ c, for any length N ∈ N and any m ∈ {0, 1, . . . , N − 1}. This is why
we call it strong top-heaviness.

R(N) is totally ordered with respect to � and is graded of rank (c+ 1)N − 1.
Therefore, there is a unique rank function ρ : R(N) −→ {0, 1, . . . , (c+ 1)N − 1}
which is given by:

ρ(r̂) =
N∑
i=1

δa(r̂[i])(c+ 1)N−i, (5)

where δa is the indicator function.
Let us set δaδaδa(r̂) = (δa(r̂[1]), . . . , δa(r̂[N ])). If we look at δaδaδa(r̂) as a string, the

rank function is exactly the conversion in base 10 of the number in base c + 1
identified by δaδaδa(r̂) and the ordering among runs � corresponds to the ordering ≤
among numbers in base c+ 1.

The natural distance is then given by `(r̂, ŝ) = ρ(ŝ)− ρ(r̂), for r̂, ŝ ∈ R(N) such
that r̂ � ŝ, and we can define the difference as ∆r̂ŝ = `(r̂, ŝ) if r̂ � ŝ, otherwise
∆r̂ŝ = −`(ŝ, r̂). (R(N),�d) is a difference structure. As done before in the set-based
case, an interval scale measure on (R(N),�d) is given by the rank function itself.

Definition 3 The Rank-Based Total Order (RBTO) measure on (R(N),�d) is:

RBTO(r̂) = ρ(r̂) =
N∑
i=1

δa(r̂[i])(c+ 1)N−i (6)

This measure satisfies the condition imposed by Theorem 1. Thus, RBTO is an
interval scale on (R(N),�d).

Let G = minj∈{1,...,c}(g(aj)− g(aj−1))/g(ac) > 0 be the normalized smallest
gap between the gain of two consecutive relevance degrees.

gRBPp with p > G/(G + 1) and other IR measures – namely AP, DCG, and
ERR – are not even an ordinal scale on R(N), as the following example shows.
Let r̂ = (a1,a0,a2,a0,a1) and ŝ = (a1,a1,a0,a0,a0) be two runs on R(5)
with c = 2 and let us use the indicator function δ as gain function g. We have
r̂ � ŝ. Then DCG2(r̂) = 1 + 2/ log2 3 + 1/ log2 5 > 1 + 1 = DCG2(ŝ); ERR(r̂) =



How do interval scales help us with better understanding IR evaluation measures? 13

1/4 + 3/16 + 3/320 > 1/4 + 3/32 = ERR(ŝ); finally, since g(a2) = δa(a2) = 2,
2gRBPp(r̂) = (1 − p)(1 + 2p2 + p4) > (1 − p)(1 + p) = 2gRBP(ŝ) for p & 0.454,
and such an example can be found for any other values of p > G/(G + 1), where
G = 1/2. AP is a binary measure and, just to stay with the same data above,
we adopt a lenient mapping of multi-graded to binary relevance degrees setting
g(a1) = g(a2) = 1 and thus RB·AP(r̂) = 1 + 2/3 + 3/5 > 1 + 1 = RB·AP(ŝ),
where RB is the recall base.

As a consequence, being not an ordinal scale, gRBPp with p > G/(G+ 1), AP,
DCG, and ERR cannot be an interval scale too, since an interval scale measure is
also an ordinal scale.

gRBPp with p ≤ G/(G+ 1) is interval if and only if p = G/(1 +G) = (c+ 1)−1

and the gain function is equal to g(ai) = Kδa(ai), for any i ∈ {0, . . . ,N} and for
any K > 0 fixed.

4.3.1 Summary of Main Findings and Discussion

We summarize here the main findings of our framework:

– set-based evaluation measures:
– binary relevance: precision, recall, F-measure are interval scales;
– multi-graded relevance: gP and gR are neither ordinal nor interval scales;

– rank-based evaluation measures:
– binary relevance: RBP is an interval scale only for p = 1/2 and it is an

ordinal scale for p < 1/2; RBP for p > 1/2 and AP are neither ordinal nor
interval scales;

– multi-graded relevance: gRBP is an interval scale only for p = G/(G+1) and
when the gain function is equal to g(ai) = Kδa(ai); gRBP is an ordinal
scale when p < G/(G + 1); gRBP for p > G/(G + 1), DCG, and ERR are
neither ordinal nor interval scales.

Note that the relevance degrees are requested to be an ordinal scale and, being
the gain function a monotone transformation of them, it is at least an ordinal scale.
The above results ensure that measures are interval scales (or not) independently
from additional properties of the gain function (provided it is at least an ordinal
scale).

Carterette (2011) has shown how evaluation measures can be framed in terms
of a browsing model, a document utility model (i.e. the gain function in our con-
text), and a utility accumulation model. Moreover, he has shown how evaluation
measures can be expressed as expectations of these utility models. Therefore, to
reconcile our framework with the one by Carterette (2011) and to compute such
expectations, it would be required that the gain function is an interval scale as
well.

