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ABSTRACT
We improve the measurement accuracy of retrieval system per-

formance by better modeling the noise present in test collection

scores. Our technique draws its inspiration from two approaches:

one, which exploits the variable measurement accuracy of top-

ics; the other, which randomly splits document collections into

shards. We describe and theoretically analyze an ANalysis Of VAri-
ance (ANOVA) model able to capture the effects of topics, systems,

and document shards as well as their interactions. Using multi-

ple TREC collections, we empirically confirm theoretical results in

terms of improved estimation accuracy and robustness of found

significant differences. The improvements compared to widely used

test collection measurement techniques are substantial. We specu-

late that our technique works because we do not assume that the

topics of a test collection measure performance equally.
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1 INTRODUCTION
Measuring the difference in performance between two Information
Retrieval (IR) systems using an offline test collection has long been

recognized as noisy. Attempts to improve the accuracy of such

measurement are extensive and diverse. Techniques explored in-

clude multiple evaluation measures; different significance tests;

alternate acquisitions of relevance judgments; and determining the

ideal number of topics. Surveys [30] and descriptions of best prac-

tice [29] detail such attempts. There are, however, less explored

approaches to improving performance measurement accuracy.
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Robertson and Kanoulas [26] pointed out a common assump-

tion in the use of test collections namely “all topics are considered
equally valuable”. They examined this assumption by measuring

(via bootstrapping) the confidence intervals of each topic score and

of each system. The intervals were found to be variable across topics

but largely independent of system. The researchers concluded that

some topics measure performance more accurately than others.

Ferro and Sanderson [11] examined splitting the documents of a

test collection into shards, measuring the performance of systems

on each shard. They used an ANOVAmodel to understand if system

performance changed across shards. The authors mentioned that

significant differences between systems on sharded collections were

more common than on unsharded. However, the reasons for the

result was not explored as the experiment was designed to address

a different research question. Voorhees et al. [39] randomly split a

collection in half. The authors stated that the two resulting shards

allowed more accurate performance measurement. However, it

was reported that splitting the collection further did not improve

accuracy; reasons for no improvement were not examined in detail.

We describe research that takes the Robertson and Kanoulas view

that topics have unequal value and combines it with the ANOVA

approach of Ferro and Sanderson [11] and the sharding method

of Voorhees et al. [39]. We ask: Can the unequal value of topics be
exploited to improve measurement of system performance accuracy
on a test collection? We make the following contributions:

• We validate an ANOVA model via a theoretical examination,

showing why explicitly accounting for differences across

topics yields accuracy improvements.

• We experimentally show that the model identifies notable

numbers of significant differences between systems.

• We experimentally show that the differences are not due to

measurement error of the significance formulas.

Next, related work is described followed by ANOVA models and

their properties. The setup and report of experimental findings are

described before conclusions and future work are detailed.

2 RELATEDWORK
We review three research areas: topics with few relevance judge-

ments, ANOVA modeling, and the sharding of collections.

2.1 Topics with few relevance judgments
There is an assumption, in test collection based evaluation, that all

topics are valuable equally. Performance is measured by taking the

arithmetic mean of topics scores. Swanson [33] described such a pro-

cess in 1960. When the mean is taken, each topic score contributes

equally regardless of the accuracy of that measure. The potential

https://doi.org/http://dx.doi.org/10.475/123_4
https://doi.org/http://dx.doi.org/10.475/123_4


for error was described by Voorhees [36]: “When [topics] have very
few relevant documents (fewer than five or so), summary evaluation
measures such as average precision are themselves unstable; tests that
include many such queries are more variable”. Soboroff [32] pointed

out that rank cut off evaluation measures (e.g. precision at 10) will

have an upper bound < 1 for topics with few relevant documents.

The notion that not all topics have equal value was implicitly

exploited in work identifying a subset of test collection topics that

rank systems similarly to a full topic set [13, 19]. To the best of

our knowledge, however, Cormack and Lynam [9] were the first

to incorporate an unequal view of topics into test collection mea-

surement. They treated each topic as a “separate test”, calculating
topic confidence intervals using a bootstrap approach. Topics with

≤ 5 relevant documents were subject to a “Small-R Correction” to
overcome measurement instability.

Robertson [25] considered the broader question of what is the

“per-topic noise or error” present in the topics of a test collection.

The paper considered if evaluation measures could be adapted to

cope with an unequal view of topics. Later, Robertson and Kanoulas

[26] measured the variance of topic scores by bootstrapping from

the document collection. The researchers found that topics showed

different levels of variance, but the variance was relatively consis-

tent across systems. The researchers described a significance test

that incorporated topic score variation. Comparisons between the

new test and the commonly used t-test showed some differences in

the conclusions one might draw when comparing systems.

More recently, Yang et al. [41] examined how much rankings

of systems were affected by per-topic score variance and if there

was any impact on significance tests. They found that the variance

did not affect overall rankings notably, but that the number of

significant differences observed between systems dropped.

Note, there is much research on subjects such as query difficulty

prediction [42], topic score normalization [40], average average pre-

cision [20], GMAP [24], etc. Such work focuses on so-called difficult

topics, we focus on topics for which measurement is variable.

2.2 ANOVA modeling
ANOVA can decompose the data of an IR experiment into a model

of factors, into interactions between those factors, and into a level

of unmodeled error. Tague-Sutcliffe and Blustein [34] described

an example of this approach by comparing the variation in perfor-

mance across two factors: topics and systems. The former was found

to be larger than the latter. Measurement of interaction between

topics and systems was not possible owing to a lack of replicates
of topic*system measures. Banks et al. [2] approximated such an

interaction, suggesting it would be strong and significant. Later,

Bodoff and Li [3] used a test collection with multiple relevance

assessments to obtain the required replicates. The authors reported

that the magnitude of the topic*system interaction factor was less

than the topic factor, but greater than the system factor.

Both Ferro and Sanderson [11] and Voorhees et al. [39] generated

replicates by sharding a document collection. This enabled them to

measure the topic*system effect. We describe that work next.

2.3 Sharding
Voorhees et al. [39] used a bootstrap ANOVA approach that drew

on a sample of the scores of topics measured across different sys-

tems and shards. The researchers tested on the TREC-3, TREC-8,

and 2006 Terabyte track collections. Success of the approach was

measured by counting the number of significant differences found

between systems submitted to TREC tracks. The researchers found

substantially more such differences were measured than with con-

ventional approaches. Two shards were used. When three or five

shards were tried, the researchers found the number of significant

differences dropped, the reasons for which were not examined in

detail. The relative impact of each component of the technique

– bootstrap ANOVA, the approach to multiple comparisons, and

sharding method – was not described.

As part of a study on the interaction between different types of

shards and system scores, Ferro and Sanderson [11] described a se-

ries of ANOVAmodels tested on the TREC-7 and TREC-8 adhoc test

collections. Like the previous research, the value of these models

was quantified by the number of significant differences measured

between systems. The researchers showed that a more sophisti-

cated ANOVA model produced the highest number of significant

differences measured between systems. However, the shards were

very skewed in size.

The research described shows that the topics of test collections

can produce scores of different variance, which can impact the mea-

surement of significance between systems. There is, as yet, not an

extensive body of research examining such topic variability. Most

work has explored bootstrap approaches from document collections

to assess the variance. The recent examination of sharding has not

been explored in conjunction with the work on topic variability. We

explore the connection between these two lines of inquiry exam-

ining the style of ANOVA modeling used by Ferro and Sanderson

[11]. We also measure the accuracy of the model across a range of

sharding configurations that have not been examined before.

