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ABSTRACT
Evaluation is a bottleneck in data integration processes: it is per-
formed by domain experts through manual onerous data inspec-
tions. This task is particularly heavy in real business scenarios,
where the large amount of data makes checking all integrated tu-
ples infeasible. Our idea is to address this issue by providing the
experts with an unsupervised measure, based on word frequencies,
which quantifies how much a dataset is representative of another
dataset, giving an indication of how good is the integration process.
The paper motivates and introduces the measure and provides ex-
tensive experimental evaluations, that show the effectiveness and
the efficiency of the approach.
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1 INTRODUCTION
Data integration has always been considered as a key need for
both research and industry. Traditionally the focus has been the
integration of structured (typically relational) data sources where
the information is divided into multiple tables. More recently, the
attention paid to artificial intelligence and machine learning has led
to the development of specific techniques for integrating datasets.
From a technical perspective, these approaches typically imple-
ment a pipelined architecture, which consists of three major steps:
schema alignment, entity resolution, and data fusion [6].
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Despite the effort put by the research community (and partially
reviewed in the Related Work Section), data and dataset integration
is still far from being a solved problem and it is even less mature
when applied in a real production context. Apart from the intrinsic
complexity of the task, one of the barriers to fully empowering data
integration is the human effort needed for evaluating and tuning
the approaches. Indeed, you need to resort to controlled datasets,
built on top of a manually created ground-truth, in order to compare
your approach against this gold standard and score it accordingly.
This is a long and economically demanding process, it presents
serious challenges for scaling it up at the huge amounts of data
needed in a real business scenario. Moreover, it is not able to keep
pace with the quickly evolving data sources that you find in a real
context and that call for a repeated over time and/or incremental
integration process.

We address the problem from a completely different point of
view, looking for an unsupervised way to measure how “good” is an
integration process. By “good” we mean how much a data source
is representative of another one, i.e. how much it preserves the
informative content of another data source. Intuitively, the more a
dataset can be represented by an integrated source, the less there
is a loss of information when the integrated source is considered
in place of the original one; we call this input representativeness.
Viceversa, the more an integrated source can be represented by its
datasets, the more it is consistent with them; we call this output
representativeness.

Besides being an unsupervised measure, which reduces the re-
quired human effort and is suitable also for highly iterative and/or
incremental real business scenarios, our approach considers the
integration process as a whole and evaluates its quality after the
data fusion step, which is what practitioners and domain experts
are confronted with in a real context. On the contrary, most of the
current literature [9, 12, 20] focuses on evaluating just the entity
resolution step by using reference benchmarks and measures like
precision or recall.

This paper extends and consolidates the preliminary results intro-
duced in [14] by means of: (1) the introduction of an unsupervised
metric for supporting the validation and verification of a dataset
integration process; (2) the definition of scenarios demonstrating
the ability of the measure to work in a real business context; (3)
an extensive experimental evaluation1 based on shared datasets

1See the project github at https://github.com/softlab-unimore/UEDI
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(a) 𝐷1: the first data source.

entity id authors title venue
freund1995a yoav freund. boosting a weak ... in proceedings ...
haussler1994 haussler, d ... rigorous learning ... in proc. 7th ...
kearns1987 m. kearns, m. li ... on the learnability ... proceedings of ...
kearns1990 michael j. kearns. the computational ...
kearns1993b m.j. kearns. efficient noise-tolerant ... in proc. 25th ...
schapire1996 r. e. schapire ... learning sparse ... j. of computer ...
kearns1994a michael kearns, ... on the learnability ... proc. of the 26th ...
blum1994 avrim blum .... weakly learning ... in proceedings ...
freund1997a yoav freund... a decision-theoretic ... journal of ...

(b) 𝐷2: the second data source.

entity id authors title venue
freund1995a freund, y. boosting a weak ... in ’proceedings ...
haussler1994 haussler ... rigorous learning ... in proceedings ...
kearns1987 m. kearns ... on the learn-ability ... in proc. 19th stoc,
kearns1990 michael ... the computational ...
kearns1993b m. kearns. efficient noise-tolerant ... in proceedings ...
haussler1994a d. haussler, ... bounds on the sample ... machine learning,
kearns1988b michael kearns. thoughts on ... (unpublished),
schapire1997 schapire, r.e ... w.s.: boosting ... proceedings of ...
rivest1989 r. l. rivest ... inference of ... in acm symposium ...

Table 1: Source datasets used in the motivating example.

(a) 𝐼𝑃 : the Perfect
integrated
dataset.

id entity id ...
1 freund1995a ...
2 haussler1994 ...
3 kearns1987 ...
4 kearns1990 ...
5 kearns1993b ...
6 schapire1996 ...
7 schapire1997 ...
8 blum1994 ...
9 freund1997a ...
10 haussler1994a ...
11 kearns1988b ...
12 kearns1994a ...
13 rivest1989 ...

(b) 𝐼𝐶 : low quality
integrated dataset
(concatenation).

id entity id ...
1 freund1995a ...
2 haussler1994 ...
3 kearns1987 ...
4 kearns1990 ...
5 kearns1993b ...
6 schapire1996 ...
7 schapire1997 ...
8 blum1994 ...
9 freund1997a ...
10 haussler1994a ...
11 kearns1988b ...
12 kearns1994a ...
13 rivest1989 ...
14 kearns1987 ...
15 kearns1990 ...
16 kearns1993b ...
17 freund1995a ...
18 haussler1994 ...

(c) 𝐼𝑀 : low quality
integrated dataset
(merging).

id entity id ...
1 freund1995a ...
2 haussler1994 ...
3 kearns1987 ...
4 kearns1990 ...
5 kearns1993b ...

6 schapire1996,
schapire1997 ...

7 blum1994,
rivest1989 ...

8 haussler1994a,
freund1997a ...

9 kearns1988b,
kearns1994a ...

Table 2: Three possible integrated datasets.

demonstrating the effectiveness and efficiency of the approach for
high-dimensional and iterative / incremental integration processes.

The paper is organized as follows: Section 2 presents our ap-
proach; Section 3 introduces some relevant scenarios and reports
experiments about them; Section 4 discusses related works; finally,
Section 5 draws conclusions and outlooks for future work.

