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Abstract
ALS is a severe chronic disease characterized by a progressive but variable impairment of neurological
functions, characterized by high heterogeneity both in presentation features and rate of disease progres-
sion. As a consequence patients’ needs are different, challenging both caregivers and clinicians. Indeed,
the time of relevant events is variable, which is associated with uncertainty regarding the opportunity of
critical interventions like non-invasive ventilation and gastrostomy, with implications on the quality of
life of patients and their caregivers. For this reason, clinicians need tools able to support their decision
in all phases of disease progression and underscore personalized therapeutic decisions.

The goal of iDPP�CLEF is to design and develop an evaluation infrastructure for AI algorithms
able to: 1. better indicate intervention time; 2. stratify patients according to their phenotype and rate of
disease progression; 3. predict progression rate in a probabilistic, time dependent fashion.

The participation in iDPP�CLEF was satisfactory, hinting at the interest of the community concern-
ing the task. More so, the solutions identified by participants range over several different techniques and
provided valid input to such a highly relevant domain as the prediction of the ALS progression.
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1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes the progressive de-
generation of the motor neurons that control voluntary muscles, resulting in an increasing
impairment of motor and vital functions and leading to death usually within 4-5 years from the
diagnosis. Likely resulting from a complex interplay of genetic and environmental factors, ALS
is characterized by high heterogeneity in both symptoms and disease progression, especially in
the early stages of the disease. This heterogeneity is partly responsible for the lack of effective
prognostic tools in medical practice, as well as for the current absence of a therapy able to
effectively slow down or reverse the disease course. On the one hand, patients need support
for facing the psychological and economic burdens deriving from the uncertainty of how the
disease will progress; on the other, clinicians require tools that may assist them throughout the
patient’s care, recommending tailored therapeutic decisions and providing alerts for urgently
needed actions.
In order to improve the current diagnostic and prognostic situation, we should design and
develop Artificial Intelligence (AI) algorithms be able to:

• stratify patients according to their phenotype, assessed all over the disease evolution;

• predict the progression of the disease in a probabilistic, time dependent fashion;

• better describe disease mechanisms.

The Intelligent Disease Progression Prediction at CLEF (iDPP�CLEF) lab1 aims to design and
develop an evaluation infrastructure for driving the development of such AI algorithms. By
“evaluation infrastructure”, we mean experimental collections, evaluation protocols, evaluation
measures, ground-truth creation protocols, and so on. Indeed, in this context, it is fundamental,
even if not so common yet, to develop shared approaches, promote the use of common bench-
marks, foster the comparability and replicability of the experiments. Differently from previous
challenges in the field, iDPP�CLEF addresses in a systematic way some issues related to the
application of AI in clinical practice in ALS. Therefore, in addition to defining the risk scores
based on the probability that an event will occur in the short or long term period, iDPP�CLEF
also addresses the issue of providing information in a more structured and understandable way
to clinicians.

The paper is organized as follows: Section 2 presents related challenges; Section 3 describes
its tasks; Section 4 discusses the developed dataset; Section 5 explains the setup of the lab and
introduces the participants; Section 6 introduces the evaluation measures adopted to score the
runs; Section 7 analyzes the experimental results for the different tasks; finally, Section 8 draws
some conclusions and outlooks some future work.

2. Related Challenges

To the best of our knowledge, within CLEF, there have been no other labs on this or similar
topics before.

1https://brainteaser.health/open-evaluation-challenges/idpp-2022/

https://brainteaser.health/open-evaluation-challenges/idpp-2022/


Outside CLEF, there have been a recent challenge on Kaggle2 in 2021 and some older ones,
the DREAM 7 ALS Prediction challenge3 in 2012 and the DREAM ALS Stratification challenge4

in 2015.
The Kaggle challenge used a mix of clinical and genomic data to seek for insights about

the mechanisms of ALS and difference between people with ALS who progress faster versus
those who develop it more slowly. The DREAM 7 ALS Prediction challenge [1] asked to use
3 months of ALS clinical trial information (months 0–3) to predict the future progression of
the disease (months 3–12), expressed as the slope of change in ALS Functional Rating Scale
Revisited (ALSFRS-R) [2], a functional scale that ranges between 0 and 40. The DREAM ALS
Stratification challenge asked participants to stratify ALS patients into meaningful subgroups, to
enable better understanding of patient profiles and application of personalized ALS treatments.

Differently from these previous challenges, iDPP�CLEF focuses on explainable AI and on
temporal progression of the disease.

3. Tasks

iDPP�CLEF 2022 is the first edition of the lab and consists of pilot activities aimed both at an
initial exploration of ALS progression prediction and at understanding of the refine and tune
the labs itself for future iterations.

In particular, iDPP�CLEF targetes two kinds of activities:

1. preliminary and exploratory pilot tasks on disease progression prediction;

2. position papers on the explainability of the prediction algorithms.

Overall, this mix provides participants with the opportunity to make some hands-on experi-
ence with these data and provide feedback about the task design as well as to brainstorm on
how to evaluate this kind of algorithms and, in particular, assess their explainability.

3.1. Pilot Task 1: Ranking Risk of Impairment

As shown in Figure 1, this task focuses on ranking of patients based on the risk of impairment
in specific domains. More in detail, we use the ALSFRS-R scale to monitor speech, swallowing,
handwriting, dressing/hygiene, walking and respiratory ability in time and ask participants to
rank patients based on time to event risk of experiencing impairment in each specific domain.

More in detail, participants are asked to rank subjects based on the risk of early occurrence of

• Task 1a: Non-Invasive Ventilation (NIV) or (competing event) Death, whichever occurs
first;

• Task 1b: Percutaneous Endoscopic Gastrostomy (PEG) or (competing event) Death, whichever
occurs first;

2https://www.kaggle.com/alsgroup/end-als
3https://dreamchallenges.org/dream-7-phil-bowen-als-prediction-prize4life/
4https://dx.doi.org/10.7303/syn2873386.
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Figure 1: Task 1: from patients to ranking of patients based on time of event risk.

• Task 1c: Death.

For each of these tasks, participants are given a dataset containing 6 months of visits and are
asked to rank patients on the risk of occurrence of one of the above events after month 6.

In particular, for each sub-task, we ask two type of submissions from participants:

• submissions using only data available until Time 0, i.e. the time of the first ALSFRS-R
questionnaire;

• submissions using data available until Month 6.

Indeed, from the clinicians point of view, it is of interest to understand what they can say the
first time they see the patient (Time 0) and what they can say if they collect additional data for
the following 6 months.

3.2. Pilot Task 2: Predicting Time of Impairment

As shown in Figure 2, this task refines Task 1 asking participants to predict when specific
impairments will occur (i.e. in the correct time-window). In this regard, we assess model
calibration in terms of the ability of the proposed algorithms to estimate a probability of an
event close to the true probability within a specified time-window.

In particular, participants are asked to predict the time of the event. Where the event is

• Task 2a: NIV or (competing event) Death, whichever occurs first;

• Task 2b: PEG or (competing event) Death, whichever occurs first;

• Task 2c: Death.

As in the previous case, for each sub-task, we ask two type of submissions from participants:



Figure 2: Task 2: from patients to time of impairment.

• submissions using only data available until Time 0, i.e. the time of the first ALSFRS-R
questionnaire;

• submissions using data available until Month 6.

3.3. Position Papers Task 3: Explainability of AI algorithms

This task is not an evaluation challenge but rather a discussion on how to make these prediction
algorithms explainable, also in a visual way.

Therefore, this task called for position papers to start a discussion on AI explainability
including proposals on how the single patient data can be visualized in a multivariate fashion
contextualizing its dynamic nature and the model predictions together with information on
the predictive variables that most influence the prediction. We evaluated proposals of different
visualization frameworks able to show the multivariate nature of the data and the model
predictions in an explainable, possibly interactive, way.

Even if this task is not an evaluation challenge, authors of the papers are welcome to use
the datasets provided by iDPP�CLEF, if they wish to give examples of their algorithms and
solutions, or to explore the submissions made by other participants in iDPP�CLEF and apply
their explainability techniques to them.

4. Dataset

iDPP�CLEF developed a dataset containing patient records from two clinical institutions in
Turin, Italy, and in Lisbon, Portugal.

The dataset is fully anonymized, meaning that all the information which might reveal the
identity of a patient, e.g. place of birth or city of residence, are removed; we also avoided
absolute dates and made everything relative to Time 0, i.e. the date of the first ALSFRS-R
questionnaire [2].