3 METHODOLOGY
Suppose we have T topics, R systems, and S shards and thus N =
T ·R ·S total samples. We can form the following six ANOVAmodels:

yi j = µ · · + τi + α j︸ ︷︷ ︸
Main Effects

+ εi j (MD1)

yi jk = µ · · · + τi + α j︸ ︷︷ ︸
Main Effects

+ εi jk (MD2)

yi jk = µ · · · + τi + α j︸ ︷︷ ︸
Main Effects

+ (τα)i j︸︷︷︸
Interaction Effects

+ εi jk (MD3)

yi jk = µ · · · + τi + α j + βk︸         ︷︷         ︸
Main Effects

+ (τα)i j︸︷︷︸
Interaction Effects

+ εi jk (MD4)

yi jk = µ · · · + τi + α j + βk︸         ︷︷         ︸
Main Effects

+ (τα)i j + (αβ)jk︸             ︷︷             ︸
Interaction Effects

+ εi jk (MD5)

yi jk = µ · · · + τi + α j + βk︸         ︷︷         ︸
Main Effects

+ (τα)i j + (τ β)ik + (αβ)jk︸                          ︷︷                          ︸
Interaction Effects

+ εi jk

(MD6)



Where:

• yi jk is the performance score of three factors, the i-th topic

(i = 1, . . . ,T ) retrieving on the j-th system (j = 1, . . . ,R)
from the k-th shard (k = 1, . . . , S);

• µ · · · is the grand mean;

• τi = µi · · − µ · · · is the effect of the i-th topic, where µi · · is the
marginal mean of the topic;

• α j = µ ·j · − µ · · · is the effect of the j-th system, where µ ·j · is
the marginal mean of the system;

• βk = µ · ·k − µ · · · is the effect of the k-th shard, where µ · ·k is

the marginal mean of the shard;

• (τα)i j = µi j · − µi · · − µ ·j · + µ · · · is the interaction between

topics and systems, where µi j · is the marginal mean of the

interaction between the i-th topic and j-th system;

• (τ β)ik = µi ·k − µi · · − µ · ·k + µ · · · is the interaction between

topics and shards, where µi ·k is the marginal mean of the

interaction between the i-th topic and k-th shard;

• (αβ)jk = µ ·jk − µ ·j · − µ · ·k + µ · · · is the interaction between

systems and shards, where µ ·jk is the marginal mean of the

interaction between the j-th system and k-th shard; and

• εi jk is the error of the model in predicting yi jk .

Model (MD1) was used by Tague-Sutcliffe and Blustein [34]

and Banks et al. [2]. It can be viewed as a classic approach to

measuring significance on a test collection, as in this form, it is

operationally similar to a t-test. The model components have two

subscripts (i , j) because the collection does not have shards. Model

(MD2) is model (MD1) but with shards.While model (MD1) has only

one performance score for each (topic, system) pair, in model (MD2)

the shards provide replicates scores for the pairs when estimating

the model parameters.

The presence of replicates is exploited in model (MD3) by adding

a topic*system interaction factor. Model (MD3) was used by Robert-

son and Kanoulas [26] and Voorhees et al. [39], though Voorhees

et al. did not rely on classical ANOVA, instead adopting a bootstrap

approach [10]. Model (MD4) explicitly accounts for a shard factor

and model (MD5) adds the interaction between systems and shards.

Both models are close to models proposed by Ferro and Sanderson

[11], but they omitted the topic*system interaction in their models.

Model (MD6) adds a topic*shard interaction, by leveraging the

presence of more replicates for each (topics, shard) pair – there are

as many replicates as the number of used systems R. It is the focus
on our work here

1
.

3.1 Exploiting topic variability with the model
How does improved measurement accuracy arise from a more so-

phisticated ANOVA model applied over a test collection whose

documents are randomly split into shards? Models add more fac-

tors with the goal of better fitting the data. Since the total Sum
of Squares (SS) is the same for all models, each new factor should

explain a further part of the total SS. As a consequence, there is a

reduction of the error SS, i.e. the leftover unexplained by the model,

and, broadly speaking, this leads to a more accurate estimate.

1
We have also examined different sharding approaches and how they impact the effect

size of ANOVA model factors [12]. That paper does not examine in detail the impact

of the model on significance tests.

How does model (MD6) exploit the variable measurement of

topics? With random even sized shards, the probability of having

relevant documents in a shard is uniform across the shards. This

probability is smaller for topics with fewer relevant documents

and greater for topics with more relevant documents. Therefore,

for each topic, the number of shards without any relevant docu-

ments is proportional to the number of relevant documents for

that topic. Model (MD6) accounts for this by explicitly consider-

ing (τ β)ik , i.e. the topic*shard interaction effect. When there are

no relevant documents for a topic on a given shard, we set the

score to undefined for all the systems with respect to that topic

on that shard. The more shards without relevant documents for

a topic, the more undefined values there are, which is reflected

in the estimation of the (τ β)ik factor. Therefore, the estimation of

the SS of the topic*shard interaction factor directly removes from

the total SS the variability due to these intrinsic differences among

topics, reducing the error SS and giving us the possibility of a more

accurate estimation of the differences among systems. Instead of

seeing shards as a mere “technical trick” to obtain replicates, we

can look at them as a form of “diagnostic tool”, which allows us to

systematically probe measurement differences across topics and to

account for the differences in a model.

We next consider a series of questions about model (MD6):

• How do different models affect the significant differences

among systems, accounting for multiple comparisons?

• How do we compute confidence intervals from the model?

• How do we estimate effect size?

• Is it legitimate to use undefined values?

The following sections will answer the questions by showing

that model (MD6) provides benefits in all these areas and, most

importantly, makes estimations concerning the system factor inde-

pendent of undefined values due to the sharding process.

4 MULTIPLE COMPARISONS
If one simultaneously compares multiple system pairs, the proba-

bility of committing a Type I error increases and the Family-wise
Error Rate (FWER) (the probability of committing at least one Type

I error) is FWER = 1 − (1 − α)c , where c is the total number of

comparisons to be performed [15, pp. 7–8]. It is crucial to control

Type I errors when performing multiple comparisons [4, 6, 29].

Tukey [35] proposed the Honestly Significant Difference (HSD)
test, which creates confidence intervals for all pairwise differences

between factor levels, while controlling the FWER. Two systems u
and v are considered significantly different when:

|tk | =
|µ̂ ·u · − µ̂ ·v · |√

MSer ror
T ·S

> Qα
R,dfer ror

(1)

where: µ̂ ·u · and µ̂ ·v · are the marginal means of the systems u and

v as estimated from the actual data; d ferror are the Degrees of
Freedom (DF) of the error; MSerror is the Mean Squares (MS) of
the error, i.e. an estimation of the variance left unexplained; and

Qα
R,dfer ror

is the upper 100∗ (1−α)-th percentile of the studentized

range distribution [22]. Note, that in the case of the model (MD1)

the denominator of eq. (1) becomes just T , since the whole corpus
is constituted by a single shard and thus S = 1.



R = 5 systems; df
error

 = 100; Q
5, 100

 = 3.93

R = 5 systems; df
error

 = 500; Q
5, 500

 = 3.86

R = 25 systems; df
error

 = 100; Q
25, 100

 = 5.32

R = 25 systems; df
error

 = 500; Q
25, 500

 = 5.17

R = 75 systems; df
error

 = 100; Q
75, 100

 = 6.12

R = 75 systems; df
error

 = 500; Q
75, 500

 = 5.91

Figure 1: Studentized range distributionQR,dfer ror for differ-
ent numbers of systems to be compared and different de-
grees of freedom of the error. The lines in each plot corre-
sponds to different DF of the error Qα

R,dfer ror
for α = 0.05:

red lines are for 100 DF, blu lines are for 500 DF. Solid lines
are for R = 5 systems; dashed lines are for R = 25 systems;
and, dotted lines are for R = 75 systems.

Figure 1 shows the Cumulative Density Function (CDF) of the
Studentized range distribution for different numbers of compared

systems and different values of the DF of the error. The DF lines are

almost superimposed on each other. The values of Qα
R,dfer ror

are

equal, apart from the lower values of DF where they are marginally

different. The main difference across plots is that increasing the

number of systems to be compared shifts the CDF to the right.

