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Abstract. Ground-truth creation is one of the most demanding activ-
ities in terms of time, effort, and resources needed for creating an ex-
perimental collection. For this reason, crowdsourcing has emerged as a
viable option to reduce the costs and time invested in it.

An effective assessor merging methodology is crucial to guarantee a
good ground-truth quality. The classical approach involve the aggrega-
tion of labels from multiple assessors using some voting and/or classifica-
tion methods. Recently, Assessor-driven Weighted Averages for Retrieval
Evaluation (AWARE) has been proposed as an unsupervised alternative,
which optimizes the final evaluation measure, rather than the labels,
computed from multiple judgments.

In this paper, we propose s-AWARE, a supervised version of AWARE.
We tested ssAWARE against a range of state-of-the-art methods and
the unsupervised AWARE on several TREC collections. We analysed
how the performance of these methods changes by increasing assessors’
judgement sparsity, highlighting that s-~AWARE is an effective approach
in a real scenario.
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1 Introduction

System-oriented evaluation is based on the use of experimental collections con-
sisting of document corpora, topics, and relevance judgements, defining which
documents are relevant for which topics. Obtaining relevance judgments and
creating the ground-truth is a human-based activity and it is one of the most
demanding tasks in preparing an experimental collection. Traditionally, it has
been performed by relying on expert assessors [11], being quite onerous in terms
of time and costs.

Therefore, a more recent approach to ground-truth creation relies on crowd-
sourcing [2, 3]. Multiple judgements are collected for each document from many
crowd-assessors, possibly less qualified than the experts but cheaper, leveraging
on the larger number of assessors to shorten the overall task execution time.
The multiple judgments by crowd-assessors are then merged together, with the



overall objective to achieve an assessment quality comparable to the one of tradi-
tional expert assessors. Several studies, e.g. [4], have shown that crowd-assessors
often agree with experts, in particular when it comes to relevant documents [5].

Traditional approaches, like Majority Vote (MV) [14] or Expectation Max-
imization (EM) [8], merge multiple labels by the different crowd-assessors into
a final label which is used as the relevance judgement to compute performance
measures. However, a labelling error at the ground-truth level may have a dif-
ferent impact on different measures. For example, suppose that in the top-five
documents one is actually relevant while another one is mislabelled as relevant;
precision at five will have the same value, independently of the rank position
of the mislabelled document; on the other hand, Average Precision (AP) will
have different values depending on the rank position of the mislabelled docu-
ment. Therefore, the same error may have different effects on different measures
and also on different runs for the same measure, since different runs may rank
the mislabelled document differently. To overcome these issues, Ferrante et al. [6]
proposed Assessor-driven Weighted Averages for Retrieval Evaluation (AWARE)
which, differently from traditional approaches, computes performance measures
based on each crowd-assessor judgements and then merges these crowd-measures
into a final weighted measure, optimizing the merging process to the considered
measures and runs.

While AWARE adopts an unsupervised approach to determine the weights
to be used to merge the crowd-measures, in this paper we propose a super-
vised extension of AWARE, that we call s~sAWARE. We evaluate our s-AWARE
against unsupervised AWARE and state-of-the-art supervised and unsupervised
methods by using the TREC 2012 Crowdsourcing track [12] and the TREC 2017
Common Core track [1] datasets.

The paper is organized as follows: Section 2 presents some related work; Sec-
tion 3 explains the s~AWARE methodology; Section 4 describes the experiments
and the evaluation results; Section 5 draws some conclusions and outlooks for
future work.

2 Related Works

The most common approach, still very effective, to crowd-assessor merging is
Majority Vote (MV) [14]: it assigns to each document the most popular judge-
ment among those expressed by crowd-assessors; to deal with variable quality
workers, several weighted versions of MV have been proposed, e.g. [15, 14].

Expectation Maximization (EM) [8] addresses the problem in a probabilistic way,
by iteratively estimating the probability of relevance of each document and then
by assigning it the most probable judgement. Several versions of EM algorithms
have been proposed, optimizing whether the document relevance probability in
an unsupervised [8] or semi-supervised way [13]. Georgescu and Zhu [7] proposed
an EM method for optimizing the assessors’ reliability used to dinamically merge
crowd judgements. Whiting et al. [18] proposed a network based approach to es-
timate the assessor’s trustworthiness, using a modified version of PageRank.
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Fig. 1: Traditional vs AWARE approach.

Nellapati et al. [10] developed a mixed method, combining expert supervision,
machine learning algorithms and automatic error correction.