Table 1 summarizes the main features and variables available in the dataset. The following
data are available for both the training and the test sets:

• the first available ALSFRS-R questionnaire a Time 0 (both single question scores and
total score).



Table 1
Main features of the iDPP�CLEF dataset.

Section Sub-section Variables
Baseline Patient Sex, Date of Birth

ALS Onset Date, Site
Diagnosis Date, Regions affected, Diagnostic Delay,

FVC, BMI at diagnosis

Follow-up

Progression scores ALSFRS-R, Rate of disease progression
Tests Hematologic tests, Muscle strength as-

sessed by manual testing, Respiratory func-
tion tests

Therapy ALS treatments
Other Regions affected, Upper and lower motor

neuron signs, Cognitive and neurophysio-
logical changes

Clinical Events History BMI premorbid, Family history, Comor-
bidities, Previous surgery and trauma

Interventions Date of NIV, Date of PEG, Date of Tra-
cheostomy

Survival Date of death

Lifestyle Lifestyle Working activity, Physical activity, History
of smoking, Marital status, Education level

Thus, for example, time-of-onset and time-of-diagnosis are expressed as relative delta
with respect to Time 0 in months (also fractions);

• the slope of the ALSFRS-R score between time-of-onset and Time 0 as:

𝑠𝑙𝑜𝑝𝑒 =
48− ALSFRS-R-score (Time 0)

Time 0− TimeOnset

• all the other static data, whose complete list is available at http://brainteaser.dei.unipd.it/
challenges/idpp2022/assets/other/static-vars.txt

• visits , containing either other ALSFRS-R questionnaires or Spirometry, i.e. Forced Vital
Capacity (FVC). The complete list of variables for each visit is available at http://brainteaser.
dei.unipd.it/challenges/idpp2022/assets/other/visits.txt.

We ensured that, for each patient, there are 6 months of data, so that predictions can be made
using either only data available at Time 0 or all the data available until month 6.

The following data are available only for the training set:

• Time of event (NIV, PEG, or DEATH); or

• Censoring time, i.e. time of the last available visit if none of the previous events occurs;

according to the following format:

http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/static-vars.txt
http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/static-vars.txt
http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/visits.txt
http://brainteaser.dei.unipd.it/challenges/idpp2022/assets/other/visits.txt


0x4bed50627d141453da7499a7f6ae84ab 1 PEG 20.5
0x4d0e8370abe97d0fdedbded6787ebcfc 1 PEG 18.3
0x5bbf2927feefd8617b58b5005f75fc0d 1 DEATH 17.6
0x814ec836b32264453c04bb989f7825d4 0 NONE 37.4
0x71dabb094f55fab5fc719e348dffc85 1 PEG 8.2
...

where:

• Columns are separated by a white space;

• The first column is the patient ID, a 128 bit hex number (should be considered just as
a string);

• The second column indicates whether the one of the above events occurred (1) or not (0);

• The third column is the occurred event. It comes from a controlled vocabulary and it can
be either NIV, PEG, DEATH, or NONE;

• The fourth column is the time of the event, or the censoring time, from Time 0 in months.

Training and test datasets follow a (roughly) 80%-20% proportion; more details about the split
into training and test are provided below.

Both Task 1 and Task 2 use the same datasets but we prepared a separate dataset for each of
the sub-tasks to make it simpler for participants to focus on a specific event to be predicted.
Table 2 provides details about the created datasets.

Creation of the datasets

The full dataset contained approximately 4,800 records linked to patients, with around 20,000
ALSFRS-R questionnaires in total and 5,500 records concerning spirometries. The original data
contain minor inconsistencies and typos. Therefore, we first process the data, removing records
that are likely wrong or do not provide essential information to enable prediction. In terms
of patient records we removed those presenting an unordered sequence of events (i.e., onset
after diagnosis or diagnosis after death). Such event sequences are likely due to typos and
other human errors, which result in wrong records that might introduce noise and spurious
information in the final dataset.

Furthermore, a patient record was dropped if one or more of the following pieces of informa-
tion were absent:

• onset or diagnosis dates;

• death date in records associated with dead patients;

• at least six months of historical ALSFRS-R questionnaires before an event (NIV, PEG, or
(competing event) Death).



Table 2
Training and test datasets.

Training
Sub-task Patients ALSFRS-R Spirometry Outcome

Sub-task a 1,454 3,668 1,189

• NIV: 675 patients (46.42%)

• DEATH: 636 patients (43.74%)

• NONE: 143 patients (9.83%)

Sub-task b 1,715 4,264 1,506

• PEG: 501 patients (29.21%)

• DEATH: 969 patients (56.50%)

• NONE: 245 patients (14.29%)

Sub-task c 1,756 4,366 1,536

• DEATH: 1,486 patients
(84.62%)

• NONE: 270 patients (15.38%)

Test
Sub-task Patients ALSFRS-R Spirometry Outcome

Sub-task a 350 872 273

• NIV: 162 patients (46.29%)

• DEATH: 152 patients (43.43%)

• NONE: 36 patients (10.29%)

Sub-task b 430 1,049 361

• PEG: 120 patients (27.91%)

• DEATH: 251 patients (58.37%)

• NONE: 59 patients (13.72%)

Sub-task c 494 1,220 414
• DEATH: 417 patients (84.41%)

• NONE: 77 patients (15.59%)

We adopt the filtering strategy mentioned above to grant that every record in the final dataset
contains enough information to allow proper predictions.

Concerning the ALSFRS-R questionnaires, we removed those records that had one or more
of the following problems:

• duplicate records;

• missing date;

• one or more of the ALSFRS-R items missing;

• ALSFRS-R reporting only the old 10𝑡ℎ item.



Table 3
Individuals and outcome types frequencies for each dataset released according to the task.

Variable Dataset A Dataset B Dataset C

Number of subjects 1804 2145 2250

Outcome type
NIV: 837

Death: 788
Censoring: 169

PEG: 621
Death: 1220

Censoring: 304

Death: 1903
Censoring: 347

Furthermore, if one or more of the ALSFRS-R sub-scores or the total ALSFRS-R score do not
agree with the sum of the associated ALSFRS-R items, we replace the value reported in the
original dataset with the sum of the linked items. Finally, regarding the spirometries, we
removed duplicated records, records with a missing date, and FVC percentage value.

Figure 3 illustrates a set of - synthetic - patients and their clinical history, describing whether
they satisfy the conditions to be inserted into the dataset. By construction, the first ALSFRS
visit (blue bullets) is considered as Time 0, while the moment of the previous spirometries
(yellow bullets) and subsequent visits is indicated as the difference in months with respect to
the reference ALSFRS.

• Patient 1 is inserted into the dataset, having a proper sequence of visits, questionnaires
and events (at least six months of information before the first event).

• Patient 2, on the other hand, cannot be included in the dataset since they do not have
enough information.

• For Patient 3, we observe that only four months passed between the first ALSFRS and the
first event. Thus, even though we have 6 months of overall information (first spirometry
to event), we cannot retain the record.

• Patient 4, regardless of the fact that they have a single ALSFRS, can be included in the
dataset since the distance between the first ALSFRS and the event is above six months.

• Both patients 5 and 6 need to be excluded from further analyses: the former does not have
six months of information before the first event, while the latter does not have enough
history, regardless of the spirometry taken before the first ALSFRS.

• Patients 7 and 8, on the other hand, can be considered: the former has a proper clinical
history, while the latter, even though they have a “censored” event, has more than six
months of history.

Out of the 2559 original valid patient records, 2250 contained at least 6 months of information.
Nevertheless, it is not possible to put all the patients on all the datasets. Assume for example
a patient that underwent a NIV intervention at month 5. The record associated with such
patient cannot be considered feasible for the Dataset A: it does not contain at least 6 months of
information before the outcome. Nevertheless, if the very same patient undergoes a PEG event
at month 7, the patient can be considered feasible to Dataset B (and therefore to Dataset C). Table
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Figure 3: Sequences of events that allow (or forbid) a patient to be considered as suitable to belong to
the dataset.