As a final remark, in the part of our framework (Ferrante et al., 2019) not
reported in this paper, we formally identify conditions when the gain function
must be a ratio scale (thus also an interval scale) in order to ensure that an
evaluation measure can be on an interval scale. Therefore, these other cases can
be used to determine when the gain function needs to be an interval scale in the
Carterette (2011) sense.
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5 Experiments

5.1 Experimental Setup

We used the following Text REtrieval Conference (TREC) collections:

– Adhoc track T08 (Voorhees and Harman, 1999): 528,155 documents of the
TIPSTER disks 4-5 corpus minus congressional record; T08 provides 50 topics,
each with binary relevance judgments and a pool depth of 100; 129 system
runs were submitted to it;

– Core track T26 (Allan et al., 2018b): 1,855,658 documents of the New York
Times from 1987 to 2007; T26 provides 50 topics, each with ternary relevance
judgments and a pool depth up to 100, using both top-k and multi-armed
bandits pooling techniques; 75 system runs were submitted to it.

T08 is used for binary relevance measures in both the set-based and rank-
based cases while T26 is used for multi-graded relevance measures in both the
set-based and rank-based cases. We have trimmed the length of the runs to 250
documents, since the definition of RBTO in eq. (3) involves the power of the
number of relevance degrees to the length of the run and this may cause overflow
in some of the follow-up analyses when the length of the run is high. We have
however validated this choice by comparing the measure scores with those of runs
of length 100, 500, and 1,000 and we found they are consistent with those of runs
of length 250.

For SBTO and RBTO, in the multi-graded relevance case, we used the rele-
vance weights W1 = [0, 1, 2] for not relevant, relevant, and highly relevant docu-
ments which correspond to the indicator function δa(ai); in the case of RBTO
we also experimented with two alternatives, one multiple of the indicator function
W2 = [0, 2, 4] = 2W1 and the other not equi-spaced W3 = [0, 1, 3]; note that SBTO
in eq. (2) depends only on the indicator function and so you cannot use alternative
weighting schemes.

We used measures for both binary and multi-graded relevance measures:

– Binary relevance:
– set-based measures: precision, recall, F-measure;
– rank-based measures: Average Precision (AP) (Buckley and Voorhees, 2005)

and Rank-Biased Precision (RBP) (Moffat and Zobel, 2008);
– Multi-graded relevance:

– set-based measures: Generalized Precision (gP) and Generalized Recall (gR)

(Kekäläinen and Järvelin, 2002); we used the weights W1 = [0, 1, 2], which
correspond to the indicator function.

– rank-based measures: Graded Rank-Biased Precision (gRBP) (Moffat and
Zobel, 2008; Sakai and Kando, 2008), Discounted Cumulated Gain (DCG)

(Järvelin and Kekäläinen, 2002), and Expected Reciprocal Rank (ERR) (Chapelle
et al., 2009). For gRBP we used the weights W1 = [0, 1, 2], which corre-
spond to the indicator function, but we experimented also with weights
W3 = [0, 1, 3]. For DCG and ERR we use their standard weights [0, 5, 10]1;

1 We also experimented with the weights W1 = [0, 1, 2] to use exactly the same as those used
in the case of RBTO and this produced very close experimental results, which are omitted for
space reasons, preferring to use their standard weights for DCG and ERR.
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for DCG, we use a log10 discounting function, which accounts for a reason-
ably persistent user.

Note that when we do not indicate it explicitly, we intend that the weights
W1 = [0, 1, 2] are used.

We considered a confidence level α = 0.05 to determine if a factor is statistically
significant.

We conducted three different types of analyses:

– correlation analysis, reported in Section 5.2, is aimed at understanding the re-
lationship among the different evaluation measures and how these are affected
by their scales;

– multiple comparison analysis, reported in Section 5.3, is aimed at understanding
the impact of violating or not the scale assumptions behind statistical tests for
comparing IR systems;

– incomplete information analysis, reported in Section 5.4, is aimed at understand-
ing how much less and less complete pools affect evaluation measures and to
what extent the used scales play a role in this.

To ease the reproducibility of the experiments, the source code for running
them is available at https://bitbucket.org/frrncl/irj2019-ffl/.

5.2 RQ1: What is the relationship between the different evaluation measures and
how are these affected by their scales?

In order to address RQ1, we employ correlation analysis (Voorhees, 1998), one of
the most widely used tools to study properties and relationships among evaluation
measures. The most used correlation coefficients are the Kendall’s tau correlation
τ (Kendall, 1948) and the AP correlation τAP (Yilmaz et al., 2008). Ferro (2017)
has shown that, when it comes to study evaluation measures, τ and τAP produce
different absolute values yet ranking evaluation measures in the same way and,
therefore, they lead to a consistent assessment. Thus, in the following, we report
only Kendall’s τ .

Given two rankings X and Y , their Kendall’s τ correlation is given by

τ
(
X,Y

)
=

P −Q√(
P +Q+ T

)(
P +Q+ U

) (7)

where P is the total number of concordant pairs (pairs that are ranked in the
same order in both vectors), Q the total number of discordant pairs (pairs that
are ranked in opposite order in the two vectors), T and U are the number of ties,
respectively, in the first and in the second ranking.