2 THE APPROACH
2.1 Motivating Example
Data integration in real scenarios is usually performed via try and
error approaches, requiring several iterations, where domain ex-
perts evaluate the correctness of the integrated datasets produced
at each step. The integration strategy is improved and tuned at each
step until the experts are satisfied with the result obtained.

Clearly, this is a fully manual and very demanding task in terms
of time, effort, and resources required. We provide here an example
of how this process works in practice to motivate the need for
automatic and unsupervised tools for supporting it.

We use the popular “Cora Citation Matching” data2 to create two
datasets of pubblications – 𝐷1 and 𝐷2 shown in Table 1 – where
each publication is described by a unique identifier, authors, title,
and venue. Table 2 shows some possible results from their inte-
gration. In particular, Table 2a shows 𝐼𝑃 , the perfect integration
according to the Cora ground truth. On the other hand, Table 2b
shows 𝐼𝐶 , a low-quality integration, obtained by just concatenating
entities for the two sources. As a result, some merges are missing
from it, i.e. some items from 𝐷1 and 𝐷2 are not recognized as re-
ferring to the same entity; for example, publication haussler1994
is mapped to two separate entities – respectively, the second and
the last entity– instead of the same one. Finally, Table 2c shows
𝐼𝑀 , another low-quality integration, obtained merging each entity
in 𝐷1 with an entity in 𝐷2. Five entities in 𝐼𝑀 are the result of a
correct integration process, since they are also in 𝐼𝑃 . The remain-
ing 4 entities (which were not merged in 𝐼𝑃 ) are here randomly
integrated. For example, the last entity, that refers to the publica-
tion kearns1988b, contains also information from the pubblication
kearns1994a, which is therefore not recognized as a distinct entity.

A domain expert would manually assess the quality of 𝐼𝐶 , and 𝐼𝑀 ,
by: 1) randomly sampling (or based on “sentinel” elements defined a
priori) a number of entities to check; 2) verifying their correctness;
and, 3) categorizing erroneous outputs to support the development
of improvements in the integration approach. An expert, analyzing
the integrated dataset 𝐼𝑀 , may discover that the second entity has
been correctly created while the sixth one contains an error since
it merges two items referring to different real world entities, i.e.
schapire1996 in 𝐷1 and schapire1997 in 𝐷2. On the other hand,
𝐼𝐶 contains two separate entries for the entity kearns1990 which
actually refer to the same entity and therefore are a duplication.

The effort required for performing the error analysis is very huge
due to the large size of the datasets typically involved. An accurate
evaluation requires scanning the entire integrated dataset searching
for duplicated and/or wrongly merged entities and a comparison
with the input datasets to verify that every real-world entity has
been included in the final result. Moreover, since the integrated
dataset is obtained after several try and error iterations, the error
analysis is repeated multiple times. Therefore, an automatic tool
for analyzing the quality of an integration process would largely
reduce the effort required for performing an integration task.

2.2 The model
We consider a dataset 𝐷 as a collection of entities 𝐷 = {𝑒1, . . . , 𝑒𝑁 }.
The integration of datasets is performed by means of an entity
integration function, defined below.

Definition 2.1 (Entity Integration process). The Entity Integration
process exploits an Entity Integration function (EI) to create an
integrated dataset of entities 𝐼 = 𝐸𝐼 (D) from a collection of datasets
D = {𝐷1, . . . , 𝐷𝑘 }. The 𝐸𝐼 function defines the logic for matching
and merging the entities in the input dataset collection D.

The integration approaches are usually evaluated with controlled
datasets, pre-existing ground truths. Accuracy, and,more frequently,
due to the unbalanced datasets, recall, precision, and F-measure are
used to evaluate the quality of the integration result.

2https://people.cs.umass.edu/~mccallum/data.html
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In business environments, the absence of a ground truth imposes
to define a different procedure for the evaluation. The quality of the
integration can be assessed through a verification and validation pro-
cess. The verification process aims to check the formal correctness
of the integrated dataset.

Definition 2.2 (Verified Entity Integrated Dataset). The Entity Inte-
grated Dataset 𝐼 = 𝐸𝐼 (D), where 𝐸𝐼 is an entity integration function
applied to a collection of datasets D = {𝐷1, . . . , 𝐷𝑘 }, should be:

• total: each entity of every input dataset should be repre-
sented in 𝐼 , i.e., ∀𝑒𝑖 ∈ 𝐷𝑘 , ∃ 𝑒 𝑗 ∈ 𝐼 , 𝑠 .𝑡 . 𝑒 𝑗 and 𝑒𝑖 refer to the
same real-world entity;

• minimal: 𝐼 should not contain duplicated entities, i.e.,∀𝑒𝑖 , 𝑒 𝑗 ∈
𝐼 , 𝑒𝑖 and 𝑒 𝑗 refer to different real-world entities.

The validation process assesses the correspondence of the infor-
mative content of the integrated dataset with the input sources.

The unsupervided technique for evaluating EI processes pro-
posed in this paper is based on a representativeness function that
scores how much a dataset 𝐷1 can be represented by a second
dataset 𝐷2 through the loss of information in using 𝐷2 instead of
𝐷1. We decided to implement the representativeness function by
analyzing the word frequency distribution in the datasets.

Definition 2.3 (Word frequency distribution in datasets). Given a
dataset 𝐷 , let 𝑉 be its vocabulary of terms. The word frequency
distribution 𝑓 𝑟𝑒𝑞𝐷 (𝑤) : 𝑉 → N0 of the dataset 𝐷 is a function
which associates each term𝑤 ∈ 𝑉 with its frequency in 𝐷 .

The simplest approach for the definition of a vocabulary of terms
𝑉 for a dataset is to apply a tokenization algorithm to the concate-
nation of all tuples in 𝐷 . Token splitting can be considered as a
solved problem [21] and a large number of techniques are available
in NLP code libraries.

Definition 2.4 (Dataset representativeness score). Given two datasets
𝐷1 and 𝐷2, the dataset representativeness 𝑟𝐷1→𝐷2 quantifies the
extent to which dataset 𝐷1 represents 𝐷2 by measuring how much
the word frequency distribution 𝑓 𝑟𝑒𝑞𝐷1 approximates 𝑓 𝑟𝑒𝑞𝐷2 .

In the next section, we propose a way to measure the approxi-
mation between two word frequency distributions in the context
of a data integration process. The representativeness score should
provide users with an assessment of how much datasets are rep-
resented by integrated sources by showing if there is any loss of
information; vice-versa, it should quantify how much integrated
sources are represented by the original datasets by showing if there
is any redundancy or irrelevant content.