In a typical IR setting where R systems are compared, the factor

Qα
R,dfer ror

in eq. (1) is practically constant. As a consequence, even

if models from (MD1) to (MD6) lead to different values d ferror ,
the models “see” the same value of Qα

R,dfer ror
and, therefore, the

size of the interval needed to consider two systems as significantly

different mostly depends on the factor

√
MSer ror
T ·S .

In models (MD2) to (MD6), the marginal means µ̂ ·u · and µ̂ ·v ·

of the compared systems are the same as well as the T · S factor;

therefore, differences in the size of the intervals are due only to the
√
MSerror factor. Since the typical benefit of having richer models

is to reduce the size of the error, we expectMSerror to decrease
2

and, consequently, the test statistic |tk | increases, allowing us to

detect more significant differences. The increasingly richer models

lead to a more accurate estimate of the actual differences among

systems. Moreover, theMSerror is further divided by T · S , which
suggests that, for a given number of topicsT , increasing the number

of shards S should provide further benefits.

The test statistic |tk | allows us to compute the p-value

p = P
[
QR,dfer ror ≥ |tk |

]
(2)

of observing a more extreme value of the Studentized range distri-

bution.We can then compare thisp-value to the desired significance
level α and, if it is ≤ α , the two systemsu andv are significantly dif-

ferent, still controlling the FWER. Eqs. (1) and (2) are two equivalent

ways to perform multiple comparisons controlling the FWER.

2
Strictly, the SS of the error decreases because the additional factors in a model explain

more of the total SS, leaving less to the SS of the error. However,MSer ror =
SSerror
dfer ror

,

if a richer model causes a drop in dfer ror , this decreased denominator may lead to a

greater MSer ror , even if SSer ror is decreased. However, as a first approximation, it

is enough to consider both quantities as decreasing as we add factors to a model.

5 CONFIDENCE INTERVALS
We consider three types of confidence interval.

5.1 Tukey
The Tukey HSD test of eq. (1) allows us to define exact confidence

intervals for the system main effects, still controlling the FWER.

Hochberg and Tamhane [15] suggest creating a half-width confi-

dence interval around the marginal mean of a system u

µ̂ ·u · ±
1

2

Qα
R,dfer ror

√
MSerror
T · S

(3)

Systems u and v are significantly different, according to the Tukey

HSD test of eq. (1), if and only if their confidence intervals of eq. (3)

do not overlap [15, p. 116]. From model (MD2) to (MD6), we expect

that confidence intervals will reduce asMSerror decreases.

5.2 Standard Error of the Mean
The confidence interval of eq. (3) differs from the typical confidence

interval based on the Standard Error of the Mean (SEM):

µ̂ ·u · ± t
α/2

T ·S−1

√
σ̂ 2

u
T · S

(4)

where σ̂ 2

u =
1

T ·S−1
∑T
i=1

∑S
k=1 (yiuk − µ̂ ·u ·)

2
is the sample variance

of theu-th system and t
α/2

T ·S−1 is the upper 100∗
(
1−α/2

)
-th percentile

of the Student’s t distribution withT ·S−1 degrees of freedom. Note,

these are the confidence intervals used by Ferro and Sanderson [11]

when showing the improved accuracy due to the use of shards.

Differently from the confidence interval of eq. (3), those of eq. (4)

do not depend on any of the more accurate ANOVA models, they

just depend on the underlying data. Moreover, they do not account

for any multiple comparison adjustment since they consider each

system in isolation. While the confidence intervals of eq. (3) have

the same size for all systems as they need to control for FWER, the

confidence intervals of eq. (4) change size from system to system

as they depend on the sample variance of each system.

5.3 ANOVA
We can define the following confidence interval [29, p. 57], which

falls between those of eq. (3) and those of eq. (4)

µ̂ ·u · ± t
α/2

dfer ror

√
MSerror
T · S

(5)

As with eq. (3), the interval depends on the ANOVA model and

its ability to explain the data. As with eq. (4), the interval does not

adjust for multiple comparisons. Different from eq. (4) but similar to

eq. (3), the interval has the same size for all systems. As above, the

term t
α/2

dfer ror
is practically constant, following the discussion about

eq. (3), we expect the confidence interval of eq. (5) to reduce either

as the ANOVA models become richer or if we use more shards.

The difference between eq. (3) and eq. (5) is the replacement of

1

2
Qα
R,dfer ror

with t
α/2

dfer ror
. The former is typically 2-3 times bigger

than the latter. The bigger the difference, the bigger the number of

systems R to be compared. This lets us understand the magnitude

of adjustment needed to keep the FWER controlled. Consequently,

the confidence intervals of eq. (3) are bigger than those of eq. (5).
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y232
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y132
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y112
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y212
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

y122
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

System

To
p
ic

Sh
ar
d
� 2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> x<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2: Example ofT = 4 topics, R = 3 systems, S = 2 shards

6 EFFECT SIZE
We also consider the effect size of a factor, which accounts for

the amount of variance explained by the model, by means of an

unbiased estimator [23, 28]:

ω̂2

⟨f act ⟩ =
df f act (Ff act − 1)

df f act (Ff act − 1) + N
(6)

where Ff act is the F-statistic and df f act are the degrees of freedom

for the factor while N is the total number of samples. The common

rule of thumb [27] when classifying ω̂2

⟨f act ⟩ effect size is: 0.14 and

above is a large size effect; 0.06–0.14 is a medium size effect; and
0.01–0.06 is a small size effect. Note, ω̂2

⟨f act ⟩ can be negative, in

such cases it is considered as zero.

7 EFFECT OF UNDEFINED VALUES
A notable challenge with sharding a document collection is topics

may not have any relevant documents in a shard. Ferro and Sander-

son [11] dealt with this by keeping only the topics for which there

was at least one relevant document in each shard, thus reducing

the number of usable topics. Voorhees et al. [39] resampled shards

until all shards contained relevant documents for all the topics.

However, this introduces bias since the shards stop being random.

Both approaches fail as the number of shards increase.

As described above, we substitute an undefined value.We demon-

strate that we can substitute undefined values with any value x
and these values do not affect the identification of significant dif-

ferences, the calculation of confidence intervals, and the effect size

of the system factor. We report here the main propositions but, for

space reasons, we cannot report the corresponding proofs. Detailed

proofs are reported in the electronic appendix available online as

supplementary material to the paper.

In the example of Figure 2 we have T = 4 topics, R = 3 systems

and S = 2 shards. Topic τ1 has no relevant documents in shard β1
and, therefore, all the systems have the undefined value x for that

topic. Similarly, topic τ3 has no relevant documents in shard β2 and
topic τ4 has no relevant in β1 and β2. Note, when relevant docu-

ments are missing, a whole “row” is filled in with x . This regularity,
allows us to achieve a balanced design where the comparison of

systems is independent of the undefined values.

Definition 7.1. Given a shard k ∈ [1, S], Xk is the set of the

indexes i of the topics that have no relevant documents on that

shard:

Xk =
{
i ∈ [1,T ]

��yi jk = x ∀j ∈ [1,R]
}

(7)

In Figure 2, we have X1 = {1, 4} and X2 = {3, 4}. Note that, for

any shard k , there are |Xk | ·R undefined values and, in total, there

are R
∑S
k=1 |Xk | undefined values.

Proposition 7.2. Given models from (MD2) to (MD6) and a sys-
tem j ∈ [1,R], its estimated marginal mean is given by:

µ̂ ·j · =
1

T · S

S∑
k=1

T∑
i=1
i<Xk

yi jk

︸                 ︷︷                 ︸
µ̂′
·j ·

+
x

T · S

S∑
k=1

|Xk | (8)

Therefore, for any pair of systems u ∈ [1,R] and v ∈ [1,R], u ,
v , the difference of their estimated marginal means µ̂ ·u · − µ̂ ·v · is
independent of the undefined values.