As shown in Figure 1, all the above methods end up by selecting an optimal
label, according to some criterion, among those assigned by crowd-assessors and
producing a single merged pool then used to compute performance measures.
However, different evaluation measures can be unfairly affected in by misla-
belled documents. Therefore, Assessor-driven Weighted Averages for Retrieval
Evaluation (AWARE) [6] directly computes the performance of a system on the
judgements given by every crowd-assessor and then combine the obtained mea-
sures by weighting each assessor on the basis of her/his estimated accuracy:

aware_j4(ry) = 3 K _a®
,M( t) ;M( t) ZZ’L:I Clh(t)

where m is the number of crowd-assessors to merge, (ff) is the value of
the performance measure computed on run r for topic ¢ according to the k-th
crowd-assessor, and ay, is the accuracy of the k-th crowd-assessor.

AWARE adopts an unsupervised approach to compute the a accuracy scores:
the more a crowd-assessor is “far way” from three random assessors (uniform,
over-estimating relevance, under-estimating relevance), the more accurate the
crowd-assessor is.

We will refer to this unsupervised version of AWARE as u-AWARE when
needed to distinguish it from the supervised version proposed in this paper.



3 s-AWARE Methodology

s-AWARE adopts a supervised approach where the more a crowd-assessor is
“close” to the gold standard, the better is her/his accuracy.

Given a set of systems S and a set of topics T', let My be the k-th crowd-
measure, i.e. the |T'| x |S| matrix containing the performance scores computed on
the judgments of the k-th crowd-assessor; let M* be the performance measure
corresponding to the gold standard. We consider two alternatives to quantify
the “closeness”C}, to the gold standard?:

— Measure closeness: we consider the Root Mean Square Error (RMSE) between
the crowd-measure and the gold standard one
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where M (-, s) indicates the average measure by topic
— Ranking of Systems closeness: we use the Kendall’s 7 correlation between the
ranking of systems using the crowd-measure and the gold standard one

O = (M-S 7 09)) = (57757 1

where A is the number of system pairs ranked in the same order in My(-, S)
and M (-, S), and D is the number of discordant pairs.

All the “closenesses” Cy, are then normalized in the [0,1] range, setting normal-
ized C}, equal to 1 with gold standard behaviour (RMSE equal to 0 or Kendall’s
T equal to 1).

Finally, to further emphasize the “closeness”, accuracy scores aj are com-
puted as: the original normalized C}, the squared Cy and the cubed Cj. Algo-
rithm 1 summarizes the accuracy computation process.

4 Evaluation

4.1 Experimental Setup
We compared s-AWARE approaches against the following baselines:

— unsupervised
e Majority Vote (mv) [14];

3 The original AWARE methodology considered additional ways to quantify “close-
ness”, i.e. Frobenious norm, Kullback-Leibler Divergence (KLD), and AP Correla-
tion (APC). Here, we focus on the two approaches which produced the best and
most stable results across different configurations.



Algorithm 1: s-AWARE accuracy computation.

Data: T training topic set; ff Vt € T ground truth generated by assessor k; 7y Vi € T
experts ground truth
Result: ap accuracy score for assessor k

1 M}, < compute pu(-) on ff; // assessor measures
2 M™ <« compute u(-) on 7¢; // gold measures
3 if RMSE then

a Cr, = RMSE (ﬁk(, S) — M~*(-, S)) ; // Closeness computation
5 wp =1—Cy ; // [0,1] normalization
6 else if Kendall Tau then

7 Cp=r1 (Mk(, S), M" (-, S)) ; // Closeness computation
8 wy =| Ck | ; // [0,1] normalization
9 end

-
=]

if squared closeness then ap = wi;

-
[

else if cubed closeness then ap = wi;
else ap = wg;

[
N

e Expectation Maximization with MV seeding (emmv) [8];

o u-AWARE with uniform accuracy scores (uniform);

o u-AWARE with squared distance from random assessors (unsup_rmse_tpc,
unsup-tau_tpc), using RMSE and Kendall’s 7, respectively, for “close-
ness” computation;

— supervised or semi-supervised

e supervised EM method (hard labels, PN discrimination, no boost ver-
sion) (emGZ) [7];

e semi-supervised EM (emsemi) [13], using the same training-test propor-
tion of s-AWARE.

We used Average Precision (AP) as performance measure. To evaluate the
different approaches, as done in the TREC 2012 Crowdsourcing track, we used
the AP Correlation (APC) [19] between the ranking of systems induced by each
merging approach and the gold standard.