3 reports the number of valid patients present in each dataset, with the count of the labels that
characterize them. Dataset A is the least populated: an NIV procedure is often required quite
early in the course of the disease, and thus, for a large group of patients (755), it happened before
six months of follow-up. Thus we were forced to exclude them since not enough information
was available in those cases. We observe that dataset B contains 2145 individuals (414 were
discarded). We observe an increase in the number of individuals considered suitable for this
dataset: it is more likely that a PEG will be necessary much later in the progression of the
disease, and thus more patients accrue more than six months of data before the outcome. Notice
that patients that were labelled as NIV in dataset A, if they are suitable to enter dataset B
(meaning that has at least six months of information before the PEG), can be labelled as either
PEG, DEATH or NONE in the case they did not undergo any events other than the NIV for
which they entered dataset A. Conversely, patients labelled as DEATH can either be labelled
with PEG, in case they received a PEG after six months from the first ALSFRS-R and before their
death, or DEATH in case they did not, but they cannot switch to class NONE. The converse is
also true if we consider the relationship between datasets B and A. Finally, dataset C contains
2250 patients, with only 305 records discarded. Given the criteria used to construct Dataset C, it
contains patients present in datasets A and B. Patients that received an NIV or a PEG after six
months from the first ALSFRS-R have at least six months of information before their death. We
also include new patients: those that had an NIV before six months from the first ALSFRS-R
and those that had a PEG before six months but survived (or died) more than six months after
the first ALSFRS-R. Patients that were not included in dataset C are those that survived less
than six months after the first ALSFRS-R.
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Figure 4: Distribution of the distance between the first visit and one event among NIV, Death or
Censoring event (the one happening first) over the patient set.
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Figure 5: Distribution of the visits included in dataset A.

4.0.1. NIV and Death

Concerning dataset A (NIV, Death or Censoring Events), we observe that 1804 patients satisfy
the conditions to be included in the dataset (6 months of data between the first ALSFRS-R and
the event).

Figure 4 reports the distribution of patients with respect to the distance from the event.
We notice a very steep distribution, suggesting that the events often happen before month 6.
Compared to Figure 7 and Figure 10, we argue that the NIV is the most likely event in the first
six months. Both Figures 7 and 10 present a lower peak in the first part of the distribution.

Figure 5a reports the number of visits, according to their type, with respect to the time from
the reference ALSFRS-R questionnaire. We notice a predictable increase in the number of visits
with respect to the months passed since the diagnosis. Figure 5b illustrates the number of visits
associated with each feasible patient that was included in the dataset. Interestingly, we notice
that the mean number of visits in the considered six months is 3.3, with a slightly lower median
number.

Finally, Figure 6. reports the number of patients incurring in a certain event for dataset A.
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Figure 7: Distribution of the distance between the first visit and one event among PEG, Death or
Censoring event (the one happening first) over the patient set.

Among patients included in dataset A, 788 are labelled with the event DEATH, 837 with the
event NIV and 179 patients are labelled with NONE, which indicates the censoring event. If a
patient incurred both NIV and Death, the event associated with that patient that needs to be
predicted is only the NIV.

4.0.2. PEG and Death

Figure 7. reports the distribution of the distance to the event if we consider as feasible events the
PEG, Death or the censoring event. As we noticed with the number of subjects that belong to
each dataset, for what concerns dataset B, we have fewer subjects that have less than 6 months
between their first ALSFRS-R and the event. In particular, we are able to accrue 2145 suitable
subjects for this dataset.
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Figure 8: Distribution of the visits included in dataset B.
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Figure 9: Distribution of events in Dataset B.

Following what we observed for dataset A, we report the number of visits according to their
distance from the first ALSFRS-R (Figure 8a) as before, we notice an increase in the number of
visits with the months passing. In this case, as Figure 8b. illustrates, we have on average 3.35
visits for each patient, with the vast majority of patients having between 2 and 3 visits.

Figure 9 exhibits the distribution of events in dataset B. Differently from dataset A, where the
most common event was the NIV (the focus of the subtask) in this case, the most common event
is DEATH. This indicates a generally increased probability of incurring death before receiving a
PEG. From the perspective of an AI practitioner, it also indicates that models that were suited to
task A are likely not usable trivially on this second dataset but would require a specific tuning
in order to be applied on this second scenario.

4.0.3. Death and Censoring events

The final dataset, dataset C, concerns the death and censoring events and it is used in the
tasks that require predicting such events. As shown by Figure 10. for what concerns the
number of patients included in this dataset, we overcome both dataset A and dataset B: several
patients that did not have the right features to be considered feasible before (at least 6 months
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Figure 10: Distribution of the distance between the first visit and one event among Death or Censoring
event (the one happening first) over the patient set.
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Figure 11: Distribution of the visits included in dataset C.

of information from the first ALSFRS-R) can be included in this dataset. Dataset C counts 2250
records associated with as many patients.

Similarly to the previous datasets, Figure 11 illustrates the distribution of the visits, either
with respect to the timespan or to the patients. As for the previous case, we have 3.35 visits per
patient on average, with the mode on 3 visits and approximately 50% of the patients having
between 2 and 3 visits.

Figure 12 illustrates how events distribute in dataset C. We have more deaths than censoring
events. This is expected: historical data regards patients with ages up to more than 90 years
followed sometimes for several years. As mentioned before, 1903 patients overwent the death
event, while 347 incurred into the censoring event. Notice that, in this case, we have more
censoring events than for what concerns previous datasets, since patients that incurred NIV
and/or PEG but survived are considered suitable for the censoring event in this case.
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Figure 12: Distribution of events in Dataset c.

Split into training and test

Each of the three available datasets (sub-task a, b, and c) was split into a training set and a test
set, with proportions 80% and 20%, respectively. The data were split stratifying the subjects
according to outcome time and to the specific outcome type (i.e., death, NIV, none for sub-task
a, death, PEG, none for sub-task b, and death, none for sub-task c). Stratifying by these two
variables is instrumental to the fairness of the challenge as it forces an equal distribution of their
levels across the two subsets. The simplest method to verify whether stratification has yielded
a satisfactory split is to compare the distributions of the stratification variables (outcome time
and outcome type) in each training/test pair. From the literature, certain variables are known to
be particularly relevant for predicting events related to ALS progression [3], therefore, even
though they were not included in the stratification criteria, sex, age at onset, onset site, ALSFRS-F
slope, and the number of available visits in the first 6 months were also verified to be equally
represented in the training and test sets. Tables 4, 5, and 6 report the variables’ distributions for
sub-task a, b, and c, respectively: the second column reports the distribution in the training
sets and the third column in the test sets. Note that outcome time is measured in months from
time 0, i.e., the first registered ALSFRS-R visit, while age at onset is measured in years. Since the
distributions were similar, the training/test split provided to the participants met best-practice
quality standards.

The distributions of the two variables used to stratify are also represented in Figures 13,
14 and 15 via bar plots for categorical variables (i.e., outcome types), and density plots for
continuous variables (i.e., outcome time).



Table 4
Sub-task a, comparison between training and test populations. Continuous variables are presented as
median [1st - 3rd quartiles]; discrete variables as count (percentage on sample total), for each level.

Training Test
Number of subjects 1454 350

Outcome type
Death: 636 (44%)
NIV: 675 (46%)

Censoring: 143 (10%)

Death: 152 (43%)
NIV: 162 (46%)

Censoring: 36 (10%)
Outcome time 17.75 [11.14-30.99] 20.72 [11.25-36.76]

Sex
M: 743 (51%)
F: 711 (49%)

M: 188 (54%)
F: 16 (46%)

Age at onset 64.89 [55.66-70.76] 64.76 [56.66-71.58]

Onset site

Bulbar: 449 (31%)
Axial: 3 (0.002%)

Generalized: 4 (0.003%)
Limbs: 998 (68%)

Bulbar: 105 (30%)
Axial: 0 (0%)

Generalized: 0 (0%)
Limbs: 242 (70%)

ALSFRS-R slope 0.43 [0.24-0.79] 0.41 [0.23-0.80]
Number of available visits 2.00 [2.00-3.00] 3.00 [2.00-3.00]

Table 5
Sub-task b, comparison between training and test populations. Continuous variables are presented as
median [1st - 3rd quartiles]; discrete variables as count (percentage on sample total), for each level.

Training Test
Number of subjects 1715 430

Outcome type
Death: 969 (57%)

501 (29%)
Censoring: 245 (14%)

Death: 251 (58%)
NIV: 120 (28%)

Censoring: 59 (14%)
Outcome time 19.97 [12.57-36.53] 21.82 [12.70-38.30]

Sex
M: 923 (54%)
F: 792 (46%)

M: 241 (56%)
F: 189 (44%)

Age at onset 65.14 [56.86-71.88] 64.83 [55.99-70.42]

Onset site

Bulbar: 499 (29%)
Axial: 31 (2%)

Generalized: 8 (0.5%)
Limbs: 1177 (68.5%)

Bulbar: 125 (29%)
Axial: 12 (3%)

Generalized: 1 (0.2%)
Limbs: 292 (68%)

ALSFRS-R slope 0.47 [0.25-0.84] 0.44 [0.24-0.85]
Number of available visits 2.00 [2.00-3.00] 2.00 [2.00-3.00]



Table 6
Sub-task c, comparison between training and test populations. Continuous variables are presented as
median [1st - 3rd quartiles]; discrete variables as count (percentage on sample total), for each level.