Note, that the first element µ̂ ′
·j · of eq. (8) is the estimatedmarginal

mean of the system factor ignoring the undefined values. This is
not the estimatedmarginal mean removing undefined values, since
the denominator T · S still accounts for all the values, both defined

and undefined. The second element is the contribution to estimated

marginal mean due only to the undefined values. It is constant and
equal for all the systems. Therefore, the regularity in the pattern

of undefined values allows us to separate the contributions due

to the systems from those due to undefined values, which are the

same for all the systems. Proposition 7.2 has three consequences:

(1) The numerator of eq. (1), i.e. the multiple comparison among

systems, is not affected by the undefined values.
(2) Eq. (8) shows that the shift due to undefined values is the

same for all the systems and, therefore, does not affect the

Rankings of Systems (RoS), i.e. the ordering of the system

by their estimated marginal mean. If a Kendall’s τ corre-

lation [17] was measured between the RoS on the whole

corpus and the RoS when using shards, τ is not affected by

the undefined values.

(3) For each shard we could have at worst |Xk | = T , i.e. a shard
for which no topic has relevant documents. However, test

collections generally have at least one relevant document

for each topic and, since shards are a partition of the whole

corpus, it follows that |Xk | < T . Therefore
1

T ·S
∑S
k=1 |Xk | is

always strictly < 1. The effect of the undefined value is to
shift the estimated marginal mean of the system factor by

a fraction of that undefined value. From this perspective,

setting x = 0, our choice in the experimentation, is not

lowering the mean system performance but just leaving

them at their level.

Proposition 7.3. Given models from (MD2) to (MD6), the SS of
the system factor and, as a consequence, the MS of the system factor
are independent of the undefined values.

Proposition 7.4. Given model (MD6), the residuals εi jk are in-
dependent from the undefined values. Therefore, the SS of the error
and, as a consequence, the MS of the error are independent of the
undefined values.

Note that Proposition 7.4 holds only in the case of model (MD6)

and only thanks to the topic*shard interaction (τ β)ik factor.



Indeed, as shown in the appendix, all the estimated marginal

means have a form similar to eq. (8), i.e. a mean contribution due to

defined values plus a mean contribution due to undefined values.
However, only the topic*shard interaction (τ β)ik has the form

µ̂i ·k =

{
µ̂ ′i ·k if i < Xk
x if i ∈ Xk

which cancels out the undefined values when yi jk = x and makes

the residuals εi jk independent from them. In this sense, in Sec-

tion 3.1, we said that the topic*shard interaction (τ β)ik is the factor

dealing with the intrinsic differences among topics, since it is able to

separate defined from undefined values. As we discussed, the num-

ber of undefined values is proportional to the number of relevant

documents for a topic and, therefore, the topic*shard interaction

(τ β)ik factor accounts for the unequal value of topics.
Therefore, model (MD6) is not only a more precise model be-

cause, thanks to the more factors it considers, it is able to explain

more variance than all the other models, leading to more accurate

estimations of the differences among systems. But, especially, it

is also the model with the most desirable properties, thanks to

the presence of the topic*shard interaction (τ β)ik factor. Indeed,

proposition 7.4 has two consequences:

(1) The denominator of eq. (1) is independent of the undefined
values. This, jointlywith Proposition 7.2, means that undefined
values do not affect the identification of significantly differ-

ent systems. Consequently, the confidence intervals of eq. (3)

are independent from the undefined values. The same holds

for the confidence intervals of eq. (5).

(2) Recall that the F-statistic of the system factor is given by

Fsystem =
MSsystem
MSer ror where MSsystem =

SSsystem
dfsystem

and

MSerror =
SSer ror
dfer ror

. Since both SSsystem (Proposition 7.3)

and SSerror (Proposition 7.4) are independent from the undefined
values, it follows that the F-statistic of the system factor is

also independent from undefined values. They do not af-

fect the significance of this factor. Moreover, it follows that

the effect size of the system factor ω̂2

⟨system ⟩
of eq. (6) is

independent of the undefined values.

8 EXPERIMENTAL SETUP
To empirically test the analyses above, we experimented on the

collections, topics, and system runs of the following datasets:

• Adhoc track T08 [38]: 528,155 documents of the TIPSTER

disks 4-5 corpus minus congressional record (TIP); 50 topics,

each with binary relevance judgments drawn from a pool

depth of 100; 129 system runs retrieving 1,000 documents

for each topic.

• Web track T09 [14]: 1,692,096 documents of the WT10gWeb

corpus; 50 topics, each with multi-graded relevance judg-

ments and a pool depth of 100; 104 system runs retrieving

1,000 documents for each topic.

• Common Core track T27 [1]: 595,037 documents of the

Washington Post corpus (WAPO); 50 topics, each with multi-

graded relevance judgments; relevance judgments were ob-

tained mixing depth-10 pools with multi-armed bandit [18,

(a) Model (MD1). (b) Model (MD6).

Figure 3: Comparison of different types of confidence in-
tervals on T08 for AP on the whole corpus (left) and on
TIP_RNDE_03 shards (right). On the x-axis there are the sys-
tems ordered by descending performance.

37], stratified sampling [7] andmove-to-front [8] approaches;

72 system runs retrieving 10,000 documents for each topic.

We any mapped multi-graded relevance judgments to binary by

treating everything above not relevant as relevant.

For each corpus, we created S randomly formed even sized shards,

where S ∈ {2, 3, 4, 5, 10, 25, 50}. We label the shards of a corpus as

<corpus>_RNDE_S ; e.g., the WAPO corpus split into 5 shards is labeled
WAPO_RNDE_05. For each shard size, we re-sampled 10 times; i.e., in

the case of WAPO_RNDE_05we have 10 independent sets of 5 random
even size shards on the WAPO corpus. For space reasons, we report

only some combinations of measures and tracks but the observed

trends hold also for the other results.

For each corpus split into shards, system runs retrieving from

the corpus were also sharded. A run was split into the same number

of shards as the corresponding corpus. The random document split

used to shard a corpus was the same split used to shard a run. Such

splitting is a simulation of how a system would retrieve documents

on each shard. Past empirical work showed the simulation to work

well Sanderson et al. [31].

We consider the following evaluationmeasures:Average Precision
(AP) [5], Precision at ten retrieved documents (P@10), Rank-Biased
Precision (RBP) [21], and Normalized Discounted Cumulated Gain
(nDCG) [16]. We calculated RBP by setting p = 0.8 as persistence

parameter while we use a loд10 discounting function in nDCG,

to consider not too impatient users. We considered α = 0.05 to

determine if a factor is statistically significant. Our experimental

source code is at: https://bitbucket.org/frrncl/sigir2019-fs-code/.

9 EXPERIMENTS
We conduct three experiments.

9.1 Confidence Intervals
We study the three types of confidence intervals under different

ANOVA models. Figure 3 compares the intervals on the whole

corpus using model (MD1) and on three shards using model (MD6).

In the case of the whole corpus and model (MD1) in Figure 3a,

we see that, as expected, the Tukey confidence intervals (eq. (3)) are

larger than the ANOVA ones (eq. (5)) since the latter do not account

for multiple comparisons. We also see that the Tukey intervals of

eq. (3) are similar to the SEM intervals (eq. (4)), which are inde-

pendent from any model of the data and just consider each system

in isolation. The fact that model-dependent confidence intervals

https://bitbucket.org/frrncl/sigir2019-fs-code/


(Tukey ones) look close to model-independent ones (SEM ones)

suggests that the topic and system factors of model (MD1) are not

enough to accurately explain the data.

When using the shards (Figure 3b), we note that both the Tukey

and ANOVA confidence intervals are smaller than SEM, suggesting

that model (MD6) better explains the underlying data thanks to the

additional factors it considers.