2.3 Scoring representativeness
When assessing the quality of the integration process, we need
to consider the two sides of the coin, i.e. how well a source 𝐷

is represented by the integration 𝐼 and, vice-versa, how well the
integration 𝐼 is represented by a source 𝐷 .

If the integration process is perfect, we expect that the content
of 𝐷 is completely “covered” by the content of 𝐼 . This means that
the vocabulary used in𝐷 should be included in the vocabulary used
in 𝐼 , and the word frequency distribution of words in 𝐷 should be
less than or equal to the one in 𝐼 . The measure of the coverage
of these word frequency distributions can provide a measure of
the representativity of an integration source for a dataset. We call
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Figure 1: Example of word distributions.

this measure input representativeness 𝑟𝐷→𝐼 and we define it in
Equation (1).

Definition 2.5 (Input representativeness). Given two datasets 𝐷
and 𝐼 , where 𝐼 is the integration of 𝐷 according to some 𝐸𝐼 func-
tion, let 𝑉𝐷 be the vocabulary of 𝐷 and 𝑓 𝑟𝑒𝑞𝑋 (𝑤) be the word
frequency distribution of either 𝐷 or 𝐼 . We define the following
representativeness score:
𝑟𝐷→𝐼 = 1 − 1

|𝑉𝐷 |

∑︁
𝑤∈𝑉𝐷

𝑓 𝑟𝑒𝑞𝐷 (𝑤) −𝑚𝑖𝑛 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤))
𝑚𝑎𝑥 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤)) (1)

We expect that an integrated dataset contains more entities than
an input dataset, due to the contribution of other datasets. Never-
theless, excluding stop words and other very generic words, we
can suppose that the distribution of frequencies of words belonging
to the intersection of the vocabularies of 𝐼 and 𝐷 is close. By mea-
suring this closeness, we can evaluate how much the dataset can
represent its integration for the shared words. We call this measure
output representativeness, 𝑟𝐼→𝐷 , and it is defined in equation (2).

Definition 2.6 (Output representativeness). Given two datasets
𝐷 and 𝐼 , where 𝐼 is the integration of 𝐷 according to some 𝐸𝐼

function, let𝑉𝐷 be the vocabulary of 𝐷 and 𝑓 𝑟𝑒𝑞𝑋 (𝑤) be the word
frequency distribution of either 𝐷 or 𝐼 . We define the following
representativeness score:

𝑟𝐼→𝐷 = 1 − 1
|𝑉𝐷 |

∑︁
𝑤∈𝑉𝐷

𝑓 𝑟𝑒𝑞𝐼 (𝑤) −𝑚𝑖𝑛 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤))
𝑚𝑎𝑥 (𝑓 𝑟𝑒𝑞𝐷 (𝑤), 𝑓 𝑟𝑒𝑞𝐼 (𝑤)) (2)

We observe as the output representativeness 𝑟𝐼→𝐷 is defined
over the vocabulary 𝑉𝐷 of the dataset 𝐷 and not on the vocabulary
of the integration 𝐼 . Indeed, there is an intrinsic asymmetry in the
integration process and we need to keep the focus on the dataset 𝐷 ,
either considering how much it is represented by the integration
𝐼 , i.e. 𝑟𝐷→𝐼 , or how much it represents the integration 𝐼 , i.e. 𝑟𝐼→𝐷 ,
but without skewing the scores by including all the terms of 𝑉𝐼 .
Considering the whole vocabulary 𝑉𝐼 , and not just its overlap with
𝑉𝐷 , would just bring in all the other sources than 𝐷 , whose vocabu-
lary may differ a lot from 𝑉𝐷 , and, as a result, these additional (and
possibly unrelated) terms would mask how much 𝐷 and 𝐼 represent
each other.

Example 1. Figure 1 shows a simplified word frequency distribu-
tion for a dataset 𝐷1 and its integration 𝐼 . The x-axis represents
the words found in the data sources and the y-axis their respective
distribution. Note that, for sake of simplicity, the heights of the
frequency histograms are approximated to three possible values
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and the actual words are not reported on the x-axis. The areas
𝐴, 𝐵,𝐶, 𝐷, 𝐸 represent the word frequency distribution for 𝐷1 and
the areas 𝐵,𝐶, 𝐸, 𝐹,𝐺 the one of 𝐼 . 𝐴 and𝐺 represent words belong-
ing only to the input dataset and integrated dataset respectively.
The words in 𝐵,𝐶, 𝐷, 𝐸, 𝐹 are common to both the sources and: (1)
those of 𝐵 have the same frequency distribution; (2) those of 𝐶
and 𝐷 have frequency distribution equal to 𝐶 in the integration
and frequency distribution equal to 𝐶 + 𝐷 in the input dataset; (3)
those of 𝐸 and 𝐹 have frequency distribution equal to 𝐸 in the input
dataset and frequency distribution equal to 𝐸 + 𝐹 in the integration.
To have a high value of representativeness, (1) the frequency of the
common terms in the datasets should be similar (i.e. the regions D
and F have to be as small as possible), and (2) a small number of
terms should be used in a dataset only (i.e. the area of region A is
limited). This is the behavior modeled by equations 1 and 2, which
correspond to 𝑟𝐷→𝐼 ∝ 1− (𝐴 + 𝐷

𝐶+𝐷 ), and 𝑟𝐼→𝐷 ∝ 1− ( 𝐹
𝐸+𝐹 ) when

applied to the scenario represented in Figure 1.

2.4 Representativeness supporting the
verification

The representativeness score can be used to verify an integration
process, where the input representativeness score measures the to-
tality of the integrated dataset; the output representativeness score
the minimality of the integrated dataset.

Let 𝐼 be obtained by the integration of 𝐷1 and 𝐷2. The input
representativeness of 𝐼 with respect to the input datasets 𝐷1 and 𝐷2
is obtained by averaging their input representativeness scores (i.e.
𝑟𝐷1→𝐼 and 𝑟𝐷2→𝐼 ). This aggregated score provides a measure of
the totality of the integration process, since the more 𝐼 represents
the sources 𝐷1 and 𝐷2, the more the entities of 𝐷1 and 𝐷2 are also
in 𝐼 . On the other side, the output representativeness of 𝐷1 and
𝐷2 with respect to 𝐼 , obtained by averaging 𝑟𝐼→𝐷1 and 𝑟𝐼→𝐷2 , is a
measure of the minimality of the integration process. Indeed, if 𝐷1
and 𝐷2 have high output representativeness, it follows that 𝐼 does
not contain duplicated entities.