τ ∈ [−1, 1] where τ = 1 indicates two perfectly concordant rankings, i.e. in the
same order, τ = −1 indicates two fully discordant rankings, i.e. in opposite order,
and τ = 0 means that 50% of the pairs are concordant and 50% discordant.

The typical way of performing correlation analysis is as follows: let m1 and
m2 be two evaluation measures; for example, let m1 be AP. Let M1 and M2

be two T × S matrices where each cell contains the performances on topic i of
system j according to measures m1 and m2, respectively. Therefore, M1 and M2

represent the performances of S different systems (columns) over T topics (rows);
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Table 1: Kendall’s τ correlation analysis among set-based evaluation measures.
The Topic-by-Topic score is the average across the topics.

Binary Relevance – T08

Measure Pair Topic-by-Topic Overall
Precision vs SBTO 1.0000 0.9998
Recall vs SBTO 1.0000 0.8591
F-measure vs SBTO 1.0000 0.9670
Precision vs Recall 1.0000 0.8588
SBTO vs RBTO 0.4358 0.7410

Multi-graded Relevance – T26

Measure Pair Topic-by-Topic Overall
Generalized Precision vs SBTO 0.7325 0.9175
Generalized Recall vs SBTO 0.7325 0.8453
Generalized Precision vs Generalized Recall 1.0000 0.9003
SBTO vs RBTO 0.3895 0.7352

for example, M1 contains the AP score of each system on each topic. Let M1 and
M2 be the column-wise averages of the two matrices; for example, M1 is a vector
where each element is the Mean Average Precision (MAP) of a system. If you sort
systems by their score in M1 and M2, you obtain two Rankings of Systems (RoS)

corresponding to m1 and m2, respectively. The Kendall’s τ is then used to quantify
how “close” these two RoS are. We call this approach overall since it first computes
the average performance across the topics and then it computes the correlation
among evaluation measures.

Note that the framework introduced in Section 4.2 and 4.3 holds topic-by-
topic, e.g. two interval scale measures will order systems in the same way on the
same topic and their correlation will be 1.0. However, this may be no more true,
if you first average performance across all the topics. Moreover, strictly speaking,
measures which are not on an interval scale should be not averaged and this is
exactly the first step in the computation of the overall correlation.

Therefore, we introduce a topic-by-topic way of computing correlation, which
suits better with our framework. In this approach, for each topic i we consider the
RoS on that topic corresponding to m1 and m2, i.e. we consider the i-th rows of M1

and M2, respectively; we then compute the Kendall’s τ correlation among the two
RoS on that topic. Therefore, we end-up with a set of T correlation coefficients,
one of each topic, which are then summarized considering their mean2.

5.2.1 Set-based Measures

Table 1 reports the correlation analysis in the case of set-based evaluation measures
for both binary and multi-graded relevance.

As expected, in the binary case, the topic-by-topic correlation among precision,
recall, F-measure, and SBTO is 1.00, since they are all on the same interval scale
and they are just linear transformations one of the other. However, it is interesting

2 Note that averaging Kendall’s τ values implicitly assumes them to be on an interval scale
and determining whether Kendall’s τ is or not an interval scale goes beyond the scope of this
paper. In the following, we consider the averaged Kendall’s τ value more as a proxy to know
whether all the topic-by-topic values are 1, i.e. whether we have an interval scale, or not.
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to note how the overall correlation among precision and SBTO is 0.99 (it would
be 1.00 but due to small approximations it is slightly different), while the one
between recall and SBTO is 0.8591. This is due to the fact that, being precision
and SBTO independent from the recall base, they basically order systems in a
consistent way across the topics and this is reflected in the fact that the overall
correlation is 1.0 in both cases. On the other hand, recall heavily depends on the
recall base which changes for each topic and it is used to normalize the score for
each topic; therefore, in a sense, recall on each topic changes the way it orders
system and this is reflected in the overall correlation dropping to 0.85. F-measure,
being the harmonic mean of precision and recall, falls somehow in-between and
this effect is smoothed leading to an overall correlation of 0.96. Finally, we can
note how the correlation among precision and recall behaves exactly in the same
way as the correlation among them and SBTO, which is a sort of litmus test since
precision and SBTO are substantially interchangeable.

These observations should also make us think about the way in which we typi-
cally interpret Kendall’s τ overall correlation scores. The rule-of-thumb (Voorhees,
1998, 2000) is that an overall correlation above 0.9 means that two evaluation mea-
sures are practically equivalent, an overall correlation between 0.8 and 0.9 means
that two measures are similar, while dropping below 0.8 indicates that measures are
departing more and more. However, these indications have been drawn analysing
the problem of inter-assessor agreement and how much the same measure com-
puted over the pools of different assessors agrees with itself. The analyses in Ta-
ble 1 show that, in the case of precision, recall, and SBTO, we obtain an overall
correlation of just 0.85 even if we know that they actually are on the same in-
terval scale and thus we would have expected a higher overall correlation score,
well above 0.9. Moreover, this marked difference in the overall correlation among
them is not due to any considerable difference in the way they look at and or-
der systems, but just to the way in which they normalize (or not) across topics.
Leaving apart the debate on how evaluation measures heavily depending on the
recall base are appropriate, whose value is at best a very rough estimation, these
considerations may suggest that the topic-by-topic correlation analysis could be
a good companion tool to adopt to study the behaviour of different evaluation
measures, since the overall correlation may be affected by factors other than the
user models behind evaluation measures and how they order systems.