Note, that this difference between model (MD1) and (MD6) is

not due to the increased number of samples passing from the whole

corpus to shards but to the better ability of model (MD6) to explain

the data. Indeed, the additional beneficial effect of increasing the

number of samples is apparent in Figure 3b from the fact that all

the confidence intervals get smaller when using shards, but this

would happen for whatever model.

Figure 4 shows how the Tukey confidence intervals change

across different models. The black dotted line is the system per-

formance (marginal mean of the system α j factor) on the whole

corpus, i.e. the same line shown in Figure 3a in the case of AP. The

continuous line is the system performance (marginal mean of the

system α j factor) on shards, i.e. the same line shown in Figure 3b

in the case of AP; note that the green line for model (MD2), the

orange one for model (MD3), and the red one for model (MD6)

are superimposed since the marginal mean of the system α j factor
is the same in all these models. The shaded areas in the color of

the line of each model represent the Tukey confidence interval

for the corresponding model; for example, gray shaded area is for

model (MD1) while the red shaded area is for model (MD6).

For all measures, the confidence interval using model (MD1)

on the whole corpus is bigger than the confidence interval when

using the other models. In particular, comparing the confidence

intervals of models (MD1) and (MD2), which are computed without

and with shards respectively. Comparing models (MD2), (MD3),

and (MD6), we see the increasingly complex models improve the

accuracy by shrinking the confidence interval. Moreover, compar-

ing model (MD3) to model (MD6) we see that adding shard*system

and topic*shard factors substantially reduce the intervals.

We report the Kendall’s τ correlation between the RoS on the

whole corpus and on shards in the title of the plots in Figure 4.

We can see that in three of the four plots, τ > 0.9, the empirical

threshold used to consider to ranking equivalence [36]. This sug-

gests that we are not only improving accuracy but also maintaining

coherence with what happens in traditional analyses.

Figure 5 compares the Tukey confidence intervals of eq. (3) for

different shard numbers using model (MD6) in the case of AP on

T08. As expected, the confidence intervals tend to reduce as the

number of shards increases, due to the increased number of mea-

surements on the shards. Kendall’s τ remains > 0.9, suggesting that

the increased number of shards does not substantially deteriorate

the agreement of the RoS on the whole corpus.

9.2 Multiple Comparisons
Table 1 reports summary statistics for multiple comparison analyses

on T08 using different splits for AP. We observe a large system

effect size (ω̂2

⟨sys ⟩). We also can see a drop in ω̂2

⟨sys ⟩ passing from

model (MD1), i.e. the whole corpus, to model (MD2), i.e. the same

model but using shards. The shards appear to introduce a new

factor, which interacts with the other factors and thus the size of

ω̂2

⟨sys ⟩ reduces. However, as the models account for more factors

((MD2)-(MD6)), ω̂2

⟨sys ⟩ increases, suggesting that the more a model

explains the data, the more prominent ω̂2

⟨sys ⟩ becomes. In the case

of model (MD6) and for fewer shards, ω̂2

⟨sys ⟩ can be notably bigger

than on the whole corpus.

Considering the number of significantly different pairs (columns

Sig and NotSig), we see how moving from (MD1) – a classic sig-

nificance testing approach – to any shard-based model always

increases the number of pairs. More shards also means more sig-

nificantly different pairs. However, there is a limited gain in using

more shards: in the case of model (MD2) passing from two to five

shards gives a 13.28% increase in the number of pairs but passing

from five to ten produces only a 0.15% gain. More complex models

are less sensitive to the increase in the number of shards, since they

detect almost all the significantly different pairs already at a low

number of shards. For example, in the case of model (MD6) passing

from two to five shards gives just a 0.78% increase in the number of

significantly different pairs while passing from five to ten produces

a 0.20% increase.

The more sophisticated a model, the more significant differ-

ences are detected. However, not all models are equally impactful.

From model (MD2) to (MD3), i.e. adding the topic*system interac-

tion, produces notable increases while passing from model (MD3)

to (MD4) and (MD5), do not provide substantial benefits. However,

model (MD6), i.e. adding the topic*shard interaction, makes an-

other substantial increase in the number of significant differences,

confirming the importance of this factor.

If we consider the group of the systems insignificantly different

from the top performing system (column TopG), we can appreciate

another benefit of using shards. The number of systems in the

top group drops from 7 when using the whole corpus to 1 when

using shards and the more descriptive models, suggesting that the

increased accuracy in estimating differences among systems allows

us to detect that the top system is actually different from others.

9.3 Robustness to Shard Sampling
Table 2 show the summary of the analyses for AP across differ-

ent shard sizes when using ten samples for each shard size. The

Kendall’s τ column reports the average value of τ over the samples

and its 95% confidence interval. For all the tracks, the τ values

are quite high with small confidence intervals. This suggest that

the RoS is quite stable and does not depend much on the specific

random shards. Similar considerations hold also in the case of the

Tukey confidence interval, which gets smaller has the shard size

increases and whose values are similar across shard samples. This

suggests that the detection of significantly different systems is not

affected much by the specific random shards at hand.

The total number of significantly different pairs support this

hypothesis since we can see how the confidence interval around

this value is small, indicating that their number does not change

much when the shard sample changes. The final column reports the

fraction of significant pairs found in common across all 10 samples.

Here, there is a notable level of consistency across the samples.



(a) AP. (b) P@10.

(c) nDCG. (d) RBP.

Figure 4: The Tukey confidence intervals (eq. (3)) of four measures across four models. On T08 with TIP_RNDE_10 shards. On
the x-axis there are the systems ordered by descending performance.

(a) TIP_RNDE_02 shards. (b) TIP_RNDE_04 shards.

(c) TIP_RNDE_10 shards. (d) TIP_RNDE_50 shards.

Figure 5: Comparing confidence intervals of eq. (3) using models (MD1) and (MD6) for AP on T08with different shard numbers.
On the x-axis there are the systems ordered by descending performance.

10 CONCLUSIONS AND FUTUREWORK
At the start of the paper, we asked: can an unequal value of topics be
exploited to improve measurement of system performance accuracy
on a test collection?

We described and validated, theoretically and empirically, an

ANOVA model combined with a random sharding technique. We

showed that the model (MD6) measures substantially more signifi-

cant differences between IR systems than conventional approaches,

as represented by model (MD1). While it is true that a more sophis-

ticated ANOVA model is expected to reduce measurement error,

the scale of improvement seen with (MD6) is perhaps less expected.

We showed that model (MD6) agrees well with the RoS taken from

conventional test collection measurement and that the increased

significance is not due to measurement error.

Past work has examined the question of whether the variability

of topic measurement can be exploited to improve the accuracy of

IR system measurement, we contend that our research shows that



Table 1: Comparing models for three shard sizes across 8256 system pairs, AP, track T08.