Training Test
Number of subjects 1756 494

Outcome type
Death: 1486 (85%)

Censoring: 270 (15%)
Death: 417 (84%)

Censoring: 77 (16%)
Outcome time 24.68 [14.42-41.84] 22.48 [13.72-38.91]

Sex
M: 930 (53%)
F: 826 (47%)

M: 273 (55%)
F: 221 (45%)

Age at onset 65.38 [58.27-72.18] 65.03 [57.02-70.86]

Onset site

Bulbar: 554 (31.5%)
Axial: 32 (2%)

Generalized: 4 (0.5%)
Limbs: 1162 (66%)

Bulbar: 149 (30%)
Axial: 13 (3%)

Generalized: 1 (0.2%)
Limbs: 331 (67%)

ALSFRS-R slope 0.49 [0.26-0.88] 0.45 [0.24-0.85]
Number of available visits 2.00 [2.00-3.00] 2.00 [2.00-3.00]

Figure 13: Comparison of the distributions of stratification variables for sub-task A: outcome type on
the left and outcome time on the right. The distribution on the training set is in blue while that of the
test set in orange.

Figure 14: Comparison of the distributions of stratification variables for sub-task B: outcome type on
the left and outcome time on the right. The distribution on the training set is in blue while that of the
test set in orange.



Figure 15: Comparison of the distributions of stratification variables for sub-task C: outcome type on
the left and outcome time on the right. The distribution on the training set is in blue while that of the
test set in orange.



5. Lab Setup and Participation

5.1. Guidelines

Participating teams were provided with the following guidelines:

• The runs should be submitted in a textual format in the participant repository, both
described below;

• Each group can submit a maximum of 5 runs for each sub-task, thus amounting to
maximum 15 runs for each of Task 1 and Task 2;

• For each task, participants are asked to submit two types of runs: either using only the
information available at Time 0 or using all the information available in the first 6
months.

Runs should be uploaded using the following name convention for their identifiers:

<teamname>_T<1|2><a|b|c>_<train>_<freefield>

where:

• teamname is the name of the participating team;

• T<1|2><a|b|c> is the identifier of the task the run is submitted to, e.g. T1b for Task 1,
sub-task b;

• train is data window used to train the algorithm. It can be either M0, if only the data
available at Time 0 have been used, or M6 if all the data available in the first 6 months
have been used;

• freefieldis a free field that participants can use as they prefer.

For example, a complete run identifier may look like

upd_T2b_M6_survRF

where:

• upd is the University of Padua team;

• T2b means that the run is submitted for Task 2, sub-task b;

• M6 means that the algorithm has been trained using all the data available in the first 6
months;

• survRF suggests that participants have used survival random forests as a prediction
method.



Participant Repository

Participants are provided with an individual git repository for all the tasks they take part in.
The repository contains the runs, resources, and possibly the code produced by each participant
in order to promote reproducibility and open science. The repository is organised as follows:

• submission: this folder contains the runs submitted for the different tasks.

• score: this folder contains the performance scores of the submitted runs.

• code: this folder contains the source code of the developed system.

• resource: this folder contains any additional resources created during the participation.

• report: this folder contains the template for participant report.

The submission and score folders are organized into sub-folders for each task as follows:

• submission/task1: for the runs submitted to the first task. Similar structure for the other
tasks.

• score/task1: for the performance scores of the runs submitted to the first task. Similar
structure for the other tasks.

The goal of iDPP�CLEF is to speed up the creation of systems and resources for ALS pro-
gression prediction as well as openly share these systems and resources as much as possible.
Therefore, participants are more than encouraged to share their code and any additional re-
sources they have used or created.

All the contents of these repositories are released under the Creative Commons Attribution-
ShareAlike 4.0 International License5.

Task 1 Run Format

Runs had to be submitted as a text file with the following format:

0x4bed50627d141453da7499a7f6ae84ab 0.897 0 PEG upd_T1b_M6_survRF
0x4d0e8370abe97d0fdedbded6787ebcfc 0.773 1 PEG upd_T1b_M6_survRF
0x5bbf2927feefd8617b58b5005f75fc0d 0.773 2 DEATH upd_T1b_M6_survRF
0x814ec836b32264453c04bb989f7825d4 0.615 3 NONE upd_T1b_M6_survRF
0x71dabb094f55fab5fc719e348dffc85 0.317 4 PEG upd_T1b_M6_survRF
...

where:

• Columns are separated by a white space;

• The first column is the patient ID, a 128 bit hex number (should be considered just as
a string);

5http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/


• The second column shows the prediction score that generated the ranking. It is expected
to be a floating point number in the range [0, 1]. This score must be in descending
(non-increasing) order;

• The third column is the rank of the patient by her/his risk of impairment, starting from 0.
This is expected to be a strictly increasing integer number. It is important to include the
rank so that we can handle tied scores (for a given run) in a uniform fashion;

• The fourth column is the predicted event. It comes from a controlled vocabulary and it
can be either NIV, PEG, DEATH, or NONE. Note that, since each sub-task is focused on the
prediction of a specific event (NIV, PEG, or DEATH), this column will contain that event
or the competing event DEATH or NONE;

• The fifth column is the run identifier, according to the format described above. It must
uniquely identify the participating team and the submitted run.

Task 2 Run Format

Runs had to be submitted as a text file with the following format:

0x4bed50627d141453da7499a7f6ae84ab 6-12 PEG upd_T2b_M6_survRF
0x4d0e8370abe97d0fdedbded6787ebcfc 18-24 PEG upd_T2b_M6_survRF
0x5bbf2927feefd8617b58b5005f75fc0d 24-30 DEATH upd_T2b_M6_survRF
0x814ec836b32264453c04bb989f7825d4 >36 NONE upd_T2b_M6_survRF
0x71dabb094f55fab5fc719e348dffc85 >36 PEG upd_T2b_M6_survRF
...

where:

• Columns are separated by a white space;

• The first column is the patient ID, a 128 bit hex number (should be considered just as
a string);

• The second column shows the prediction window in months. Possible values are taken
from a controlled vocabulary as follows:

– 6-12: the event will happen in the range of months (6, 12];

– 12-18: the event will happen in the range of months (12, 18];

– 18-24: the event will happen in the range of months (18, 24];

– 24-30: the event will happen in the range of months (24, 30];

– 30-36: the event will happen in the range of months (30, 36];

– >36: the event will happen in the range of months (36,+∞).

• The third column is the rank of the patient by her/his risk of impairment, starting from 0.
It is important to include the rank so that we can handle tied scores (for a given run) in a
uniform fashion;



Table 7
Teams participating in iDPP�CLEF 2022.

Team Name Description Country Repository Paper
BioHIT National Centre for Scientific

Research Demokritos (NCSR
Demokritos)

Greece https://bitbucket.org/
brainteaser-health/
idpp2022-biohit

–

CompBioMed Department of Medical Sci-
ences, University of Turin

Italy https://bitbucket.org/
brainteaser-health/
idpp2022-compbiomed-unito

Pancotti et al. [4]

FCOOL Faculty of Sciences of the
University of Lisbon

Portugal https://bitbucket.org/
brainteaser-health/
idpp2022-fcool

Branco et al. [5] and
Nunes et al. [6]

LIG GETALP Laboratoire d’Informatique
de Grenoble, Université
Grenoble Alpes

France https://bitbucket.org/
brainteaser-health/
idpp2022-lig-getalp

Mannion et al. [7]

SBB University of Padua Italy https://bitbucket.org/
brainteaser-health/
idpp2022-sbb

Trescato et al. [8]

Table 8
Break-down of the runs submitted by participants for each task and sub-task. Participation in Task 3
does not involve submission of runs and it is marked just with a tick.

Team Name Total Task 1 Task 2 Task 3
a b c a b c

BioHIT 18 3 3 3 3 3 3 –
CompBioMed 40 8 8 6 6 6 6 –
FCOOL 15 – – – 5 5 5 ✓
LIG GETALP 23 4 4 4 4 4 3 –
SBB 24 4 4 4 4 4 4 –

Total 120 19 19 17 22 22 21

• The fourth column is the predicted event. It comes from a controlled vocabulary and it
can be either NIV, PEG, DEATH, or NONE. Note that, since each sub-task is focused on the
prediction of a specific event (NIV, PEG, or DEATH), this column will contain that event
or the competing event DEATH or NONE;

• The fifth column is the run identifier, according to the format described above. It must
uniquely identify the participating team and the submitted run.