More as a curiosity, the topic-by-topic correlation between SBTO and RBTO
is 0.43, while the overall one is 0.74. This gives us a feeling of how big is the
impact of passing from a set-based to a rank-based viewpoint. This difference
between the set-based and rank-based viewpoints produces a fairly low topic-by-
topic correlation, which is a bit higher in the case of the overall correlation, still
being in the area of quite diverse measures.

In the case of multi-graded relevance, as expected, the topic-by-topic correla-
tion among gP, gR and SBTO is low, since gP and gR are not an interval scale,
and actually they are not even an ordinal scale. When it comes to the overall cor-
relation, we can observe the same phenomenon due to the normalization (or not)
by the recall base, since the overall correlation is higher between gP and SBTO
than between gR and SBTO. In particular, the overall correlation between gP
and SBTO is 0.91, which, according to the above rule-of-thumb, would lead us to
consider the two measures practically equivalent. However, we know that SBTO
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Table 2: Correlation analysis among rank-based evaluation measures. The Topic-
by-Topic score is the average across the topics.

Binary Relevance – T08

Measure Pair Topic-by-Topic Overall
RBP p = 1/2 vs RBTO 1.0000 1.0000
RBP p = 0.2 vs RBTO 0.9985 0.9225
RBP p = 0.8 vs RBTO 0.8553 0.9043
AP vs RBTO 0.6099 0.7439

Multi-graded Relevance – T26

Measure Pair Topic-by-Topic Overall
gRBP p = 1/3 vs RBTO 1.0000 1.0000
gRBP p = 1/3, W3 = [0, 1, 3] vs RBTO 0.9867 0.9618
gRBP p = 0.2 vs RBTO 0.9996 0.9755
gRBP p = 0.8 vs RBTO 0.7420 0.9026
DCG vs RBTO 0.3774 0.6984
ERR vs RBTO 0.9468 0.9502
RBTO W1 = [0, 1, 2] vs RBTO W2 = [0, 2, 4] 1.0000 1.0000
RBTO W1 = [0, 1, 2] vs RBTO W3 = [0, 1, 3] 0.9866 0.9618

and gP are substantially different and this underlines once more the issue on how
we should interpret overall correlation scores.

On the other hand, we can observe as the topic-by-topic correlation between
gP and gR is 1.00, indicating that they order systems in the same way and in
accordance with the fact that they are just a linear transformation of one into the
other. When it comes to the overall correlation, we can spot again the effect of the
normalization (or not) by the recall base, since it drops to 0.90.

Finally, the topic-by-topic correlation between SBTO and RBTO, i.e. a proxy
of the difference between the set-based and rank-based viewpoints, is 0.38, more
than 12% lower than in the binary case. This is probably due to the additional
complexity of the multi-graded case which substantially injects an additional type
of ranking, i.e. the order among relevance degrees, which amplifies the differences.
We can note how the overall correlation is less sensitive, changing just 0.8% with
respect to the binary case and, again, this leads to the question whether it is the
most appropriate tool for this kind of analyses.

5.2.2 Rank-based Measures

Table 2 reports the correlation analysis in the case of rank-based evaluation mea-
sures for both binary and multi-graded relevance.

As expected, in the binary relevance case, the correlation between RBP with
p = 1

2 and RBTO is 1.00 since they are on the same interval scale and they are a
linear transformation one of the other. Moreover, the correlation is 1.00 for both
overall and topic-by-topic correlation because of the same line of reasoning on
what kind of normalization is applied (or not) across topics, as discussed in the
previous section. The topic-by-topic correlation between RBP with p = 0.2 and
RBTO is 0.99, which is actually a small approximation for 1.00. Indeed, RBP with
p = 0.2 is no more an interval scale, but it is still on ordinal scale and both RBP
with p = 0.2 and RBTO keep ordering the systems in the same way, since RBTO
is an ordinal scale too. The overall correlation drops to 0.92, being more affected
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by the difference in the scales, probably because in the case of the ordinal scale
RBP with p = 0.2 you should not average the values, which is the preliminary
step of the overall correlation. If we consider RBP with p = 0.8, which is not even
an ordinal scale, the topic-by-topic correlation drops to 0.85. Overall, this shows
how departing from an interval scale lowers more and more the correlation. In
addition, in the case of RBP with p = 0.8 the overall correlation is 0.90, possibly
suggesting a similarity between the measures bigger than what it actually is, since
one is an interval scale while the other is not even an ordinal one; again, this raises
the question on how to appropriately interpret overall correlation values.