We used the TREC 2012 Crowdsourcing track [12] data where participating
groups submitted 31 pools for 10 topics; these 10 topics were used in TREC
08 Adhoc track (T08) [17], consisting of 129 runs, and TREC 13 Robust track
(T13) [16], consisting of 110 runs. We also used a portion of real crowd-sourced
data from the TREC 2017 Common Core track dataset (T26) [1], consisting of
75 runs and 50 topics; Inel et al. [9] gathered relevance judgments by 406 crowd-
assessors, considering a subcorpus of NYTimes containing short documents (<
1000 words) and providing 7 judgments for each (topic, document) pair. In both
cases, we used the original NIST judgments as gold standard.

Since the first aim of crowd-sourcing is to save time and costs, relying on
a large expert-assessors training set is not feasible in a real scenario. For this
reason, we considered an extremely challenging 30%-70% split between training
and test, repeated 100 times, i.e. we used 3 topics as training and 7 topics as
test for TO8 and T13 and 15 topics as training and 35 topics as test for T26. In
all the cases, we considered k-tuples from 2 to 7 crowd-assessors and for each
k-tuple size we repeated all the computations 100 times, for validation purposes.
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Fig. 2: Crowd-assessors experimental assembling

Since s-AWARE trains on a set of topics and emsemi trains on a partition of
the documents for each topic, the evaluation is computed on the intersection of
the two test sets (i.e. 70% of the documents from 70% of the topics)

We explore two configurations of crowd-assessors, that we call Whole Asses-
sors (Figure 2 on the left) and Partitioned Assessors (Figure 2 on the right).

In the Whole Assessors case, each crowd-assessor judges completely all the
topics; this is the ideal and most favourable condition for supervised and semi-
supervised approaches because the crowd-assessors we learn from in the training
phase exactly match those we are evaluated against in the test phase. This
configuration is possible only for the T08 and T13 tracks, since in the TREC
Crodwsourcing 2012 track each participating group judged all the topics, but
not for the T26 track.

In the Partitioned Assessors case, each crowd-assessor judges just some doc-
uments of a topic and she/he possibly does not judge all the topics. Therefore,
the final set of judgements for each topic is assembled by combining judgements
coming from more assessors, in different proportions from topic to topics, and
also using different assessors for different topics. This is a more frequent case
in real crowd-sourcing scenarios and it is more challenging for supervised and
semi-supervised approaches since what they learn from in the training phase only
partially matches what they are evaluated against in the testing phase. This is
exactly the condition of the T26 tracks, where more crowd-assessors contribute
to the judgments of each topic. We also simulated this configuration on the T08



and T13 tracks, by assembling the judgments coming from more participants
into each topic.

To ease the reproducibility of the experiments, the source code is available
at: https://bitbucket.org/Lucapiaz/clef2020_saware/.

4.2 Experimental Results

Table 1 reports the comparison among the different approaches in terms of AP
Correlation on different tracks and for various k-tuple sizes. Baseline approaches
are in blue, u-AWARE ones in green, and s-AWARE ones in orange; the darker
the color, the higher the performance in terms of AP Correlation (APC); best
performing approaches are in bold.

In the Whole Assessors case, the ssAWARE sup_tau_cubed approach con-
stantly outperforms all the other approaches for all the k-tuple sizes on both
T08 and T13. This supports the idea that the Whole Assessors case is the most
favorable to supervised approaches, since we find the same crowd-assessors both
in the training and test sets and crowd-assessor judge whole topics. However, the
same does not happen for the supervised and semi-supervised baseslines — emGZ
and emsemi — which have lower performance than all the s~AWARE approaches
and most of the unsupervised approaches, especially emGZ on T13. We hypoth-
esize that this is due to s~sAWARE approaches being much more effective at
exploiting even a small training set (remember we use 30% data for training and
70% for testing). When it comes to s~sAWARE alternatives, we can observe as
Kendall’s 7 performs better than RMSE as “closeness” quantification and that
the more sharp cubed weighting typically gains some more performance. We can
also note how u-AWARE approaches have good performance too, typically better
than state-of-the-art baselines, confirming the previous findings by [6]. Finally,
we can observe as the performance of all the approaches tend to increase as the
k-tuple size increases.