5.2. Participants

Overall, 43 teams registered for participating in iDPP�CLEF but only 5 of them actually
managed to submit runs for at least one of the offered tasks. Table 7 reports the details about
the participating teams.

Table 8 provides breakdown of the number of runs submitted by each participant for each
task and sub-task. Overall, we have received 120 runs which are roughly broken down evenly
among the different tasks.
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6. Evaluation Measures

iDPP�CLEF adopted several state-of-the-art evaluation measures to assess the performance of
the prediction algorithms, among which:

• ROC curve and/or the precision-recall curve (and area under the curve) to show the trade-off
between clinical sensitivity and specificity for every possible cut-off of the risk scores;

• Concordance Index (C-index) to summarize how well a predicted risk score describes an
observed sequence of events.

• E/O ratio and Brier Score to assess whether or not the observed event rates match expected
event rates in subgroups of the model population.

• Specificity and recall to assess, for each interval, the ability of the models of correctly
identify true positives and true negatives.

• Distance to assess how far the predicted time interval was from the true time interval.

To ease the computation and reproducibility of the results, scripts for computing the measures
is publicly available6.

The next two sections provide details about the adopted measures for each Task.

6.1. Pilot Task 1: Ranking Risk of Impairment

The runs submitted for Task 1 were evaluated by means of Harrel’s concordance index (C-index)
[9], area under the receiver operating characteristic curve (AUROC) [10], and the Brier score
(BS) [11]. The 95% confidence intervals of the C-index and the AUROC were also considered
[12].

The C-index has an advantage over the other considered metrics (i.e., AUROC and BS) in
that it can be used to evaluate model discrimination on the test sets regardless of censored
data. According to the best practices in the field [13], before computing the C-index, a final
censoring time equal to the last time-to-event in the training was set on each test set. This
ensured consistency between Task 1’s final results and those that might have been obtained by
the participants during model development.

The AUROC and BS were computed at various prediction horizons (PHs). Specifically, seven
clinically relevant PHs were considered, namely: 12, 18, 24, 30, 36, 48, and 60 months after the
baseline. For each PH, the corresponding version of the test set comprised: all patients who
experienced an event before the PH, and all patients who experienced an event or were censored
after the PH as censored patients (and were, thus, censored at that PH). As the status of patients
censored before the PH was, by definition, unknown, they were excluded from performance
evaluation at that PH.

To contextualize the results obtained by the participants, each run was compared to the
empirical lower bound established by the average performance of 100 random classifiers (i.e.,
such that their output was a random continuous number, uniformly sampled in the range [0, 1]).

6https://bitbucket.org/brainteaser-health/idpp2022-performance-computation

https://bitbucket.org/brainteaser-health/idpp2022-performance-computation


6.2. Pilot Task 2: Predicting Time of Impairment

To evaluate the predictions of Task 2, the selected evaluation metrics were: the specificity, the
recall, and a measure of distance between the predicted and correct time intervals.

Confusion matrices were computed to derive specificity, i.e., the number of correct negative
predictions divided by the total number of negatives, and recall, i.e., the ratio of correct positive
predictions over the total predicted positives. Two types of confusion matrix were computed to
evaluate two possible prediction goals: time interval prediction approach and label prediction
approach.

For the time interval prediction approach the outcome times reported in the column Time
of the published test sets were mapped to the corresponding interval (“6-12”, “12-18”, “18-24”,
“24-30”, “30-36”, or “>36” months). A conformance check was performed on the participants’
predicted times: predictions in the time interval “0-6” were reassigned to the interval “6-12”, i.e.,
the closest allowed interval. The confusion matrices reported the predicted time interval vs the
true time interval, independently of the predicted event.

In the label prediction approach, maintaining the outcome time mapped as above, goodness
of prediction was assessed by fixing the observation time to each time interval and evaluating
the predicted label vs the true label. Let true_label be the label reported for the subject in the
column Type of the published test sets, this_interval_label the corresponding label used in the
confusion matrix of a specific time interval, true_time_interval the time interval in which the
outcome happens, observation_time the time interval under evaluation, predicted_label the label
predicted by the participants, this_interval_predicted_label the predicted label for the specific
time interval, and predicted_time_interval the time interval in which the participants predicted
the outcome. Then, the ground truth was constructed as follows.

• if true_label = "NONE”, then this_interval_label = "NONE”;

• if true_time_interval > observation_time, then this_interval_label = "NONE”;

• if true_time_interval < observation_time, then this_interval_label = "CENSORED”;

• if true_time_interval = observation_time and true_label = "NIV”, then this_interval_label =
"NIV”;

• if true_time_interval = observation_time and true_label = "PEG”, then this_interval_label
= "PEG”;

• if true_time_interval = observation_time and true_label = "DEATH”, then this_interval_label
= "DEATH”;

• if true_time_interval = observation_time and true_label = "CENSORED”, then this_interval_label
= "CENSORED”.

Similarly, the predicted labels were remapped as follows.

• if predicted_label = "NONE”, then this_interval_predicted_label = "NONE”;

• if predicted_time_interval > observation_time, then this_interval_predicted_label = "NONE”;



• if predicted_time_interval < observation_time, then this_interval_predicted_label = "CEN-
SORED”;

• if predicted_time_interval = observation_time and predicted_label = "NIV”, then
this_interval_predicted_label = "NIV”;

• if predicted_time_interval = observation_time and predicted_label = "PEG”, then
this_interval_predicted_label = "PEG”;

• if predicted_time_interval = observation_time and predicted_label = "DEATH”, then
this_interval_predicted_label = "DEATH”;

• if predicted_time_interval = observation_time and predicted_label = "CENSORED”, then
this_interval_predicted_label = "CENSORED”.

This manipulation allowed a fair comparison of the predicted label vs the true label for each
interval, actualized in comparing this_interval_label and this_interval_predicted_label.

Furthermore, a measure of distance between the predicted and correct time intervals, in
months, was also considered (AbsDist). To compute the AbsDist, all the time intervals were
replaced with the mean value of each interval (i.e., “6-12” was replaced with 9, “12-18” with 15,
“18-24” with 21, “24-30” with 27, “30-36” with 33, and “>36” with 39). The difference between the
predicted values and the true values was then computed as 𝑚𝑒𝑎𝑛𝑉 𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 −
𝑚𝑒𝑎𝑛𝑉 𝑎𝑙𝑢𝑒𝑡𝑟𝑢𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. The obtained differences were, by construction, in the range
[−36;+36] where a smaller modulus corresponds to more accurate predictions. Negative values
correspond to a events that occur before the predicted time and positive values to events that
occur after. Finally, the AbsDist was obtained by averaging the differences absolute values.

To contextualize the results obtained by the participants, each run was compared to the
performance of several synthetic runs, with the following characteristics:

• min_interval: a run in which the predicted time intervals are identical for all subjects,
and fixed at the first possible time interval, i.e. “6-12”;

• max_interval: a run in which the predicted time intervals are identical for all subjects,
and fixed at the last possible time interval, i.e. “>36”;

• interval_18_24: a run in which the predicted time intervals are identical for all subjects,
and fixed at the time interval “18-24”;

• random_interval: 100 randomly generated runs, but with the same distribution as the test
set distribution (i.e., such that their output was sampled among the labels “6-12”, “12-18”,
“18-24”, “24-30”, “30-36”, “>36” following the same distribution of the true intervals);

• inverse_distr_interval: 100 randomly generated runs, but with an inverse distribution
compared to the test set distribution (i.e., such that their output was sampled among the
labels “6-12”, “12-18”, “18-24”, “24-30”, “30-36”, “>36” following the inverse distribution of
the true outcome);

• corr_interval: 100 correlated runs, with correlation coefficient to the true intervals ∼ 0.7.



7. Results

For each task, we report here the analysis of the performance attained by the runs submitted by
the Lab’s participants according to the metrics described in Section 6.

7.1. Pilot Task 1: Ranking Risk of Impairment for ALS

We first determine the performance of the submitted runs in terms of C-index. As expected, the
random classifiers yielded an average C-index of around 0.5 in each sub-task. Runs submitted by
the BioHit team were comparable to those obtained by the random classifiers when considering
sub-tasks a and b, meanwhile they were slightly better than random when considering sub-task
c. In all three sub-tasks, runs submitted by other participants significantly outperformed the
random classifiers with the CampBioMed team leading the pack (max C-index > 0.725). The
complete list of figures concerning the c-index is available in Appendix A.