Finally, the topic-by-topic correlation between AP and RBTO is 0.60 and this
can be due to several factors: first, AP is not even an ordinal scale; then, AP
normalizes scores across topics by the recall base; and, finally, the user models of
AP and RBTO are different.

When it comes to multi-graded relevance, as expected, the correlation, both
topic-by-topic and overall, between gRBP with p = 1/3 and RBTO is 1.00 since
they are both interval scales and they are one the transformation of the other.
However, as explained in Section 4.3 gRBP with p = 1/3 is an interval scale only
when g(ai) = Kδa(ai); therefore, we experimented with the alternative set of
weights W3 = [0, 1, 3] which does not comply with this constraint. We can accord-
ingly observe that the topic-by-topic correlation drops to 0.98 and the overall one
to 0.96, which is a somehow moderate effect due to the small departure from this
assumption. As it happened in the binary case, the topic-by-topic correlation with
gRBP with p = 0.2, which is an ordinal scale, is 0.99, again a small approximation
for 1.00, since gRBP with p = 0.2 and RBTO keep ordering systems in the same
way. Finally, the topic-by-topic correlation with gRBP with p = 0.8, which is not
even an ordinal scale, is 0.74, while the overall one is 0.90. Therefore, we observe a
behaviour in the multi-graded case consistent with the one of the binary case and
similar considerations hold.

The topic-by-topic correlation between DCG and RBTO is 0.37 and the overall
one 0.69, which is quite low as well. Beyond the fact that DCG is not even an
ordinal scale, this is probably due to a remarkable difference in the user models of
DCG and RBTO.

The correlation between ERR and RBTO is quite high – topic-by-topic cor-
relation is 0.94 and overall correlation is 0.95 – despite the fact that ERR is not
even an ordinal scale. This is probably due to the fact that both RBTO and ERR
are quite top-heavy evaluation measures and this characteristic may prevail over
the violation of the scales.

Finally, we considered two alternative sets of weights for RBTO and compared
them to the weighting scheme of the indicator function. W2 = [0, 2, 4] is just
a multiple of the indicator function and, as expected, the correlation between
RBTO W1 = [0, 1, 2] and RBTO W2 = [0, 2, 4] is 1.00, since they are both the same
interval scale, apart from a transformation by a multiplicative constant. On the
other hand, the correlation between RBTO W1 = [0, 1, 2] and RBTO W3 = [0, 1, 3]
slightly drops – topic-by-topic correlation is 0.98 and overall correlation is 0.96
– and this is due to the fact that they are both interval scales, but now slightly
different interval scales and no more just a transformation of the same scale.
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5.3 RQ2: What is the impact of violating the scale assumptions behind statistical
significance tests for comparing IR systems?

As previously explained, the type of scale determines the kind of operations you
can perform with the obtained values: ordinal scales allow for computation of
ranks and median, while interval scales allow also for mean and variance. One of
the most common task in IR evaluation is to compare IR systems to understand
which ones are significantly better.

We consider two types of statistical tests:

– the Kruskal-Wallis test (Kruskal and Wallis, 1952), a non-parametric test that
compares the medians of the groups of data to determine if the samples come
from the same population by using the ranks of the data, rather than numeric
values, to compute the test statistics. This type of analysis is thus suitable for
both ordinal and interval scales;

– the ANalysis Of VAriance (ANOVA) (Rutherford, 2011), a parametric test which
tests the hypothesis that all group means are equal. This type of analysis is
thus suitable for interval scales only.

Being a parametric test, ANOVA is more powerful than the Kruskal-Wallis test
and, generally speaking, it is able to spot more differences among the compared
systems.

We consider how many significantly different system pairs these two tests are
able to detect among all the possible pairs of systems under examination and
we study how these figures change across evaluation measures and their scales.
However, when performing multiple comparisons, the probability of committing a
Type I error increases with the number of comparisons, i.e. it is more probable to
detect significantly different pairs when they should not be detected (Fuhr, 2017).
Therefore, we keep this controlled by applying the Tukey Honestly Significant Dif-

ference (HSD) test (Hochberg and Tamhane, 1987; Tukey, 1949). Tukey’s method
is used in both Kruskal-Wallis test and ANOVA to create confidence intervals for
all pairwise differences, while controlling the family error rate. For a deeper dis-
cussion of the assumptions behind ANOVA on other significance tests, the effect
sizes, the power, and multiple comparisons, please refer to (Carterette, 2012).

5.3.1 Set-based Measures

Table 3 reports the results of the Tukey HSD test and the number of significantly
different pairs detected for both the Kruskal-Wallis test and ANOVA in the case
of set-based evaluation measures.

In the case of binary relevance, all the set-based measures are on an interval
scale and so they are suitable for being used with both the Kruskal-Wallis test and
ANOVA. We can observe that, as expected, they all detect a comparable number
of significantly different pairs and that this number increases when ANOVA is
used, since it is a more powerful test than Kruskal-Wallis. We can also note that
recall and F-measure detect a slightly higher number of different pairs and this is
probably due to the use of the recall base for normalizing across topics.