TIP_RNDE_02, τ = 0.9717 TIP_RNDE_05, τ = 0.9707 TIP_RNDE_10, τ = 0.9598
Model vs Model ω̂2

⟨sys⟩ Sig NotSig TopG ω̂2

⟨sys⟩ Sig NotSig TopG ω̂2

⟨sys⟩ Sig NotSig TopG

MD1 – 0.3991 3423 4833 7 0.3991 3423 4833 7 0.3991 3423 4833 7

MD2 – 0.3500 4067 4189 4 0.2556 4607 3649 2 0.1595 4614 3642 2

MD1 -12.29% +18.81% -13.33% -42.86% -35.95% +34.59% -24.50% -71.43% -60.02% +34.79% -24.64% -71.43%

MD3 – 0.5678 5175 3081 1 0.3495 5133 3123 1 0.1840 4831 3425 1

MD1 +42.28% +51.18% -36.25% -85.71% -12.42% +49.96% -35.38% -85.71% -53.90% +41.13% -29.13% -85.71%

MD2 +62.22% +27.24% -26.45% -75.00% +36.74% +11.42% -14.41% -50.00% +15.31% +4.70% -5.96% -50.00%

MD4 – 0.5693 5180 3076 1 0.3511 5140 3116 1 0.1849 4833 3423 1

MD1 +42.67% +51.33% -36.35% -85.71% -12.03% +50.16% -35.53% -85.71% -53.66% +41.19% -29.17% -85.71%

MD2 +62.66% +27.37% -26.57% -75.00% +37.34% +11.57% -14.61% -50.00% +15.92% +4.75% -6.01% -50.00%

MD3 +0.27% +0.10% -0.16% – +0.44% +0.14% -0.22% – +0.53% +0.04% -0.06% –

MD5 – 0.5675 5173 3083 1 0.3486 5129 3127 1 0.1829 4818 3438 1

MD1 +42.22% +51.12% -36.21% -85.71% -12.65% +49.84% -35.30% -85.71% -54.18% +40.75% -28.86% -85.71%

MD2 +62.15% +27.19% -26.40% -75.00% +36.38% +11.33% -14.31% -50.00% +14.62% +4.42% -5.60% -50.00%

MD3 -0.05% -0.04% +0.06% -0.26% – -0.08% +0.13% -0.59% – -0.27% +0.38% –

MD4 -0.32% -0.14% +0.23% -0.70% – -0.21% +0.35% -1.12% – -0.31% +0.44% –

MD6 – 0.7143 5889 2367 1 0.5235 5935 2321 1 0.3777 5947 2309 1

MD1 +78.99% +72.04% -51.02% -85.71% +31.19% +73.39% -51.98% -85.71% -5.36% +73.74% -52.22% -85.71%

MD2 +104.07% +44.80% -43.49% -75.00% +104.82% +28.83% -36.39% -50.00% +136.71% +28.89% -36.60% -50.00%

MD3 +25.80% +13.80% -23.17% +49.79% – +15.62% -25.68% – +105.29% +23.10% -32.58% –

MD4 +25.46% +13.69% -23.05% +49.14% – +15.47% -25.51% – +104.20% +23.05% -32.54% –

MD5 +25.86% +13.84% -23.22% +50.18% – +15.71% -25.78% – +106.52% +23.43% -32.84% –

Table 2: Summary of analyses for AP using 10 samples of
each random split and model (MD6).

T08 – 8256 system pairs compared
Split τ CI Width Sig. Pairs Frac. Sig Pairs

TIP_RNDE_02 0.9803 0.0540 5142.20 0.6228

TIP_RNDE_03 0.9745 0.0551 5085.90 0.6160

TIP_RNDE_04 0.9680 0.0546 5104.10 0.6182

TIP_RNDE_05 0.9689 0.0549 5051.20 0.6118

TIP_RNDE_10 0.9613 0.0538 5008.70 0.6067

TIP_RNDE_25 0.9418 0.0445 5242.80 0.6350

TIP_RNDE_50 0.9189 0.0351 5462.40 0.6616

T09 – 5356 system pairs compared
Split τ CI Width Sig. Pairs Frac. Sig Pairs

WT10g_RNDE_02 0.9609 0.0732 2808.30 0.5243

WT10g_RNDE_03 0.9453 0.0717 2874.00 0.5366

WT10g_RNDE_04 0.9380 0.0683 2947.70 0.5504

WT10g_RNDE_05 0.9275 0.0657 3034.50 0.5666

WT10g_RNDE_10 0.9037 0.0530 3426.80 0.6398

WT10g_RNDE_25 0.8813 0.0389 3748.00 0.6998

WT10g_RNDE_50 0.8675 0.0288 3893.60 0.7270

T27 – 2556 system pairs compared
Split τ CI Width Sig. Pairs Frac. Sig Pairs

WAPO_RNDE_02 0.9764 0.0460 1821.50 0.7126

WAPO_RNDE_03 0.9634 0.0495 1791.20 0.7008

WAPO_RNDE_04 0.9617 0.0485 1800.10 0.7043

WAPO_RNDE_05 0.9583 0.0480 1802.70 0.7053

WAPO_RNDE_10 0.9470 0.0460 1822.80 0.7131

WAPO_RNDE_25 0.9219 0.0410 1848.30 0.7231

WAPO_RNDE_50 0.8812 0.0337 1853.30 0.7251

this is an approach with great promise. Model (MD6) allows us to

make better use of existing test collections.

Our work in this particular direction of research is relatively

new. Consequently, there are a number of avenues of future work:

• Wewant to compare our method with the recently published

work of Voorhees et al. [39]. Their method also produces a

substantial increase in the number of significant differences

measured. However, their method of controlling for multiple

significance test comparisons is more liberal than themethod

we use. There is the potential for combining our approaches,

their technique uses a bootstrapping technique new to IR

research, our technique uses a new ANOVA model.

• The metric of success, number significant differences, could

be replaced by comparing the predictive power of ourmethod

with conventional methods. We could measure which of two

systems is better on one test collection and see if those sys-

tems are similarly ordered on another test collection.

• What happens if we consider topics as random factors and/or

heteroskedastic data, following the approach adopted by Robert-

son and Kanoulas [26]?

• Can we turn model (MD6) into a tool for designing better

offline test collections, since it provides us with means for

coping with differences across topics?

• Can model (MD6) also allow us to build test collections with

fewer relevance judgments or topics while maintaining cur-

rently attainable measurement accuracies?

• Does this approach for offline testing tell us anything about

online testing? Like the topics of test collections, online

topics will have high and low numbers of relevant; do we

need to think about how averaging works there too?

• How much of a benefit will model (MD6) bring to perfor-

mance measurement on test collections where topics with

very few relevant documents are rare or non-existent?
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A BACKGROUND ON ANOVA
ANalysis Of VAriance (ANOVA) [2, 3] attempts to explain data (the

dependent variable scores) in terms of the experimental conditions

(the model) and an error component. Typically, ANOVA is used

to determine under which experimental condition do dependent

variable score means differ and what proportion of variation in the

dependent variable can be attributed to differences between specific

experimental groups or conditions, as defined by the independent

variable(s).

A typical ANOVA model is yi j = µ + α j + εi j , where yi j is the
i-th subject’s dependent variable score in the j-th experimental

condition, the parameter µ is the grand mean of the experimental

condition population means that underlies all subjects’ dependent

variable scores, the parameter α j is the effect of the j-th experimen-

tal condition and the random variable εi j is the error term, which

reflects variation due to any uncontrolled source.

For a givenmodel, the ANOVA table summarizes the outcomes of

the ANOVA test indicating, for each factor, the Sum of Squares (SS),
the Degrees of Freedom (DF), the Mean Squares (MS), the F statistics,
and the p-value of that factor, which allows us to determine the

significance of that factor.

When it comes to independent variables they can be either fixed
effects – i.e., they have precisely defined levels, and inferences about

its effect apply only to those levels – or random effects – i.e., they

describe a randomly and independently drawn set of levels that

represent variation in a clearly defined wider population. The latter

case is a more sophisticated model which, in the estimation of the

variance attributed to the different factors, also accounts for the

additional randomness due sampling of effect levels.
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Figure 1: Example of layout ofmodel (MD1) for the topic and
system effects, using T = 4 topics and R = 3 systems.

The experimental design determines how you compute themodel

and how you estimate its parameters. In particular, it is possible

to have an independent measures design where different subjects

participate to different experimental conditions (factors) or a re-
peated measures design, where each subject participates to all the

experimental conditions (factors).

A final distinction is between crossed/factorial designs, where
every level of one factor is measured in combination with every

level of the other factors, and nested designs, where levels of a factor
are grouped within each level of another nesting factor.