2.5 Representativeness supporting the
validation

An integration process can be validated by plotting the representa-
tiveness scores in a two-dimensional Cartesian plane. The 𝑥-axis
reports the input representativeness 𝑟𝐷→𝐼 , i.e. the totality, and shows
the values obtained by the datasets with respect to the integration;
the 𝑦-axis reports the output representativeness 𝑟𝐼→𝐷 , i.e. the mini-
mality, and shows the behavior of the integration with respect to
the input sources. Values closest to the point (1, 1) represent the
best performance. We call the distance from (1, 1) representativeness
distance and we claim that this is a measure of the validation of an
integration approach. Indeed, the more we depart from (1, 1), the
more the correspondences between entities in the input and inte-
grated datasets decreases. Note that only in ideal scenarios, where
the entities are represented in the input datasets with the same prop-
erty values, the combined representativeness score of a verified
and validated integrated dataset is (1, 1). Often, data representing
the same entities are not the same, due to updates, mismatches
and mistakes. This affects the word frequency distributions of the

Scenario input
repr.

output
repr.

𝐷1 → 𝐼𝐶 1 0.626
𝐷2 → 𝐼𝐶 1 0.538
𝐷1 → 𝐼𝑀 0.712 0.953
𝐷2 → 𝐼𝑀 0.633 0.918
𝐷1 → 𝐼𝑃 1 0.889
𝐷2 → 𝐼𝑃 0.917 0.849 0.00 0.25 0.50 0.75 1.00
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Figure 2: Input and output representativeness for the sources
of the motivating example.
corresponding datasets which will have small differences and make
representativeness values departing from (1,1).

Example 2. Figure 2 shows the values of the representativeness
scores obtained for the 𝐼𝑃 , 𝐼𝐶 , and 𝐼𝑀 integrated datasets, described
in Section 2.1. As expected, 𝐼𝑃 is the best integrated dataset, being
the closest to the point (1,1).

We observe that 𝐼𝐶 is the integration that better represents the
input datasets since it has the highest values for the input representa-
tiveness. It is the concatenation of the input datasets, so the resulting
input representativeness value is 1, since the input word frequency
distribution is completely included in the integrated dataset. Never-
theless, 𝐼𝐶 obtains the worst value of output representativeness, thus
meaning that it contains duplicated entries. 𝐼𝑀 shows the highest
results for the output representativeness. 𝐼𝑀 has been built minimiz-
ing duplicated items (all entries in the input datasets have been
merged). The worst values obtained for the input representativeness
score means that the integrated dataset does not completely repre-
sent the input datasets. This is due to the wrong entity-merges that
we have introduced. Note that input and output representativeness
have to be jointly evaluated and the values assumed by the ground
truth (𝐼𝑃 in the example) do not constitute an upper bound for the
values that input and output representativeness can assume. In Fig-
ure 2, 𝐼𝑀 and 𝐼𝐶 are both located in the yellow area, which includes
the elements with representativeness value greater than the one
of the ground truth for at least one dimension. Nevertheless, even
if 𝐼𝑀 has a higher value of output representativeness, the quality
of 𝐼𝑀 (as the distance from (1,1) shows) is worst than the one of
𝐼𝑃 due to the lower input representativeness. The same happens
for the quality of 𝐼𝐶 , which is worst than the one of 𝐼𝑃 due to the
lower output representativeness.

3 EXPERIMENTAL EVALUATION
We conduct a quantitative (in Sections 3.2 to 3.4) and qualitative
(in Section 3.5) evaluation of the effectiveness of our proposed
measures. Finally, in Section 3.6, we assess their efficiency.

3.1 Experimental setup
We use 12 publicly available use cases (see Table 3) from the bench-
mark of the Magellan tool3, that is the main reference to evaluate
entity matching approaches. The use cases consist each one of two
datasets of entities and the ground truth contains pairs of entities,
one for each dataset, labelled as matching and non matching items.
According to the literature [7], we consider entities as referring
to the same real world entity when the matching elements form
3https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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Use
Case

Name Input Datasets Integrated
Dataset

Shared Enti-
ties (%)

Unique En-
tities (%)

U1 Abt-Buy |𝐷1 | = 949 − |𝐷2 | = 920 |𝐼 | = 1174 58.5 41.5
U2 Amazon-Google |𝐷1 | = 1171 − |𝐷2 | = 1843 |𝐼 | = 2232 32.7 67.3
U3 Beer |𝐷1 | = 237 − |𝐷2 | = 233 |𝐼 | = 412 14.1 85.9
U4 Fodors-Zagats |𝐷1 | = 89 − |𝐷2 | = 238 |𝐼 | = 422 24.9 75.1
U5 iTunes-Amazon |𝐷1 | = 272 − |𝐷2 | = 278 |𝐼 | = 450 20.9 79.1
U6 iTunes-Amazon |𝐷1 | = 251 − |𝐷2 | = 255 |𝐼 | = 410 22.2 77.8
U7 DBLP-ACM |𝐷1 | = 2419 − |𝐷2 | = 2238 |𝐼 | = 2511 85.5 14.5
U8 DBLP-ACM |𝐷1 | = 2406 − |𝐷2 | = 2220 |𝐼 | = 2507 84.5 15.5
U9 DBLP-GoogleScholar |𝐷1 | = 2491 − |𝐷2 | = 9877 |𝐼 | = 7959 29.0 71.0
U10 DBLP-GoogleScholar |𝐷1 | = 2488 − |𝐷2 | = 9286 |𝐼 | = 7865 29.0 71.0
U11 Walmart-Amazon |𝐷1 | = 1578 − |𝐷2 | = 4297 |𝐼 | = 5080 14.0 86.0
U12 Walmart-Amazon |𝐷1 | = 1524 − |𝐷2 | = 4014 |𝐼 | = 4784 14.0 86.0

Table 3: The use cases considered.
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Figure 3: Verification and validation: measures.

a clique. In this case, we adopt a simple merging strategy by ran-
domly selecting one of the entity as the one resulting from the
merging process. The third and fourth columns in Table 3 show the
cardinalities of the input and integrated datasets. The Table also
shows for each use case the ratio of shared entities (i.e., entities in
the integrated dataset which are generated by merging more input
entities) and unique entities (i.e., entities which come from one of
the input sources only). The distribution of these kinds of entities
in the ground truth is typically unbalanced: only in U1 shared and
unique entities have a similar distribution.