Secondly, we evaluate the submissions in terms of AUROC. The AUROC confirmed the results
obtained when considering the C-index. Again, as expected, the random classifiers yielded an
AUROC of around 0.5. Runs submitted by the BioHit team showed a discrimination that was
comparable to the one of the random classifiers, and all runs submitted by other participants
significantly outperformed the random classifiers. The CampBioMed and SBB teams obtained
the best results when all the information available in the first 6 months was considered (M6
runs).

Across all sub-tasks, higher AUROC values were obtained when the PH was short (12-18
months) or long (48-60 months). This behaviour is mostly due to the trade-off between PH length
and number of events at various time points. Short PHs tend to lead to increased predictive
power as they are tightly correlated with the input data, however, they might be too close to
the start of follow-up for many events to have been observed; on the contrary, longer PHs have
a weaker link to the input data (harder to predict), but more events are available, leading to a
more robust model training. The complete evaluation of the submitted runs in terms of AUROC
is available in Appendix B.

Overall, model discrimination was acceptable, with C-index and AUROC values around 0.7
for all submitted models across all sub-tasks. Participants’ runs performed better in sub-task b
(prediction of PEG or death) than in the other sub-tasks according to all discrimination metrics.

As a final anylsis concerning pilot task 1, we compute the BS for the runs submitted for all the
sub-tasks. The random classifier yielded a BS of around 0.325 regardless of the considered PH
and sub-task as the random probability values were, on average, always well distributed in the
range [0, 1]. Runs submitted by the CampBioMed team showed the best calibration at short PHs
(12-24 months), while those submitted by the SBB team showed the worst one, mainly due to a
consistent overestimation of the event probability. Other participants’ runs, when considering a
short PH, led to BS values that were comparable with those obtained by the random classifiers,
as their models neither accurately predict the event probability, nor showed consistent under-
or overestimation trends. Some runs submitted by the CampBioMed team, which had good
calibration with a short PH, led to a poorer calibration at longer PHs (48-60 months). All other
runs submitted by the participants significantly outperformed the random classifiers at 48-60
months by showing good calibration, with the SBB team leading the pack.



Overall, calibration was comparable across different sub-tasks. Instead, for most submitted
runs, the BS decreased as the PH widened. This result suggest that the submitted models
were trained without setting an artificial censoring time on the training set, leading to a
better calibration in the long term, and an overestimation of short-term event probability. For
most submitted runs, discrimination and calibration improved across all sub-tasks as dynamic
variables were considered (M0 vs. M6), suggesting that, for ALS, collecting dynamic features
for the initial six months, instead of using baseline features only, is likely to lead to better
performance in describing disease progression. Results achieved by iDPP�CLEF participants
in terms of BS is available in Appendix C.

Overall, for Task 1, runs submitted by the CampBioMed team were the best performing across
the board; meanwhile, runs submitted by the BioHit team led to the lowest discrimination,
but still yielded acceptable calibration at long PHs. Finally, the SBB and LIG GETALP teams
obtained comparable results when considering runs obtained using all the information available
in the first 6 months (M6 runs); meanwhile, when using only the information available at time 0
(M0 runs), runs submitted by the SBB team showed worse discrimination than those submitted
by the LIG GETALP team.

7.2. Pilot Task 2: Predicting Time of Impairment for ALS

Appendix D and Appendix E contain respectively the specificity-recall plots for the time interval
and the label prediction approaches.

The graph shows the specificity on the x-axis (from 1 to 0, left to right), and the recall on the
y-axis (from 0 to 1, bottom to top). The ideal classifier would have specificity = 1 and recall = 1,
and would therefore be located in the upper left corner: as a general guidance, the closer a run
to the upper left corner, the better the classification obtained.

In all graphs, the synthetic runs with constant predictions (set to the minimum or maximum
time interval) are located in the corners of the plot, depending on the time interval. As expected,
the 100 runs with 70% correlation always form a cloud in the upper left corner, while the 200
randomly generated runs, 100 with the same distribution and 100 with the inverse distribution
always remain in the lower left sector, with 1 > 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 > 0.5 and 0 > 𝑟𝑒𝑐𝑎𝑙𝑙 > 0.5.

Across the different time intervals and the three sub-tasks, there is no homogeneity of
performance among the participants. Overall, the two best performing teams were CompBioMed
and FCOOL, outperformed in a few cases by SBB team.

There is a great variety of results across sub-tasks and observation times. It is always true
that predicting the label none lead to a higher recall, compared to the prediction of NIV, PEG,
and death. The best performing teams were, once again, CompBioMed and FCOOL.

Finally, we evaluate the AbsDist for all runs submitted for sub-tasks a, b and c. As expected,
the max_interval run led to the worst result across all tasks, as most subjects’ true time interval
is smaller than the maximum one. Runs random_interval, min_interval, and inverse_corr_interval
led to comparable distance values. Runs submitted by the BioHit team had AbsDist values
comparable with the synthetic run interval_18_24, suggesting that their models might predict
the average time interval for most subjects in all sub-tasks. All runs submitted by the other
teams significantly outperformed the aforementioned synthetic runs with the CampBioMed and
SBB teams leading the pack when considering sub-task a, and sub-tasks b and c, respectively.



Finally, the corr_interval synthetic run led to the smallest AbsDist value. Note, however, that
this run was included only as an arbitrary reference to represent an excellent model, and its
distance value was not strictly expected to be reached by any participant. AbsDist computed
for all runs submitted can be found in Appendix F.

Predicting the correct event time interval proved to be a challenge for all teams, especially
in terms of recall. However, almost all teams were able to obtain good AbsDist values as, on
average, their models, despite not being able to precisely identify the correct time interval,
tended to predict an interval that was immediately before or after the true one.

As observed for Task 1, runs performed better when considering all the information available
in the first 6 months (M6 runs) rather than only the information available at time 0 (M0 runs).

7.3. Approaches

In this section, we provide a short summary of the approaches adopted by participants in
iDPP�CLEF. There are two separate sub-sections, one for Task 1 and 2 focused on ALS
progression prediction and the other for Task 3, on eXplainable AI (XAI) approaches for such
kind of algorithms.

Task 1 and 2

BoiHIT explored the use of logistic regression, random forest classifiers, XGBoost, and LightGBM.
Decision trees and boosting approaches were preferred due to their ability to deal with both
categorical and numerical/continuous features and the interpretability they offer. Even if
LightGBM was the model with the best performance, BoiHIT found out that this kind of
approaches might not be appropriate for time dependent problems and that time to event
analysis methods, such as survival analysis, might yield better results.

CompBioMed [4] considered three main approaches. The simplest one consisted on fitting a
standard survival predictor separately for each event as outlined above for independent events,
called Naive Multiple Event Survival (NMES). Another was the recently developed Deep Survival
Machine (DSM), based on deep learning and capable of handling competing risks. Finally, they
also proposed a time-aware classifier ensemble method, that also handles competing risks,
called Time-Aware Classifier Ensemble (TACE). All the above approaches achieved comparable
performance among them. Only the TACE models appeared to be slightly worse than the rest in
when using 6 months of data. Moreover, no clear advantage of the DSM models, that specifically
handles competing risks, was observed with respect to the NMES models, which treat all events,
as if they were independent.

FCOOL [5] proposes a hierarchical approach, with a first-stage event prediction, followed by
specialized models predicting the time window to a particular event. The procedure is three-fold:
first, it creates patient snapshots based on clustering with constraints, thus organizing patient
records in an efficient manner. Second, it uses a pattern-based approach that incorporates recent
advances on temporal pattern mining to the context of classification. This approach performs
end-stage event prediction while allowing the entire patient’s medical history to be considered.
Finally, exploiting the predictions from the previous step, specialized models are learned using
the original features to predict the time window to an event. This two-stage prediction approach



aimed to promote homogeneity and lessen the impact of class imbalance, in comparison to
performing one single multilabel task.

LIG GETALP [7] employed Cox’s proportional hazards model to the task of ranking the risk of
impairment, using the gradient boosting learning strategy The output of the time-independent
part of the survival function calculated by the gradient boosting survival analysis method is
then mapped to the interval (0, 1), via a sigmoid function. To estimate the time-to-event, LIG
GETALP used a regression model based on Accelerated Gradient Boosting (AGB). This being
a standard regression model, it does not take censoring into account and Mannion et al. uses
class predictions based on the Task 1 survival model to “censor” the time-to-event predictions.