In the Partitioned Assessors case, we can observe that on TO8 and T13
u-AWARE performs generally better than s~AWARE and the state-of-the-art
baselines. This supports the idea that the Partitioned Assessors case is the
most favorable to unsupervised approaches, since the training phase reflects less
what happens in the test phase; k-tuples size 2,3,4 on T13 are an exception,
since s-AWARE outperforms all the other approaches. In general, we can ob-
serve that s-AWARE still performs remarkably better than the supervised and
semi-supervised baselines — emGZ and emsemi — and better than the other un-
supervised baselines. In a sense, this turns out to be a “duel” all internal to
the AWARE family, which seems to better adapt to this fragmented case. This
is further highlighted by the case of T26, where s-~AWARE always outperforms
all the other approaches. We hypothesize this is due to the fact that T08 and
13 partitioned assessor are a bit more fragmented, i.e. smaller pieces from more
crowd-assessors, than the T26 ones, where there is a bunch of crowd-assessors
who judge a large part of several topics. Therefore, the gap between the training
and test phases is slightly smaller in this case and s-AWARE better exploit the
additional information available. As in the previous Whole Assessors case, cubed



Table 1: Baseline approaches in blue, u-AWARE ones in green, s-AWARE ones
in orange. The darker the color, the higher the performance in terms of AP

sup-_rmse

sup_tau

up-_rmse_square

S

sup-tau_squared

sup-_rmse_cubed

sup-tau_cubed

unsup-rmse_tpc

unsup-tau_tpc

Correlation (APC). Best performing approaches are in bold.
he]