In the case of multi-graded relevance, where gP and gR are neither ordinal
nor interval scales, we can observe how they detect a higher number of signifi-
cantly different pairs than RBTO. While there might be also other motivations
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Table 3: Tukey HSD test for set-based evaluation measures using the Kruskal-
Wallis test and ANOVA. Each cell contains the number of significantly different
pairs detected and, within parenthesis, the ratio with respect to the total number
of system pairs.

Binary Relevance – T08, 8,256 system pairs compared
Significantly Different Pairs

Measure Pair Kruskal-Wallis Test ANOVA
Precision 1,566 (18.97%) 2,785 (33.73%)
Recall 1,748 (21.17%) 3,259 (39.47%)
F-measure 1,721 (20.85%) 3,081 (37.32%)
SBTO 1,566 (18.97%) 2,785 (33.73%)

Multi-graded Relevance – T26, 2,775 system pairs compared
Significantly Different Pairs

Measure Pair Kruskal-Wallis Test ANOVA
Generalized Precision 438 (15.78%) 1,242 (44.76%)
Generalized Recall 527 (18.99%) 1,327 (47.82%)
SBTO 354 (12.76%) 938 (33.80%)

Table 4: Tukey HSD test for rank-based evaluation measures using the Kruskal-
Wallis test and ANOVA. Each cell contains the number of significantly different
pairs detected and, within parenthesis, the ratio with respect to the total number
of system pairs.

Binary Relevance – T08, 8,256 system pairs compared
Significantly Different Pairs

Measure Pair Kruskal-Wallis Test ANOVA
RBP p = 1/2 1,677 (20.31%) 2,861 (34.65%)
RBP p = 0.2 1,675 (20.29%) 2,198 (26.62%)
RBP p = 0.8 1,783 (21.60%) 3,476 (42.10%)
AP 1,824 (22.09%) 3,320 (40.21%)
RBTO 1,677 (20.31%) 2,861 (34.65%)

Multi-graded Relevance – T26, 2,775 system pairs compared
Significantly Different Pairs

Measure Pair Kruskal-Wallis Test ANOVA
gRBP p = 1/3 254 ( 9.15%) 551 (19.86%)
gRBP p = 0.2 254 ( 9.15%) 471 (16.97%)
gRBP p = 0.8 301 (10.85%) 885 (31.89%)
DCG 426 (15.35%) 1,274 (45.91%)
ERR 248 ( 8.94%) 566 (20.40%)
RBTO 254 ( 9.15%) 551 (19.86%)

such as the power of the tests (Carterette, 2012) or the discriminative power of
the measures (Sakai, 2006), we can consider this as a tendency also due to an
overestimation of the number of significantly different pairs, since both gP and gR
violate the scale assumptions behind both the Kruskal-Wallis test and ANOVA.

5.3.2 Rank-based Measures

Table 4 reports the results of the Tukey HSD test and the number of significantly
different pairs detected for both the Kruskal-Wallis test and ANOVA in the case
of rank-based evaluation measures.
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In the binary relevance case, RBTO and RBP with p = 1/2 are interval scales
and they match the scale assumptions behind both the Kruskal-Wallis test and
ANOVA. RBP with p = 0.2 is an ordinal scale and, therefore, it matches the scale
assumptions for the Kruskal-Wallis test, but not for ANOVA. We can note how,
in the case of the Kruskal-Wallis test, it detects more or less the same number of
significantly different pairs while for ANOVA, being provided with a less powerful
scale than the one assumed, it detects less significantly different pairs. As before,
on top of other factors as the power of the test and the discriminative power
of an evaluation measure, this might suggest that violating the scale assumptions
somehow leads to an underestimation of the number of significantly different pairs.

When it comes to RBP with p = 0.8 and AP, they are neither ordinal nor
interval scales and we can observe a phenomenon we have seen also in the case
of the set-based evaluation measures: they detect a higher number of significantly
different pairs and, under the previous caveats, we may consider this as a sort of
overestimation.

The multi-graded relevance case behaves in a consistent way as well. gRBP with
p = 0.2 is an ordinal scale and, using the Kruskal-Wallis test, it detects the same
number of significantly different pairs as gRBP with p = 1/3 and RBTO, which
are interval scales. On the other hand, it detects less significantly different pairs
when using ANOVA, something which we may consider as an underestimation,
with the limitations discussed above, due to the fact that it violates the ANOVA
scale assumptions and it relies on a less powerful scale.

Finally, gRBP with p = 0.8, DCG, and ERR are neither ordinal nor interval
scales and, as it happened before, they tend to detect a higher number of sig-
nificantly different pairs, something we may consider as an overestimation, again
considering the above caveats.

5.4 RQ3: How much do less and less complete pools affect evaluation measures
and to what extent do the used scales play a role in this?