We run all experiments on commodity hardware: a server with 4
virtual cores, 16GB of RAM, 256GB of local (SSD) storage and that
runs Ubuntu version 20.04.

3.2 Verification and validation of an integration
processes

We evaluate the extent to which representativeness supports the
verification and validation of an integration process: input rep-
resentativeness for the totality, output representativeness for the
minimality, and representativeness distance for the validation. The
idea of the experiment is to modify the datasets in a controlled way
and to check if the representativeness measures vary as expected
to reflect the changes.

The first plot on the left of Figure 3 shows how the input repre-
sentativeness scores measures the totality of the integration process.
For each use case, a number of integrated datasets have been cre-
ated from the ground truth, by selecting an increasing percentage of
ground truth entities, as specified in the x-axis. The input represen-
tativeness score computed with these reduced datasets is shown on
the y-axis. We expect that low input representativeness scores cor-
respond to integrated datasets composed of a reduced numbers of
entities. This is due to the existence of entities in the input datasets
that do not have any correspondence in the integration. The first
plot in Figure 3 shows that the score increases with the number
of entities included in the integrated dataset. In a similar way, the

second plot shows on the x-axis the percentage of duplicated enti-
ties that we have introduced in a "perfect" integrated dataset and,
on the y-axis, the corresponding output representativeness score.
As expected, the higher the number of duplicates, the lower the
value of the output representativeness. Finally, the third plot on the
right of Figure 3 evaluates how well the representativeness distance
measures the validation of an integration approach. We alter the
datasets by removing and by duplicating the same percentage of
entities; therefore, for example, a value of 10% on the x-axis means
that 5% of the entities are duplicated and 5% are removed; the y-axis
shows the corresponding value of the representativeness distance.
As expected, the distance grows with the increase of duplicated
and missing entities, providing an overall validation of the process.
Note that the slope of the curves is less sharp than the previous
ones. This is due to the joint contribution of the input and output
representativeness in the definition of this measure. Indeed, an
entity duplication generates both a reduction of the minimality and
an increase of the totality.

Take-away: the input and output representativeness are ef-
fective implementations of the totality and minimality properties
respectively, while the representativeness distance is a valuable
validation measure for an integration process.

3.3 Quality of the representativeness scores
3.3.1 Robustness to randomness in the data. We assess to what
extent randomness affects our proposed representativeness scores.
To this end, for each representativeness score, we repeat 100 times
each of the three experiments reported in the previous Section 3.2
by randomly and uniformly sampling with replacement the data
used in each configuration of the experiment. In this way, we can
compute mean and standard deviations for each score (i.e., the
input, output, and distance representativeness) and verify how
often a given score falls in the expected range as defined in Figure 3.
Indeed, the more a score falls in the expected range using random
and equivalent samples of the same data, the more robust is its
predictions, and the less we would change our conclusions due to
the observed sample.

Figure 4 shows the results of this experiment for each repre-
sentativeness score and use case. We considered three ranges: one
standard deviation in blue; two standard deviations in orange; and,
three standard deviations in green. Each bar in the histograms in-
dicates which ratio of the 100 scores falls in the blue, orange, or
green interval. For example, in Figure 4a for use case U1 and a
deterioration of 50% of the samples, i.e. 50% of the entities have
been removed in this case, we can observe that roughly 70% of the
input representation scores fall in the one standard deviation range
(blue bar); 20% in the two standard deviations range (orange bar on
top of the blue one); 10% (or less) in the three standard deviations
range (tiny green bar on top of the orange one).

In the case of the input representativeness in Figure 4a we can
observe as the scores fall in the one standard deviation range in
50% to 75% of the cases, indicating a quite stable measure; almost
all the other cases fall in the two standard deviations range, and
just few of them in the three standard deviations range. We can
observe a similar behaviour also for the output representativeness
in Figure 4b and for the representativeness distance in Figure 4c.
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(a) Input representativeness score.
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Figure 4: Ratio of representativeness scores.
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Figure 5: RMSE between the mean representatives scores and
the ideal score based on the ground truth.

3.3.2 Robustness of the representativeness scores varying the dataset
size. In this experiment we evaluate if the representativeness mea-
sures vary as the size of the considered datasets varies. The more
the measures are stable, the more the approach is robust to the
randomness of the data in the datasets. This experiment provides
a complementary assessment compared to previous experiments
that focused on the variability of results. We selected samples of
increasing size from the ground truth (equal to 10%, 20%, ...., 100%)
and we repeated this sampling process 100 times for each target
size. For each type of representativeness score, Figure 5 shows the
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(b) Random Values.

Figure 6: Verification and validation of the representativeness
measures against random merging strategies.
Root Mean Square Error (RMSE) between the score computed using
the entire ground truth and the mean score computed over the sam-
ples related to a target sample dimension. The representativeness
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metrics do not show significant variations: only for use cases con-
taining small datasets there are higher variations, although never
greater than 0.1. This demonstrates their robustness even when
significant changes in the size of the involved datasets are applied.

3.3.3 Robustness to the selected merging approach. We evaluate
how much the behaviour of our representativeness measures de-
pends on the actual merging strategy adopted to perform the in-
tegration of the matching entities. Ideally, we would like to ob-
serve some differences in the scores but not drastically different
behaviours, otherwise, we could not reliably compare alternative
integration processes. To this end, we repeat the experiment of
Section 3.2 but we use two different alternatives for merging. Fig-
ure 6a shows the results for the first approach which randomly
selects which entities to merge. Figure 6b shows the results for
the second approach which randomly selects the values of the
merged attributes. In both figures, we can observe a trend which is
consistent with all the previous experiments.

Take-away: the proposed representativeness scores are quite
robust to different types of deterioration and randomness in the
data, have a good predictive accuracy, and they are not biased by
the considered data fusion techniques.

3.4 Alternative techniques for measuring input
representativeness

In Section 2.3 we proposed a specific way of computing representa-
tiveness based on word frequency distributions computed on the
whole dataset. These distributions can be inaccurate for describing
entity similarities, computed at the tuple level.