SBB [8] considered three survival analysis methods, namely: Cox, SSVM, and RSF. They
were chosen to represent a broad spectrum of baseline models including parametric (SSVM),
semiparametric (Cox), linear (Cox, SSVM), and nonlinear (RSF) models. The Cox model and
the RSF can only output risk scores, which can be used to address Task 1 by ranking ALS
patients according to their risk of impairment, but do not provide a straightforward solution to
predicting Task 2’s time of impairment. To extend these approaches to Task 2, the predicted
time of impairment for a given patient was selected as the median predicted time to impairment,
i.e., the time at which the estimated survival function crossed the 0.5 threshold. Instead, the
SSVM can be used either as a ranker or a time regressor depending on how the risk ratio
hyperparameter is set during model training. Here, the SSVM was initially trained as a time
regressor to address Task 2 directly. Then, its predicted times were converted into risk scores in
the range [0-1], as requested by the challenge rules, via Platt scaling.

Task 3

Nunes et al. [6] proposes a novel approach that generates semantic similarity-based explanations
for patient-level predictions. The underlying idea is to explain the prediction for one patient
by considering aspect-oriented semantic similarity with other relevant patients based on the
most important features used by ML approaches or selected by users. To build rich and easy to
understand semantic-similarity based explanations, Nunes et al. developed five steps: (1) the
enrichment of the Brainteaser Ontology [14] through integration of other biomedical ontologies;
(2) the semantic annotation of patients (if not already available); (3) the similarity calculation
between patients; (4) selection of the set of patients to explain a specific prediction; and (5) the
visualization of the generated similarity-based explanations.

Buonocore et al. [15] trained a set of 4 well-known classifiers to predict death occurrence: Gra-
dient Boosting (using XGB implementation), Random Forest, Logistic Regression and Multilayer
perceptron. For the XAI methods Buonocore et al. focused our attention on three different meth-
ods for post-hoc, model-agnostic, local explainability, selecting SHAP, LIME and AraucanaXAI.
Then, Buonocore et al. evaluated and compared XAI approaches in terms of a set of metrics
defined in previous research on XAI in healthcare: identity: if there are two identical instances,
they must have the same explanations; fidelity: concordance of the predictions between the XAI
surrogate model and the original ML model; separability: if there are 2 dissimilar instances, they
must have dissimilar explanations; time: average time required by the XAI method to output an
explanation across the entire test set. The quantitative evaluation of the three different XAI
methods did not reveal definitive superior performance of one of the approaches, albeit SHAP



seems to be the better overall performing algorithm. However the explainability evaluation
metrics are not all that is needed to thoroughly assess the multifaceted construct of what
constitutes a “good” explanation in XAI in healthcare.

8. Conclusions and Future Work

iDPP�CLEF is a new pilot activity focusing on predicting the temporal progression of ALS
and on the explainability of the AI algorithms for such prediction.

We developed 3 datasets containing anonymized patient data from two medical institutions,
one in Turin and the other in Lisbon, for the prediction of NIV, PEG, or death.

Out of 43 registered participants, 5 managed to submit a total of 120 runs, evenly spread across
the offered tasks. Participants adopted a range of approaches, including various types of survival
analysis, also using deep learning techniques. For the XAI of the prediction algorithms they
used both semantic-similarity based techniques and state-of-art post-hoc and model-agnostic
XAI approaches.

For this initial iteration of the lab, iDPP�CLEF focus on ALS progression prediction. Possible,
future cycles will be extended to Multiple Sclerosis (MS), another chronic disease, impairing
neurological functions. Moreover, we plan to extend the datasets to also include data from
environmental sensor, e.g. concerning pollution.
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A. Pilot task 1: C-index

Figures 16 to 18 show the C-index with its 95% confidence intervals computed for all runs
submitted by participants and for the 100 random classifiers (last row) for sub-tasks a, b, and c,
respectively.

Figure 16: Sub-task a C-index computed for all submitted runs. The bars in the plot show the 95%
confidence intervals. The average C-index of 100 random classifiers is reported in the last row.



Figure 17: Sub-task b C-index computed for all submitted runs. The bars in the plot show the 95%
confidence intervals. The average C-index of 100 random classifiers is reported in the last row.



Figure 18: Sub-task c C-index computed for all submitted runs. The bars in the plot show the 95%
confidence intervals. The average C-index of 100 random classifiers is reported in the last row.



B. Pilot task 1: AUROC

Figures 19 to 39 show the AUROC with its 95% confidence intervals computed for all runs
submitted for sub-tasks a, b, and c at all the considered PHs (12, 18, 24, 30, 36, 48, and 60 months).
The average AUROC of the 100 random classifiers is reported in the the last row of the figures.

Figure 19: Sub-task a AUROC computed for all submitted runs with a 12-months PH. The bars in the
plot show the 95% confidence intervals. The average 12-months AUROC of 100 random classifiers is
reported in the last row.



Figure 20: Sub-task a AUROC computed for all submitted runs with a 18-months PH. The bars in the
plot show the 95% confidence intervals. The average 18-months AUROC of 100 random classifiers is
reported in the last row.

Figure 21: Sub-task a AUROC computed for all submitted runs with a 24-months PH. The bars in the
plot show the 95% confidence intervals. The average 24-months AUROC of 100 random classifiers is
reported in the last row.



Figure 22: Sub-task a AUROC computed for all submitted runs with a 30-months PH. The bars in the
plot show the 95% confidence intervals. The average 30-months AUROC of 100 random classifiers is
reported in the last row.

Figure 23: Sub-task a AUROC computed for all submitted runs with a 36-months PH. The bars in the
plot show the 95% confidence intervals. The average 36-months AUROC of 100 random classifiers is
reported in the last row.



Figure 24: Sub-task a AUROC computed for all submitted runs with a 48-months PH. The bars in the
plot show the 95% confidence intervals. The average 48-months AUROC of 100 random classifiers is
reported in the last row.

Figure 25: Sub-task a AUROC computed for all submitted runs with a 60-months PH. The bars in the
plot show the 95% confidence intervals. The average 60-months AUROC of 100 random classifiers is
reported in the last row.



Figure 26: Sub-task b AUROC computed for all submitted runs with a 12-months PH. The bars in the
plot show the 95% confidence intervals. The average 12-months AUROC of 100 random classifiers is
reported in the last row.



Figure 27: Sub-task b AUROC computed for all submitted runs with a 18-months PH. The bars in the
plot show the 95% confidence intervals. The average 18-months AUROC of 100 random classifiers is
reported in the last row.



Figure 28: Sub-task b AUROC computed for all submitted runs with a 24-months PH. The bars in the
plot show the 95% confidence intervals. The average 24-months AUROC of 100 random classifiers is
reported in the last row.



Figure 29: Sub-task b AUROC computed for all submitted runs with a 30-months PH. The bars in the
plot show the 95% confidence intervals. The average 30-months AUROC of 100 random classifiers is
reported in the last row.



Figure 30: Sub-task b AUROC computed for all submitted runs with a 36-months PH. The bars in the
plot show the 95% confidence intervals. The average 36-months AUROC of 100 random classifiers is
reported in the last row.



Figure 31: Sub-task b AUROC computed for all submitted runs with a 48-months PH. The bars in the
plot show the 95% confidence intervals. The average 48-months AUROC of 100 random classifiers is
reported in the last row.



Figure 32: Sub-task b AUROC computed for all submitted runs with a 60-months PH. The bars in the
plot show the 95% confidence intervals. The average 60-months AUROC of 100 random classifiers is
reported in the last row.



Figure 33: Sub-task c AUROC computed for all submitted runs with a 12-months PH. The bars in the
plot show the 95% confidence intervals. The average 12-months AUROC of 100 random classifiers is
reported in the last row.



Figure 34: Sub-task c AUROC computed for all submitted runs with a 18-months PH. The bars in the
plot show the 95% confidence intervals. The average 18-months AUROC of 100 random classifiers is
reported in the last row.



Figure 35: Sub-task c AUROC computed for all submitted runs with a 24-months PH. The bars in the
plot show the 95% confidence intervals. The average 24-months AUROC of 100 random classifiers is
reported in the last row.



Figure 36: Sub-task c AUROC computed for all submitted runs with a 30-months PH. The bars in the
plot show the 95% confidence intervals. The average 30-months AUROC of 100 random classifiers is
reported in the last row.



Figure 37: Sub-task c AUROC computed for all submitted runs with a 36-months PH. The bars in the
plot show the 95% confidence intervals. The average 36-months AUROC of 100 random classifiers is
reported in the last row.