The downsampling pools allow us to investigate the behavior of evaluation mea-
sures as relevance judgments become less and less complete. We explore two pool
sampling approaches:

– stratified random sampling (Buckley and Voorhees, 2004): for each topic,
a separate list of documents at each relevance grade (not relevant, relevant,
highly relevant) is created from the original pool; for each sampling ratio P%,
we select X = P%×D documents at the given relevance level, ensuring that at
least 1 somehow relevant document and at least 10 not relevant documents are
selected; the first max(1, X) documents from the random list at each relevant
level have then been selected to constitute the new reduced pool; each smaller
pool is a subset of each larger pool since we always select from the top of the
lists. We used P% = [90, 70, 50, 30, 10, 5].

– uniform random sampling (Yilmaz and Aslam, 2006): for each sampling ratio
P%, we uniformly select at random X = P% × D documents from the pool,
regardless of their relevance degree; if the random sample does not contain any
relevant document, it is thrown away and another one is drawn. Also in this
case, we used P% = [90, 70, 50, 30, 10, 5].
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(a) Set-based measures, binary relevance,
stratified random sampling.
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(b) Set-based measures, binary relevance, uni-
form random sampling.
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(c) Set-based measures, multi-graded rele-
vance, stratified random sampling.
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(d) Set-based measures, multi-graded rele-
vance, uniform random sampling.

Fig. 1: Self Kendall’s τ correlation at pool samples for set-based measures.

The plots in the following figures show the Kendall’s τ correlations between
the RoS produced using progressively down-sampled pools from 100% (complete
pool) to 5%. Each line shows the behavior of a measure; the flatter (and closer to
1.0) the line, the more a measure ranks systems in the same relative order with
different levels of relevance judgments incompleteness.

5.4.1 Set-based Measures

Figure 1 show the self Kendall’s τ correlation at the different pool samples for the
set-based evaluation measures for both binary and multi-graded relevance; on the
left, there is the stratified random sampling and on the right there is the uniform
random sampling.

In the case of binary relevance, we can observe as SBTO and precision behave
in the same way, while recall has a slightly lower self-correlation; this is probably
due to the estimation of the recall base which gets worse and worse as the sample
size is reduced. F-measure performs in-between precision and recall. These trends
are consistent among the two pool sampling strategies.
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In the case of multi-graded relevance, SBTO, gP and gR behave in a very close
way, even if for different reasons, since gP and gR are not on an interval scale.
As in the binary case, gR has a slightly lower self-correlation and this is probably
due to the estimate of the recall base, which becomes less and less accurate as the
sample size is reduced.

Figure 1 also shows the self-correlation of RBTO, so that it is possible to
get a feeling of what is the impact of passing from a set-based to a rank-based
viewpoint, still remaining on an interval scale. We can see how the self-correlation
of RBTO is substantially lower than the one of SBTO, even more in the case of
stratified random sampling. This behaviour is consistent in both the binary and
multi-graded cases.

When you downsample the pool, you are basically reducing the number of
relevant documents while keeping the length of the run the same; as a consequence,
you are reducing the number of relevant documents that can appear in a run,
increasing the number of not relevant ones. The total order behind SBTO and
RBTO basically orders in an equi-spaced way the set of all the possible runs with
a given number of relevant documents; when you reduce the number of relevant
documents you also decrease the number of all the possible runs of a given length
and this decrease is much more pronounced in the case of rank-based than set-
based evaluation measures since, with the same number of relevant documents,
the rank-based case originates a much bigger number of possible cases.

As a consequence, the same set of real runs submitted to a track is mapped to a
space of possible runs which gets smaller and smaller as the sample size is reduced
and this decrease is much sharper in the case of rank-based retrieval. Therefore,
the same set of real runs is “conflated” to smaller spaces of possible runs and
this may, for example, originate more ties and undistinguishable runs. Thus, this
prevents, more and more, an interval scale measure to rank systems in the same
way as on the full pool. Since this phenomenon is much more pronounced in the
case of rank-based evaluation measures than of set-based ones, it happens out that
the self-correlation decreases more for RBTO than for SBTO.

5.4.2 Rank-based Measures

Figure 2 shows the self Kendall’s τ correlation at the different pool samples for
the rank-based evaluation measures for both binary and multi-graded relevance;
on the left, there is the stratified random sampling and on the right there is the
uniform random sampling.

As expected, RBTO and RBP with p = 1/2 in the binary case and gRBP with
p = 1/3 in the multi-graded case behave in the same way, since they are on the
same interval scale. We can also observe as both RBP with p = 0.2 and gRBP with
p = 0.2 have a slightly lower self-correlation than RBTO and this can be explained
by them being on an ordinal scale rather than an interval one. On the other hand,
RBP with p = 0.8 and gRBP with p = 0.8, which are both neither interval nor
ordinal scales, have a higher self-correlation than RBTO. This may be due to the
“conflation” mechanism described above, which is less marked for RBP and gRBP
with p = 0.8. This phenomenon is even more evident in the case of AP and DCG,
which exhibit even higher self-correlations; it is a little bit less pronounced in the
case of ERR since its strong top-heaviness makes it more sensible to a reduction
in the pool. What do AP, DCG, and ERR see as actual space of the possible runs
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(a) Rank-based measures, binary relevance,
stratified random sampling.
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(b) Rank-based measures, binary relevance,
uniform random sampling.
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(c) Rank-based measures, multi-graded rele-
vance, stratified random sampling.
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(d) Rank-based measures, multi-graded rele-
vance, uniform random sampling.