A.1 Estimating the Model
Figure 1 shows the experimental layout for the model (MD1). This

is the typical Information Retrieval (IR) setting where you have a set

of topics and a set of systems which are run against those topics; in

ANOVA terms this is a crossed/factorial repeated measures design.

Note that this is the same model used by Banks et al. [1] and Tague-

Sutcliffe and Blustein [4] to analyse TREC data.

yi j = µ · · + τi + α j + εi j (MD1)

where:

• µ · · is the grand mean;

• τi with i = 1, . . . ,T represents the effect of topics;

• α j with j = 1, . . . ,R represents the effect of systems;

• εi j is the residual error.

Model (MD1) has the following estimators:

https://doi.org/http://dx.doi.org/10.475/123_4


• estimated grand mean

µ̂ · · =
1

T · R

T∑
i=1

R∑
j=1

yi j

• estimated topic marginal mean and topic effect

µ̂i · =
1

R

R∑
j=1

yi j

τ̂i = µ̂i · − µ̂ · ·

• estimated system marginal mean and system effect

µ̂ ·j =
1

T

T∑
i=1

yi j

α̂ j = µ̂ ·j − µ̂ · ·

Therefore, the score predicted by the model is

ŷi j = µ̂ · · + τ̂i + α̂ j = µ̂i · + µ̂ ·j − µ̂ · ·

and the estimated residuals are:

ε̂i j = yi j − ŷi j = yi j − (µ̂i · + µ̂ ·j − µ̂ · ·)

A.2 Assessment of the Model
We can compute the Sum of Squares (SS), Degrees of Freedom (DF),
Mean Squares (MS) and F statistics as follows:

• total effects

SS
total
=

T∑
i=1

R∑
j=1

(yi j − µ̂ · ·)
2

d f
total
= T · R − 1

MS
total
=

SS
total

d f
total

• topic effects

SStopic =
T∑
i=1

R∑
j=1

τ̂ 2i = R
T∑
i=1

τ̂ 2i = R
T∑
i=1

(µ̂i · − µ̂ · ·)
2

d ftopic = T − 1

MStopic =
SStopic

d ftopic

Ftopic =
MStopic

MSerror

• system effects

SSsystem =
T∑
i=1

R∑
j=1

α̂2j = T
R∑
j=1

α̂2j = T
R∑
j=1

(µ̂ ·j − µ̂ · ·)
2

d fsystem = R − 1

MSsystem =
SSsystem

d fsystem

Fsystem =
MSsystem

MSerror

• error effects

SSerror =
T∑
i=1

R∑
j=1

ε̂2i j =
T∑
i=1

R∑
j=1

(
yi j − (µ̂i · + µ̂ ·j − µ̂ · ·)

)
2

d ferror = (T − 1)(R − 1)

MSerror =
SSerror
d ferror

Note that:

SS
total
= SStopic + SSsystem + SSerror

We can then compute the critical value for the F statistics of a

factor, i.e. Fcr it = F
(
df f act ,dfer r

)
, and determine its significance

if Ff act > Fcr it ; this allows us also to obtain the p-value for that
factor.

B EFFECT OF UNDEFINED VALUES ON
ESTIMATION

Suppose we are dealing withT topics, R system (runs), and S shards

and thus N = T · R · S total samples.

We consider the following ANOVA models:

yi jk = µ · · · + τi + α j︸ ︷︷ ︸
Main Effects

+ εi jk (MD2)

yi jk = µ · · · + τi + α j︸ ︷︷ ︸
Main Effects

+ (τα)i j︸︷︷︸
Interaction Effects

+ εi jk (MD3)

yi jk = µ · · · + τi + α j + βk︸         ︷︷         ︸
Main Effects

+ (τα)i j︸︷︷︸
Interaction Effects

+ εi jk (MD4)

yi jk = µ · · · + τi + α j + βk︸         ︷︷         ︸
Main Effects

+ (τα)i j + (αβ)jk︸             ︷︷             ︸
Interaction Effects

+ εi jk (MD5)

yi jk = µ · · · + τi + α j + βk︸         ︷︷         ︸
Main Effects

+ (τα)i j + (τ β)ik + (αβ)jk︸                          ︷︷                          ︸
Interaction Effects

+ εi jk

(MD6)

where:

• yi jk is the effectiveness score of the i-th subject (topic, i =
1, . . . ,T ) in the j-th (system, j = 1, . . . ,R) and k-th (shard,

k = 1, . . . , S) factors;
• µ · · · is the grand mean;

• τi = µi · · − µ · · · is the effect of the i-th subject, i.e. a topic,

where µi · · is the marginal mean of the i-th subject;

• α j = µ ·j · − µ · · · is the effect of the j-th factor, i.e. a system,

where µ ·j · is the marginal mean of the j-th factor;

• βk = µ · ·k − µ · · · is the effect of the k-th factor, i.e. a shard,

where µ · ·k is the marginal mean of the k-th factor;

• (τα)i j = µi j · − µi · · − µ ·j · + µ · · · is the interaction between

topics and systems, where µi j · is the marginal mean of the

interaction between the i-th topic and j-th system;

• (τ β)ik = µi ·k − µi · · − µ · ·k + µ · · · is the interaction between

topics and shards, where µi ·k is the marginal mean of the

interaction between the i-th topic and k-th shard;

• (αβ)jk = µ ·jk − µ ·j · − µ · ·k + µ · · · is the interaction between

systems and shards, where µ ·jk is the marginal mean of the

interaction between the j-th system and k-th shard;
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Figure 2: Example ofANOVAwithT = 4 topics,R = 3 systems
and S = 2 shards.

• finally, εi jk is the error committed by the model in predicting

yi jk .

Consider the example of Figure 2 where we have T = 4 topics,

R = 3 systems and S = 2 shards. Moreover, topic τ1 does not have
any relevant document on shard β1 and, therefore, all the systems

have the undefined value x for that topic; similarly, topic τ3 does
not have any relevant document on shard β2; finally topic τ4 does
not have any relevant document on both shard β1 and β2.

Definition B.1. Given a shard k ∈ [1, S], Xk is the set of the

indexes i of the topics which do not have any relevant document

on that shard:

Xk =
{
i ∈ [1,T ]

��yi jk = x ∀j ∈ [1,R]
}

(1)

In the example of Figure 2, we have X1 = {1, 4} and X2 = {3, 4}.

Note that, for any shard k , there are |Xk | · R undefined values
and, in total, there are R

∑S
k=1 |Xk | undefined values.

Definition B.2. Given a topic i ∈ [1,T ],X i
is the set of the indexes

k of the shards for which the topic i does not have any relevant

document:

X i =
{
k ∈ [1, S]

��yi jk = x ∀j ∈ [1,R]
}

(2)

In the example of Figure 2, X 1 = {1}, X 2 = ∅, X 3 = {2}, and

X 4 = {1, 2}.

Note that, for any topic i , there are |X i | · R undefined values

and, in total, there are R
∑T
i=1 |X

i | undefined values.

Proposition B.3. Given models from (MD2) to (MD6) and a sys-
tem j ∈ [1,R], its estimated marginal mean is given by:

µ̂ ·j · =
1

T · S

S∑
k=1

T∑
i=1
i<Xk

yi jk

︸                 ︷︷                 ︸
µ̂′
·j ·

+
x

T · S

S∑
k=1

|Xk | (3)

Therefore, for any pair of systems u ∈ [1,R] and v ∈ [1,R], u ,
v , the difference of their estimated marginal means µ̂ ·u · − µ̂ ·v · is
independent of the undefined values.