Figure 38: Sub-task c AUROC computed for all submitted runs with a 48-months PH. The bars in the
plot show the 95% confidence intervals. The average 48-months AUROC of 100 random classifiers is
reported in the last row.



Figure 39: Sub-task c AUROC computed for all submitted runs with a 60-months PH. The bars in the
plot show the 95% confidence intervals. The average 60-months AUROC of 100 random classifiers is
reported in the last row.



C. Pilot task 1: BS

Figures 40 to 60 show the BS computed for all runs submitted for sub-tasks a, b, and c at all
the considered PHs (12, 18, 24, 30, 36, 48, and 60 months). The average BS of the 100 random
classifiers is reported in the last row of the figures.

Figure 40: Sub-task a BS computed for all submitted runs with a 12-months PH. The random classifier
average 12-months BS is reported in the last row with its 95% confidence intervals.



Figure 41: Sub-task a BS computed for all submitted runs with a 18-months PH. The random classifier
average 18-months BS is reported in the last row with its 95% confidence intervals.

Figure 42: Sub-task a BS computed for all submitted runs with a 24-months PH. The random classifier
average 24-months BS is reported in the last row with its 95% confidence intervals.



Figure 43: Sub-task a BS computed for all submitted runs with a 30-months PH. The random classifier
average 30-months BS is reported in the last row with its 95% confidence intervals.

Figure 44: Sub-task a BS computed for all submitted runs with a 36-months PH. The random classifier
average 36-months BS is reported in the last row with its 95% confidence intervals.



Figure 45: Sub-task a BS computed for all submitted runs with a 48-months PH. The random classifier
average 48-months BS is reported in the last row with its 95% confidence intervals.

Figure 46: Sub-task a BS computed for all submitted runs with a 60-months PH. The random classifier
average 60-months BS is reported in the last row with its 95% confidence intervals.



Figure 47: Sub-task b BS computed for all submitted runs with a 12-months PH. The random classifier
average 12-months BS is reported in the last row with its 95% confidence intervals.



Figure 48: Sub-task b BS computed for all submitted runs with a 18-months PH. The random classifier
average 18-months BS is reported in the last row with its 95% confidence intervals.



Figure 49: Sub-task b BS computed for all submitted runs with a 24-months PH. The random classifier
average 24-months BS is reported in the last row with its 95% confidence intervals.



Figure 50: Sub-task b BS computed for all submitted runs with a 30-months PH. The random classifier
average 30-months BS is reported in the last row with its 95% confidence intervals.



Figure 51: Sub-task b BS computed for all submitted runs with a 36-months PH. The random classifier
average 36-months BS is reported in the last row with its 95% confidence intervals.



Figure 52: Sub-task b BS computed for all submitted runs with a 48-months PH. The random classifier
average 48-months BS is reported in the last row with its 95% confidence intervals.



Figure 53: Sub-task b BS computed for all submitted runs with a 60-months PH. The random classifier
average 60-months BS is reported in the last row with its 95% confidence intervals.



Figure 54: Sub-task c BS computed for all submitted runs with a 12-months PH. The random classifier
average 12-months BS is reported in the last row with its 95% confidence intervals.



Figure 55: Sub-task c BS computed for all submitted runs with a 18-months PH. The random classifier
average 18-months BS is reported in the last row with its 95% confidence intervals.



Figure 56: Sub-task c BS computed for all submitted runs with a 24-months PH. The random classifier
average 24-months BS is reported in the last row with its 95% confidence intervals.



Figure 57: Sub-task c BS computed for all submitted runs with a 30-months PH. The random classifier
average 30-months BS is reported in the last row with its 95% confidence intervals.



Figure 58: Sub-task c BS computed for all submitted runs with a 36-months PH. The random classifier
average 36-months BS is reported in the last row with its 95% confidence intervals.



Figure 59: Sub-task c BS computed for all submitted runs with a 48-months PH. The random classifier
average 48-months BS is reported in the last row with its 95% confidence intervals.



Figure 60: Sub-task c BS computed for all submitted runs with a 60-months PH. The random classifier
average 60-months BS is reported in the last row with its 95% confidence intervals.



D. Pilot task 2: Time Interval Prediction Approach

Figures 61, 62, and 63 show the specificity-recall plots for the time interval prediction approach.
The 18 graphs include all time intervals and sub-tasks and display all participants’ runs plus all
the synthetic runs.



(a) Time interval 6-12. (b) Time interval 12-18.

(c) Time interval 18-24. (d) Time interval 24-30.

(e) Time interval 30-36. (f) Time interval >36.

Figure 61: Time interval prediction approach. Specificity-recall plot, sub-task a.



(a) Time interval 6-12. (b) Time interval 12-18.

(c) Time interval 18-24. (d) Time interval 24-30.

(e) Time interval 30-36. (f) Time interval >36.

Figure 62: Time interval prediction approach. Specificity-recall plot, sub-task b.



(a) Time interval 6-12. (b) Time interval 12-18.

(c) Time interval 18-24. (d) Time interval 24-30.

(e) Time interval 30-36. (f) Time interval >36.

Figure 63: Time interval prediction approach. Specificity-recall plot, sub-task c.



E. Pilot task 2: Label Prediction Approach

Figures 64, 65, and 66 show the specificity-recall plots for the label prediction approach. In every
Figure, each row corresponds to an observation time (“12-18”, “18-24”, “24-30”, “30-36”) and
each column to a label (NIV, none, and death for sub-task a; PEG, none, and death for sub-task b;
none, and death for sub-task c).



(a) Observation time 12-18, label
“NIV”.

(b) Observation time 12-18, label
“death”.

(c) Observation time 12-18, label
“none”.

(d) Observation time 18-24, label
“NIV”.

(e) Observation time 18-24, label
“death”.

(f) Observation time 18-24, label
“none”.

(g) Observation time 24-30, label
“NIV”.

(h) Observation time 24-30, label
“death”.

(i) Observation time 24-30, label
“none”.

(j) Observation time 30-36, label
“NIV”.

(k) Observation time 30-36, label
“death”.

(l) Observation time 30-36, label
“none”.

Figure 64: Label prediction approach. Specificity-recall plot, sub-task a. Each row corresponds to an observation
time (“12-18”, “18-24”, “24-30”, “30-36”) and each column to a label (“NIV”, “death”, “none”)



(a) Observation time 12-18, label
“PEG”.

(b) Observation time 12-18, label
“death”.

(c) Observation time 12-18, label
“none”.

(d) Observation time 18-24, label
“PEG”.

(e) Observation time 18-24, label
“death”.

(f) Observation time 18-24, label
“none”.

(g) Observation time 24-30, label
“PEG”.

(h) Observation time 24-30, label
“death”.

(i) Observation time 24-30, label
“none”.

(j) Observation time 30-36, label
“PEG”.

(k) Observation time 30-36, label
“death”.

(l) Observation time 30-36, label
“none”.

Figure 65: Label prediction approach. Specificity-recall plot, sub-task b. Each row corresponds to an observation
time (“12-18”, “18-24”, “24-30”, “30-36”) and each column to a label (“PEG”, “death”, “none”)



(a) Observation time 12-18, label “death”. (b) Observation time 12-18, label “none”.

(c) Observation time 18-24, label “death”. (d) Observation time 18-24, label “none”.

(e) Observation time 24-30, label “death”. (f) Observation time 24-30, label “none”.

(g) Observation time 30-36, label “death”. (h) Observation time 30-36, label “none”.

Figure 66: Label prediction approach. Specificity-recall plot, sub-task c. Each row corresponds to an observation
time (“12-18”, “18-24”, “24-30”, “30-36”) and each column to a label (“death”, “none”)



F. Pilot task 2: AbsDist

Figures 67 to 69 show the AbsDist computed for all runs submitted for sub-tasks a, b, and c. The
average AbsDist of the synthetic runs is reported as well.

Figure 67: Sub-task a AbsDist computed for all submitted and synthetic runs. The AbsDist of
corr_interval, inverse_distr_interval, and random_interval is the average with 95% confidence inter-
vals computed on the corresponding 100 randomly generated runs.



Figure 68: Sub-task b AbsDist computed for all submitted and synthetic runs. The AbsDist of
corr_interval, inverse_distr_interval, and random_interval is the average with 95% confidence inter-
vals computed on the corresponding 100 randomly generated runs.



Figure 69: Sub-task c AbsDist computed for all submitted and synthetic runs. The AbsDist of
corr_interval, inverse_distr_interval, and random_interval is the average with 95% confidence inter-
vals computed on the corresponding 100 randomly generated runs.
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