Fig. 2: Self Kendall’s τ correlation at pool samples for rank-based measures.

and how this space conflates or not, as pools are reduced, remain open questions
whose answers may provide us with some additional insights on why they have
higher self-correlation scores.

6 Conclusions and Future Work

In this paper, we stepped from our theory of IR evaluation measures and its defi-
nition of measurement scales to conduct an experimental study, based on standard
TREC collections, aimed at assessing the impact of our theoretical findings with
respect to state-of-the-art evaluation measures and some of the most common
types of conducted analyses. Indeed, our formal framework allowed us to deter-
mine whether and when set-based and rank-based IR measures are interval scales
and this is a fundamental question since the validity of the descriptive statistics,
such as mean and variance, and the statistical significance tests we daily use to
compare IR systems depend on its answer.

We addressed RQ1 by conducting a correlation analysis to understand the re-
lationship among evaluation measures and their scales. We found out that, as ex-
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pected, when evaluation measures are on the same interval scale, their correlation
is 1.00; this holds also in the case of the relationship between measures on interval
and ordinal scales, whose correlation is still 1.00 because they keep ordering the
systems in the same way. We have also shown how much the correlation drops
when you compare measures which are on an interval scale to measures which are
neither ordinal nor interval scales: this drop is not only due to differences in the
user models embedded in the evaluation measures, but also due to the violation
of the scale assumptions.

On a methodological side, we noted how the usual way of computing the cor-
relation among evaluation measures, that we called overall correlation, may not
be the most suitable one for studying scale properties, since its preliminary aver-
aging operation may introduce biases, especially when used with measures which
are neither ordinal nor interval scales. Therefore, we introduced a topic-by-topic
correlation analysis to more appropriately study scale properties.

We addressed RQ2 by performing a multiple comparison test analysis, which is
typically used to compare IR systems and detect which are significantly different.
We considered the Kruskal-Wallis test, which is a non parametric test comparing
medians and suitable for ordinal (and interval) scales, and ANOVA, which is a
parametric test comparing means and suitable for interval scales only. We found
that, as expected, both ordinal and interval scale measures behave in a similar
way when using the Kruskal-Wallis test, for which both of them are appropriate.
On the other hand, when you violate the scale assumptions behind statistical sig-
nificance tests, provided that other factors, such as the power of the test and the
discriminative power of the evaluation measures, may play an important role, you
can observe variations in the number of detected significantly different pairs, which
may be due also to the lack of compliance with the scale assumptions. In particular,
when you perform ANOVA using ordinal scale measures, they tend to somehow
underestimate the number of significantly different pairs, since ordinal scales are
less powerful than interval ones expected for ANOVA. Finally, when you use mea-
sures which are neither ordinal nor interval scales, they tend to overestimate the
number of significantly different pairs, in the case of both the Kruskal-Wallis test
and ANOVA.

Finally, we addressed RQ3 by performing an analysis with respect to incom-
plete information, i.e. when you downsample pools. We found that measures on
the same interval scale behave in a similar way and that measures on ordinal
scales tend to be more sensitive to incomplete information. Moreover, incomplete
information impacts more rank-based than set-based measures on interval scales
because the former ones suffer from a sharpest “conflation” in the space of the
possible runs to be totally ordered. This may also be an explanation why rank-
based evaluation measures, which are neither ordinal nor interval scales, are much
less sensitive to pool downsampling than interval scale measures.

In this paper, we actually used only a part of our theory of IR evaluation
measures, namely the one based on a total order among system runs. Indeed, this
total order guarantees to work for any possible set of real runs, as the T08 and T26

runs are, independently from how sparse this sample of real runs is with respect
to the set of all the possible runs of a given length. On the other hand, our theory
contains also interval scales which are developed starting from a partial ordering
among system runs. This means that only a subset of runs can be ordered together,
i.e. we are working with posets, and that ordered runs in a poset are not comparable
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to ordered runs in another poset. This is challenging from an experimental point
of view because a set of real runs is a very small sample of all the possible runs
of a given length and you may end up having runs that belong to many different
posets, at the extreme one run per poset, and these runs would not be directly
comparable. Therefore, it would turn out to be practically very difficult to conduct
an analysis similar to the one we did in this paper. As future work, we will thus
investigate how actual runs are distributed across posets, trying to find out a
viable way of analysing them; an option could be also to use a mix between real
and simulated runs to avoid having too sparse data.

Finally, even if our work is focused on offline evaluation measures, the con-
cordance of offline measures with user feelings (satisfaction, preference, etc.) and
with online measures (e.g., number of clicks in a session, page click-through rate,
number of clicks divided by the position of the lowest click, mean reciprocal ranks
of the clicks) is a very relevant research area. Therefore, our future work will also
consider the possibility of extending our framework to online measures as well as
studying how our interval-based offline measures relate to online ones, using for
example the approach adopted by (Chen et al., 2017).
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