In this section, we consider the following alternatives for comput-
ing the input representativeness score: the jaccard-based similarity
as a baseline, for its simplicity; the bleu-score [18] as a reliable unsu-
pervised measure for evaluating the quality of machine-translated
text; finally, embeddings largely used in NLP tasks to capture both
syntactic and semantic similiarity.

Jaccard and Bleu score-based representativeness. Firstly, we
tokenize the entries in the input and the integrated datasets and then
we measure the similarity between input and integrated entities.
For each input entity, we consider the maximum value computed.
The mean of all maximum values is the representativeness measure
for the considered input data source.

Embedding-based representativeness. We applied three dif-
ferent techniques (word2vec [11], fasttext [3], and glove [19]) for
computing the embeddings of the tokenized entries of input and
integrated entities. We measured the similarity between input and
integrated entities through the cosine similarity. For each input
entity, we consider the maximum value computed and we average
the results for all the entities as before.

3.4.1 Alternatives for the representativeness distance. We conduct
the experiment described in Section 3.2 comparing the representa-
tiveness distance obtained with the alternative measures. Figure 7
shows the results obtained. As expected, the representativeness
distance increases as the deterioration of the datasets increases.

Nevertheless, the measure defined in Equation 1 assumes the high-
est values in the majority of the scenarios, indicating that it better
recognizes the errors in the integrated dataset.

Take-away: our measure outperforms alternative representa-
tiveness metrics based on syntactic and semantic similarities.

3.4.2 Alternatives for input and output representativeness. We com-
pare alternative representativeness measures on the basis of how
they react to possible errors in the integration process. We consider
two error types: items in the input dataset which are merged even
if they represent different entities and items referring to the same
real world entities which are not merged. Note that this experiment
may resemble the one of Section 3.2 but here we operate directly
on the input datasets and on the different categories of entities.

Let us consider the "merge errors". We defined as unique entities
those entities in the input datasets which are not to be merged with
other entities in the integration process. When we erroneously
merge unique entities with other entities, the dimension of the inte-
grated dataset decreases as well as its totality, since there are input
entities which are not represented in the integrated dataset, i.e. the
wrongly merged ones. As a consequence, this kind of error will
affect the input representativeness. To evaluate the impact of these
errors, we created variations of the use case datasets, where differ-
ent amounts of errors have been introduced in the ground truth,
and we measured the difference of the input representativeness
score measured with respect to the ground truth. The results of the
experiments are shown in Figure 8, where for each use case, selected
percentages of wrong merged entities have been introduced. The
input representativeness (independently from the approach used
for its computation) decreases when the error increases in all use
cases and with all the approaches. Nevertheless, we observe that
our measure introduced in Equation 1 better represents these mis-
takes, by showing the largest variations. Note that Figure 8 shows
the results on the overall dataset, not only on the portion of the
dataset composed of unique entities. The unbalanced distribution
of unique entities (see Table 3) can introduce different amounts of
wrong merges in the use cases. Table 4 shows the “real” impact of
the perturbations introduced in the ground truth, by showing the
percentage of missing unique entities for each experiment. We see
that the variation in use cases U7 and U8 are less marked since the
reduced number of wrong entities introduced. The plots describing
U3, U11, and U12 are those with the largest variations, and this is
consistent with the perturbed integrated entities.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12
0.2 8.26 13.44 17.23 15.17 16 15.61 2.91 3.07 14.19 14.16 17.22 17.18
0.4 16.52 26.88 34.47 30.09 31.56 30.98 5.81 6.18 28.4 28.35 34.41 34.36
0.6 24.96 40.41 51.46 45.02 47.56 46.83 8.72 9.29 42.58 42.52 51.63 51.55
0.8 33.22 53.85 68.69 59.95 63.11 62.2 11.63 12.41 56.79 56.71 68.82 68.73
1 41.48 67.29 85.92 75.12 79.11 77.8 14.54 15.48 70.98 70.87 86.04 85.91

Table 4: Percentage of unique entities removed from the
integrated dataset for each experiment.

We conduct a similar analysis for the second issue, i.e. duplicated
entities. We called shared entities those entities obtained from merg-
ing multiple input entities. In this case, errors in the shared entities
result on items in the integrated dataset which are not merged and
this will affect the output representativeness. As before, we create
a controlled deterioration of the ground truth, where we introduce
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Figure 8: Impact of wrongly merged entities on the input representativeness.

errors on 20%, 40%, ...100% of the shared entities. Figure 9a shows
the difference of the output representativeness score with respect to
the ground truth: the more the decrease, the more errors in shared
entities are detected. Note that, as before, Table 9b is needed to
support the analysis. It shows the percentage of new entities intro-
duced with the perturbation: U7 and U8 show the largest amount
of entity introduced. This is consistent with the results in the figure
that show the largest variation.

Take-away: by examining the variations of input and output
representativeness, we understand the nature of the error affecting
the integration task. A predominant variation of the input repre-
sentativeness indicates the presence of errors in the recognition
of the no-match class. Errors in the match class produce a more
marked variation in the output representativeness.

3.5 Controlled data integration scenarios
Creating the datasets. For each use case in Table 3 we generate
four datasets, 𝐷1, 𝐷2, 𝐷3 and 𝐷4. 𝐷1 has a cardinality double than
𝐷2 which has the same cardinality as 𝐷3. 𝐷2 contains a subset of
the entities of 𝐷1. 𝐷3 contains entities that are not in 𝐷1. 𝐷4 con-
catenates 𝐷2 and 𝐷3. We evaluate the datasets in three controlled
scenarios. The first column in Table 5 shows the cardinalities of
the datasets and the associate vocabularies. The datasets are exper-
imented in three controlled scenarios.
Scenario 1: Datasets describing the same entities. We consider
𝐷1 and 𝐷2, which describe same entities. Since 𝐷1 is a superset of
𝐷2, it can be considered as a possible integration, called 𝐼𝑀 = 𝐷1 in
Figure 10a. 𝐼𝐶 is the integration obtained by a concatenation of the
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(a) Output representativeness variation in
case of non-merged entities.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12
0.2 21.55 12.46 4.13 8.77 7.33 7.07 30.63 30.55 16.15 15.04 5.45 5.33
0.4 37.56 22.49 8.01 14.69 12.67 11.46 54.4 53.45 30.66 28.2 9.78 9.62
0.6 49.66 29.48 10.92 20.85 16.89 16.1 71.64 70.68 42.73 38.88 12.93 12.86
0.8 56.64 33.29 12.62 22.99 19.78 20.24 82.04 80.93 51.84 46.68 15.02 15.07
1 59.2 35.04 14.08 24.88 22.22 23.41 85.46 84.52 55.4 49.7 15.65 15.76

(b) Percentage of duplicated entities introduced in the integrated
dataset for each use case.