Proof. The estimated marginal mean of the system factor is

given by:

µ̂ ·j · =
1

T · S

T∑
i=1

S∑
k=1

yi jk =
1

T · S

S∑
k=1

T∑
i=1

yi jk =

=
1

T · S

S∑
k=1

©«
T∑
i=1
i<Xk

yi jk +
∑
i ∈Xk

x
ª®®®¬ =

=
1

T · S

S∑
k=1

©«
T∑
i=1
i<Xk

yi jk + x · |Xk |
ª®®®¬ =

=
1

T · S

S∑
k=1

T∑
i=1
i<Xk

yi jk

︸                 ︷︷                 ︸
µ̂′
·j ·

+
x

T · S

S∑
k=1

|Xk |

Therefore, for any two systems u and v , we have that:

µ̂ ·u · − µ̂ ·v · =

(
µ̂ ′·u · +

x

T · S

S∑
k=1

|Xk |

)
−

(
µ̂ ′·v · +

x

T · S

S∑
k=1

|Xk |

)
=

= µ̂ ′·u · − µ̂ ′·v ·

Therefore, the difference of the estimated marginal means of the

system factor is independent of the undefined values.
□

Proposition B.4. Given models from (MD2) to (MD6), the SS of
the system factor and, as a consequence, the MS of the system factor
are independent of the undefined values.

Proof. The estimated grand mean is given by:

µ̂ · · · =
1

T · R · S

T∑
i=1

R∑
j=1

S∑
k=1

yi jk =
1

T · R · S

S∑
k=1

T∑
i=1

R∑
j=1

yi jk =

=
1

T · R · S

S∑
k=1

©«
T∑
i=1
i<Xk

R∑
j=1

yi jk +
∑
i ∈Xk

R∑
j=1

x
ª®®®¬ =

=
1

T · R · S

S∑
k=1

©«
T∑
i=1
i<Xk

R∑
j=1

yi jk +
∑
i ∈Xk

R · x
ª®®®¬ =

=
1

T · R · S

S∑
k=1

©«
T∑
i=1
i<Xk

R∑
j=1

yi jk + |Xk | · R · x
ª®®®¬ =

=
1

T · R · S

S∑
k=1

T∑
i=1
i<Xk

R∑
j=1

yi jk

︸                           ︷︷                           ︸
µ̂′···

+
x

T · S

S∑
k=1

|Xk |



The SS of the system factor is given by:

SSsystem =
T∑
i=1

R∑
j=1

S∑
k=1

(
µ̂ ·j · − µ̂ · · ·

)
2

= T · S
R∑
j=1

(
µ̂ ·j · − µ̂ · · ·

)
2

=

= T · S
R∑
j=1

(
µ̂ ′·j · +

x

T · S

S∑
k=1

|Xk | − µ̂ ′·· · −
x

T · S

S∑
k=1

|Xk |

)2
=

= T · S
R∑
j=1

(
µ̂ ′·j · − µ̂ ′·· ·

)
2

Therefore, the SS of the system factor is independent of the

undefined values, i.e. they do not change the amount of variance

attributed to the system factor. Since MSsystem =
SSsystem
dfsystem

, also

the the MS of the system factor is independent of the undefined
values. □

Proposition B.5. Given model (MD6), the residuals εi jk are in-
dependent of the undefined values. Therefore, the SS of the error
and, as a consequence, the MS of the error are independent of the
undefined values.

Proof. The estimated marginal mean of the topic factor is given

by:

µ̂i · · =
1

R · S

R∑
j=1

S∑
k=1

yi jk =
1

R · S

R∑
j=i

©«
S∑

k=1
k<X i

yi jk +
∑
k ∈X i

x
ª®®®¬ =

=
1

R · S

R∑
j=i

S∑
k=1
k<X i

yi jk +
1

R · S

R∑
j=i

��X i ��x =
=

1

R · S

R∑
j=i

S∑
k=1
k<X i

yi jk

︸                  ︷︷                  ︸
µ̂′i ··

+

��X i
��x
S

The estimated marginal mean of the shard factor is given by:

µ̂ · ·k =
1

T · R

T∑
i=1

R∑
j=1

yi jk =
1

T · R

R∑
j=1

T∑
i=1

yi jk =

=
1

T · R

R∑
j=i

©«
T∑
i=1
i<Xk

yi jk +
∑
i ∈Xk

x
ª®®®¬ =

=
1

T · R

R∑
j=i

T∑
i=1
i<Xk

yi jk +
1

T · R

R∑
j=i

|Xk | x =

=
1

T · R

R∑
j=i

T∑
i=1
i<Xk

yi jk

︸                  ︷︷                  ︸
µ̂′
··k

+
|Xk | x

T

The estimated marginal mean of the topic*system interaction

factor is given by:

µ̂i j · =
1

S

S∑
k=1

yi jk =
1

S

S∑
k=1
k<X i

yi jk +
1

S

∑
k ∈X i

x =

=
1

S

S∑
k=1
k<X i

yi jk

︸        ︷︷        ︸
µ̂′i j ·

+

��X i
��x
S

The estimated marginal mean of the system*shard interaction

factor is given by:

µ̂ ·jk =
1

T

T∑
i=1

yi jk =
1

T

T∑
i=1
i<Xk

yi jk +
1

T

∑
i ∈Xk

x =

=
1

T

T∑
i=1
i<Xk

yi jk

︸        ︷︷        ︸
µ̂′
·jk

+
|Xk | x

T

The estimated marginal mean of the topic*shard interaction

factor is given by:

µ̂i ·k =
1

R

R∑
j=1

yi jk =

{
1

R
∑R
j=1 yi jk if i < Xk

1

R
∑R
j=1 x if i ∈ Xk

=

{
µ̂ ′i ·k if i < Xk
x if i ∈ Xk

The predicted score for (MD6) is given by:

ŷi jk = µ̂ · · · + (µ̂i · · − µ̂ · · ·) +
(
µ̂ ·j · − µ̂ · · ·

)
+ (µ̂ · ·k − µ̂ · · ·)+(

µ̂i j · − µ̂i · · − µ̂ ·j · + µ̂ · · ·
)
+

(
µ̂ ·jk − µ̂ ·j · − µ̂ · ·k + µ̂ · · ·

)
+

(µ̂i ·k − µ̂i · · − µ̂ · ·k + µ̂ · · ·) =

= µ̂ · · · − µ̂i · · − µ̂ ·j · − µ̂ · ·k + µ̂i j · + µ̂ ·jk + µ̂i ·k =

= µ̂ ′·· · +
x

T · S

S∑
k=1

|Xk | − µ̂ ′i · · −

��X i
��x
S

− µ̂ ′·j · −
x

T · S

S∑
k=1

|Xk | −

µ̂ ′
··k −

|Xk | x

T
+ µ̂ ′i j · +

��X i
��x
S
+ µ̂ ′

·jk +
|Xk | x

T
+ µ̂i ·k =

= µ̂ ′·· · − µ̂ ′i · · − µ̂ ′·j · − µ̂ ′
··k + µ̂

′
i j · + µ̂

′
·jk + µ̂i ·k =

=

{
µ̂ ′·· · − µ̂ ′i · · − µ̂ ′

·j · − µ̂ ′
··k + µ̂

′
i j · + µ̂

′
·jk + µ̂

′
i ·k if i < Xk

µ̂ ′·· · − µ̂ ′i · · − µ̂ ′
·j · − µ̂ ′

··k + µ̂
′
i j · + µ̂

′
·jk + x if i ∈ Xk

=

=

{
µ̂ ′i jk + µ̂

′
i ·k if i < Xk

µ̂ ′i jk + x if i ∈ Xk



Thus, the estimated residuals for (MD6) are given by:

ε̂i jk = yi jk − ŷik j =

{
yi jk − µ̂ ′i jk − µ̂ ′i ·k if i < Xk

x − µ̂ ′i jk − x if i ∈ Xk
=

=

{
yi jk − µ̂ ′i jk − µ̂ ′i ·k if i < Xk

−µ̂ ′i jk if i ∈ Xk

Therefore, the estimated residuals ε̂i jk are independent of the

undefined values. As a consequence, the SS of the error andMSerror =
SSerror
dferror

are independent of the undefined values as well.
□
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