uniform

emmv

emGZ

emsemi

T08-whole

k02
k03
k04
k05
k06
k07

0.6048
0.6317
0.6492
0.6689
0.6555
0.6719

0.6184
0.6499
0.6707
0.6958
0.6833
0.6998

0.6086
0.6366
0.6546
0.6751
0.6620
0.6782

0.6278
0.6659
0.6905
0.7221
0.7120
0.7274

0.6120
0.6414
0.6598
0.6812
0.6685
0.6845

0.6326
0.6766
0.7045
0.7409
0.7340
0.7482

0.6075
0.6324
0.6422
0.6808
0.6622
0.6709

0.6031
0.6298
0.6501
0.6732
0.6651
0.6834

0.6008
0.6265
0.6436
0.6625
0.6492
0.6657

0.5326
0.6099
0.6147
0.6569
0.6163
0.6696

0.5183
0.6025
0.6154
0.6512
0.5918
0.6396

0.5455
0.5413
0.5562
0.5445
0.5095
0.5028

0.5470
0.6097
0.6329
0.6535
0.5963
0.6443

T13-whole

k02
k03
k04
k05
k06
k07

0.6111
0.6526
0.6687
0.7061
0.6872
0.7045

0.6192
0.6616
0.6825
0.7237
0.7068
0.7232

0.6139
0.6562
0.6728
0.7106
0.6923
0.7092

0.6238
0.6692
0.6941
0.7387
0.7253
0.7402

0.6162
0.6594
0.6765
0.7148
0.6971
0.7135

0.6254
0.6733
0.7008
0.7478
0.7379
0.7515

0.6005
0.6254
0.6250
0.6797
0.6502
0.6552

0.6078
0.6548
0.6823
0.7209
0.7151
0.7330

0.6079
0.6486
0.6641
0.7011
0.6818
0.6996

0.5410
0.6088
0.6214
0.6613
0.6197
0.6708

0.4974
0.5926
0.6119
0.6491
0.5913
0.6452

0.5012
0.4770
0.4910
0.4478
0.4289
0.4062

0.5186
0.6085
0.6241
0.6497
0.5919
0.6476

k02
k03
ko4
k05
k06
k07

0.5314
0.5466
0.5549
0.5564
0.5683
0.5672

0.5390
0.5587
0.5690
0.5725
0.5863
0.5900

0.5332
0.5497
0.5584
0.5604
0.5729
0.5737

0.5456
0.5700
0.5830
0.5891
0.6064
0.6150

0.5350
0.5526
0.5621
0.5645
0.5775
0.5797

0.5500
0.5783
0.5935
0.6019
0.6226
0.6333

0.5508
0.5831
0.6037
0.6168
0.6552
0.6872

0.5317
0.5457
0.5553
0.5599
0.5692
0.5696

0.5294
0.5436
0.5512
0.5523
0.5638
0.5615

0.4919
0.5171
0.5153
0.5368
0.5287
0.5373

0.4944
0.5292
0.4967
0.4804
0.4785
0.4774

0.5024
0.5050
0.4992
0.4914
0.4782
0.4639

0.4913
0.5321
0.5191
0.5118
0.4962
0.4776

k02
k03
k04
k05
k06
k07

0.5842
0.6155
0.6372
0.6481
0.6616
0.6560

0.5959
0.6299
0.6528
0.6641
0.6776
0.6728

0.5862
0.6181
0.6402
0.6515
0.6653
0.6603

0.6038
0.6406
0.6647
0.6773
0.6914
0.6884

0.5879
0.6206
0.6430
0.6549
0.6691
0.6642

0.6078
0.6474
0.6722
0.6862
0.7015
0.7006

0.5998
0.6412
0.6706
0.6929
0.7211
0.7306

0.5767
0.6015
0.6270
0.6508
0.6663
0.6412

0.5820
0.6126
0.6340
0.6444
0.6579
0.6512

0.5406
0.5728
0.5848
0.6079
0.6165
0.6209

0.5052
0.5854
0.5757
0.5619
0.5573
0.5332

0.4945
0.4611
0.4157
0.3521
0.3044
0.1963

0.4847
0.5742
0.5838
0.6009
0.5840
0.5568

T26-partitioned | T13-partitioned | TO8-partitioned

k02
k03
k04
k05
k06
ko7

0.3817
0.3863
0.3824
0.3832
0.3926
0.4534

0.4008
0.4067
0.4072
0.4102
0.4232
0.4787

0.3796
0.3839
0.3795
0.3796
0.3896
0.4521

0.4084
0.4151
0.4179
0.4228
0.4366
0.4918

0.3774
0.3815
0.3767
0.3761
0.3870
0.4507

0.4124
0.4191
0.4236
0.4295
0.4441
0.4980

0.3531
0.3522
0.3421
0.3396
0.3568
0.4171

0.3928
0.4028
0.4029
0.4077
0.4207
0.4841

0.3837
0.3886
0.3853
0.3866
0.3961
0.4561

0.3731
0.3783
0.3791
0.3785
0.3781
0.4400

0.3362
0.3512
0.3525
0.3602
0.3584
0.4302

0.3506
0.3753
0.3688
0.3648
0.3466
0.3715

0.3625
0.3680
0.3625
0.3729
0.3737
0.4239




and squared s-AWARE approaches achieve, in general, better performance than
the basic closeness approach, since they emphasize more sharply the difference
between good and bad assessors.

Figure 3 shows the interaction plot between k-tuple size and the different
approaches. An interaction plot displays the levels of one factor on the X axis,
k-tuple size in our case, and has a separate line for the means of each level of
the other factor on the Y axis, approach effectiveness in terms of APC in our
case. This plots allows us to understand whether the effect of one factor depends
on the level of the other factor. Two parallel lines indicate that no interaction
occurred, whereas nonparallel lines indicate an interaction between factors; the
more nonparallel the lines are, the greater the strength of the interaction.

Figure 3a and 3c show the Whole Assessors case on T08 and T13. We can
observe how all the AWARE approaches, and especially the ssAWARE, better
exploit small k-tuple sizes and grow more rapidly than the baselines as the k-
tuple size increases. We can also note how the supervised emGZ approach struggles
in effectively exploiting the higher k-tuple sizes.

In Figure 3b and 3d we consider the Partitioned Assessors case for T0O8 and
T13. Again, we can observe that AWARE approaches better interact with the
k-size, even if in this context u~-AWARE approaches dominate the scene, being
this case easier for unsupervised approaches. Finally, Figure 3e highlights the
good performance of s-AWARE on the T26 track which is possibly the most
realistic dataset..

Overall, Figure 3 confirms and supports the previous observations about the
differences between the various approaches when facing the Whole Assessors
and Partitioned Assessors cases and highlight the strengths of the s-AWARE
approaches.

5 Conclusions and Future Work

In this paper, we have faced the problem of effectively merging crowd-assessors
and we have extended the AWARE approach to supervised techniques. We con-
ducted an extensive experimental evaluation based on several TREC collections.
We have evaluated approaches using few training data — just 30% for training
and 70% for testing — since this is the most suitable, yet challenging, case for a
real world scenario

We found that s-AWARE approaches outperform all the others in the Whole
Assessors case and they are still quite robust also in a real scenario under the
Partitioned Assessors case. Moreover, supervised and unsupervised AWARE
approaches perform consistently better than the analyzed state-of-the-art ap-
proaches and they are especially effective at small k-tuple sizes, i.e. fewer crowd-
assessors, making them more attractive for real world settings.

Future work will investigate how to extend AWARE approaches to better deal
with sub-assessors, i.e. the Partitioned Assessors case, by allowing for multiple
ay, scores for a topic, each one corresponding to a different sub-assessor.
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