Figure 9: Impact of errors on shared entities on the input
representativeness.
tuples in 𝐷1 and 𝐷2. Let us consider for example use case U10: we
know the ground-truth and it is thus possible to compute the error
rate, which is 0 for 𝐼𝑀 , and 0.333 for 𝐼𝐶 . Our measure shows that,
from a dataset perspective, the concatenation 𝐼𝐶 is the best integra-
tion scenario, since it does not generate any loss of information.
This is clear in Figure 10a, where 𝐼𝐶 assumes the maximum value of
input representativeness on the 𝑥-axis. Nevertheless, concatenation
introduces data duplication (𝐷1 is a superset of 𝐷2) and this is the
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Figure 10: The scenarios applied to use case U10.

reason why in Figure 𝐼𝐶 has an output representativeness value on
the 𝑦-axis lower than 𝐼𝑀 . The plot clearly shows that 𝐼𝑀 is a better
integration than 𝐼𝐶 , as we can expect by analyzing the data sources.
Scenario 2: Datasets describing different entities. We consider
𝐷1 and 𝐷3, which describe different entities. As in the previous
scenario, we consider 𝐷1 also as integration and we call it 𝐼𝑀 in
Figure 10b. 𝐼𝐶 is the integration obtained by the concatenation
of 𝐷1 and 𝐷3, which does not contain duplicates in this case. In
this scenario, 𝐼𝐶 should be the best integration since all entities
are included in this source. This is confirmed by the error rate, 0.5
for 𝐼𝑀 and 0 for 𝐼𝐶 . This is also clear by our measure applied to
U10 (see Figure 10b), comparing the coordinates of 𝐼𝐶 and 𝐼𝑀 in
the Figure. 𝐼𝐶 has coordinates (1, 0.79). This means the maximum
input representativeness value. 𝐼𝑀 has coordinates (0.73,0.9). The
output value is due to the low representativeness value for 𝐷3 in 𝐼𝑀
(0.46). Note that even if 𝐼𝑀 does not contain the entities described
in 𝐷3 the representativeness is not zero since there is still a low
number of words in 𝐷3 which are contained in 𝐼𝑀 anyway. The
high level measured from the integration perspective is because 𝐼𝑀
completely includes 𝐷1 which has twice the cardinality of 𝐷3.
Scenario 3: Datasets describing common entities. We consider
𝐷1 and𝐷4 which contain a half common and a half different entities.
𝐼𝑃 in Figure 10c is generated by concatenating 𝐷1 and 𝐷3. This is
a perfect integration since it includes all entities described by the
𝐷1 and 𝐷4 datasets. 𝐼𝑀 , as in the previous scenarios, is 𝐷1 only
which, in this case, does not describe half of the entities in 𝐷4.
Finally, 𝐼𝐶 is obtained by the concatenation of 𝐷1 and 𝐷4. This
integration suffers from redundancy, generated by the duplicated
entities of 𝐷1 contained in 𝐷4 and included twice in 𝐼𝐶 . The error
rates of these integrations are 0.5 for 𝐼𝑀 and 𝐼𝐶 , and no error rate
for 𝐼𝑃 . Figure 10c shows our measures applied to U10 and correctly
reflects the datasets included in the integration, by showing the
input representativeness values on the 𝑥-axis of 𝐼𝑃 and 𝐼𝑀 close, but
not equal to 1, thus meaning that there is some loss of information
in the integration. In 𝐼𝐶 , the input representativeness values are
equal to 1, since the datasets are completely represented, but the
integration suffers from redundancy as shown by the lowest output
representativeness value on the 𝑦-axis.
Extended evaluation. Table 5 summarizes the results of the ex-
periments performed on all datasets in the benchmark. The second
column reports the scenarios, and the other columns outline the
measures obtained by considering the 𝐼𝑀 , 𝐼𝐶 , and 𝐼𝑃 integrations.
The bold values are the best ones, i.e. the closest to the point (1,1).
According to the previous discussion, we expect 𝐼𝑀 to be the best
integration in Scenario 1, 𝐼𝐶 in Scenario 2, and 𝐼𝑃 in Scenario 3. The
measure performs correctly in almost all evaluations. Wrong best

Use case params Sc. 𝐼𝑀 𝐼𝐶 𝐼𝑃

U1 (|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=4776, |V2|=1431, |V3|=2258, |V4|=3092)

1 (0.83, 0.83) (1.0, 0.71)
2 (0.80, 0.89) (1.0, 0.73)
3 (0.7, 0.92) (1.0, 0.73) (0.93, 0.77)

U2 (|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=1664, |V2|=1139, |V3|=986, |V4|=1699)

1 (0.91, 0.89) (1.0, 0.66)
2 (0.75, 0.91) (1.0, 0.76)
3 (0.78, 0.95) (1.0, 0.68) (0.92, 0.85)

U3 (|D1|=50, |D2|=25, |D3|=25, |D4|=50,
|V1|=208, |V2|=120, |V3|=136, |V4|=235)

1 (0.9, 0.94) (1.0, 0.70)
2 (0.62, 0.97) (1.0, 0.89)
3 (0.70, 0.97) (1.0, 0.76) (0.92, 0.92)

U4 (|D1|=100, |D2|=50, |D3|=50, |D4|=100,
|V1|=375, |V2|=192, |V3|=192, |V4|=347)

1 (0.98, 0.95) (1.0, 0.65)
2 (0.65, 0.96) (1.0, 0.88)
3 (0.78, 0.98) (1.0, 0.72) (0.98, 0.92)

U5 (|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=697, |V2|=433, |V3|=462, |V4|=736)

1 (0.92, 0.87) (1.0, 0.65)
2 (0.72, 0.93) (1.0, 0.79)
3 (0.75, 0.94) (1.0, 0.70) (0.95, 0.85)

U6 (|D1|=90, |D2|=45, |D3|=45, |D4|=90,
|V1|=503, |V2|=293, |V3|=335, |V4|=529)

1 (0.95, 0.89) (1.0, 0.61)
2 (0.71, 0.93) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.67) (0.98, 0.85)

U7 (|D1|=2100, |D2|=1050, |D3|=365, |D4|=1415,
|V1|=7359, |V2|=4854, |V3|=1790, |V4|=5460)

1 (0.96, 0.87) (1.0, 0.59)
2 (0.87, 0.79) (1.0, 0.7)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

U8 (|D1|=2100, |D2|=1050, |D3|=388, |D4|=1438,
|V1|=7396, |V2|=4858, |V3|=1863, |V4|=5509)

1 (0.98, 0.87) (1.0, 0.59)
2 (0.87, 0.80) (1.0, 0.70)
3 (0.93, 0.91) (1.0, 0.61) (0.97, 0.86)

U9 (|D1|=2300, |D2|=1150, |D3|=1150, |D4|=2300,
|V1|=5993, |V2|=4119, |V3|=3979, |V4|=6364)

1 (0.92, 0.89) (1.0, 0.67)
2 (0.72, 0.91) (1.0, 0.8)
3 (0.76, 0.95) (1.0, 0.71) (0.93, 0.86)

U10 (|D1|=2200, |D2|=1100, |D3|=1100, |D4|=2200,
|V1|=5802, |V2|=3905, |V3|=3632, |V4|=5939)

1 (0.92, 0.89) (1.0, 0.66)
2 (0.73, 0.90) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.71) (0.96, 0.86)

U11 (|D1|=700, |D2|=350, |D3|=350, |D4|=700,
|V1|=2875, |V2|=2096, |V3|=1694, |V4|=3195)

1 (0.86, 0.91) (1.0, 0.71)
2 (0.72, 0.93) (1.0, 0.80)
3 (0.73, 0.96) (1.0, 0.73) (0.88, 0.89)

U12 (|D1|=600, |D2|=300, |D3|=300, |D4|=600,
|V1|=2152, |V2|=1713, |V3|=1231, |V4|=2453)

1 (0.88, 0.91) (1.0, 0.69)
2 (0.74, 0.96) (1.0, 0.79)
3 (0.77, 0.95) (1.0, 0.71) (0.88, 0.88)

Table 5: The evaluation of the scenarios in other datasets.

integrations in U1, U7 and U8 have all a very close distance to the
best one. The mistakes are due to the sparse vocabularies (and the
low cardinalities in the second dataset).

Take-away: the representativeness scores offer a fine-grained
explanation on why an integration strategy can be preferred to
another one.

3.6 Efficiency
The time performace has been evaluated on integration processes
involving datasets with increasing dimensionality (1K, 10K, 50K,
100K, 500K and 1M). These datasets have been obtained by applying
sampling with replacement to the data contained in use case U10
(the largest one). The experiment was repeated 5 times and Figure 11
shows the average times. All embedding-based approaches show
the same time performance, since they adopt the same algorithm
for mapping the datasets into the vector space of embeddings and
for computing the similarity. Moreover, they could not be applied
to the largest datasets since they overcame the maximum time (48
hours) we fixed for the duration of the experiment.

Our approach shows the best performance in all configurations:
it takes less than 2 minutes to compute the representativeness of the
largest dataset. The vectorized implementation of the cosine simi-
larity makes the embedding-based approaches fast, but for running
on datasets larger than 100K entities it requires more memory than
the one available in our system. The approach based on Jaccard’s
similarity has a poor performance since it cannot be vectorized for
performing our computation. For this reason, the execution time
grows quadratically with the size of the datasets.

Take-away: the developed approach is efficient in evaluating
high dimensional data integration scenarios.
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Figure 11: Computing representativeness: efficiency.

4 RELATEDWORK
Data Integration and Entity Resolution. Data integration is one of
the most challenging and long-lasting issues that the research com-
munity is confronted with for the last 30 years. The focus of the
research community in the last years was mainly oriented to Entity
Resolution (ER), the task concerning the development of techniques
for detecting and merging entities. A number of “integration func-
tions” to discover and match the different structures that represent
the same real-world entity have been proposed [1, 9, 12, 15, 20].
Among these, rule-based and machine learning (ML) techniques
are the most common ones. Regardless of the use of ML or not, ER
approaches require either careful manual configuration by domain
experts or a large amount of labeled data [13]. To cope with the first
issue, methods have been proposed for the fine tuning of parameters
such as [16], but all proposals require some human supervision. Re-
garding to the second problem, many semi-supervised approaches
in the field of active learning [2] and crowd-sourcing [22] have
been introduced. The fundamental idea behind these techniques is
to limit the validation intervention required by domain experts to a
minimum or to resort to crowd-workers. However, these methods
suffer from a poor quality control mechanism: indeed, the former ap-
proach focuses on optimizing recall while ensuring a user-specified
precision level [4, 7], while crowd-based solutions are affected by
uncertain labels provided by inexperienced workers [5].

Evaluating Data Integration and Entity Resolution. The effectiveness
of ER and data integration processes is typically measured against
ground truths. The availability of labeled data is a problem in real
scenarios, where experts have to manually assess the results ob-
tained. This is also a problem for the evaluation of the approaches
proposed by the research community since most of the techniques
are evaluated against the same small number of sources (typically
the benchmark made available by the Magellan tool4) with few
hundreds of labeled data. This makes possible the development and
promotion of approaches overfitting on those sources (which can
have features really different from the ones in sources available in
real scenarios). To the best of our knowledge, only recently [10]
addressed this issue, by proposing techniques for providing sam-
ples on datasets guaranteeing a fair evaluation. Similarly to other
techniques [8, 17], our approach is part of this human-machine co-
operation framework, but it mainly focuses on supporting analysts
in the unsupervised evaluation of the integration process.

4https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

5 CONCLUSION AND FUTUREWORK
We introduced the representativeness score, an unsupervised mea-
sure to evaluate the quality of an integration process by analyzing
the word frequency distributions of the datasets involved. The ex-
perimental evaluation showed that the representativeness is able to
provide a means for verifying and validating an integration process.

The approach is conceived for textual datasets. Future work will
deal with numeric datasets. Our idea is to exploit functional depen-
dencies (FD), by extending our model based on word frequencies
to a model based on FD frequencies.
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