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ABSTRACT
In this work, we propose a novel framework to devise features that
can be used by Query Performance Prediction (QPP) models for
Neural Information Retrieval (NIR). Using the proposed framework
as a periodic table of QPP components, practitioners can devise
new predictors better suited for NIR. Through the framework, we
detail what challenges and opportunities arise for QPPs at different
stages of the NIR pipeline. We show the potential of the proposed
framework by using it to devise two types of novel predictors. The
first one, named MEMory-based QPP (MEM-QPP), exploits the
similarity between test and train queries to measure how much
a NIR system can memorize. The second adapts traditional QPPs
into NIR-oriented ones by computing the query-corpus semantic
similarity. By exploiting the inherent nature of NIR systems, the
proposed predictors overcome, under various setups, the current
State of the Art, highlighting – at the same time – the versatility of
the framework in describing different types of QPPs.
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1 INTRODUCTION
Neural Information Retrieval (NIR) encompasses a broad range
of Information Retrieval (IR) techniques that rely on Neural Net-
works [42, 49, 50, 66, 99]. Large Pre-trained Language Models
(PLMs) have impacted IR beyond expectation, leading to unprece-
dented results on various benchmarks [11–13, 18, 68, 92] as well as
in IR evaluation [26, 64]. These systems have initially been devel-
oped to learning-to-rank and re-rank results from Traditional Infor-
mation Retrieval (TIR) approaches such as BM25 [68], but have been
more recently employed to directly tackle first-stage retrieval [41].
To evaluate the performance of IR systems without human-made
relevance judgments, Query Performance Prediction (QPP) [7] has
been investigated for decades and used in various tasks, including
model selection [7, 93], query rewriting [25, 83, 93], rank fusion [76],
query diagnosis [7], and predicting the best pool’s cut-off to reduce
annotation cost [38].

QPP is of particular importance for NIR1 for several reasons. i)
Unlike TIR models, NIR models come in a range of architectures,
each with its unique characteristics. Therefore, choosing the best
approach for a given query could significantly enhance the overall
performance. ii) Training NIR models can be time-consuming and
expensive. Effective QPP models could identify underperforming
queries and guide the practitioner in gathering additional training
examples to improve performance on such queries. iii) NIR models
are frequently employed in a zero-shot fashion [92], and targeted
QPPs could aid in determining beforehand if the model trained on
the source collection would perform well on the target one.

Nevertheless, applying QPP to NIR poses some critical challenges
that have yet to be addressed [27, 29]. In particular, traditional
QPPs often depend on measuring the amount of lexical matching
between queries and retrieved documents [14, 88, 90, 109], whereas
NIR models are explicitly designed to use semantic matching. The
misalignment between the signals considered by QPPs and those
used by NIR systems hinders the successful prediction of NIR per-
formance. Additionally, NIR systems are trained on labeled data,
contrasting with the unsupervised nature of TIR systems. Their per-
formance is therefore tied to what can be learned from the train set,

1In this work, we focus on NIR models, although similar observations likely hold for
Learning-to-Rank models. In-depth study of the relationship between LtR and QPP is
left for future work.
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which is particularly critical for systems evaluated in a zero-shot
setting [36, 63, 72, 85, 92, 106].

To overcome these limitations, we propose a new QPP frame-
work that goes further from the traditional pre- and post-retrieval
dichotomy. The framework considers a generic NIR pipeline as a
reference point and uses it as a periodic table to identify potential
challenges that arise when applying QPP. The framework foun-
dation lies on the concept of 𝑛-stage features. We relate them to
features that have been used by pre- and post-retrieval predictors,
as well as which signals are specific to NIR models. We show the
power of the proposed framework by using it to develop two QPP
approaches that outperform the current State of the Art. The first
approach, named MEMory-based QPP (MEM-QPP), directly relies
on the supervised nature of NIRmodels, by measuring the similarity
between training and test queries to predict performance. By ex-
ploiting information obtained during training, MEM-QPP achieves
improved results compared to classical pre- and post-retrieval pre-
dictors. The second approach, based on post-retrieval information,
adapts the regularization term used in many traditional QPPs – e.g.,
Clarity [14], WIG [109], NQC [88], SMV [90] – to the NIR setting.
Our experimental results show that this approach achieves signifi-
cantly better performance than the current State of the Art when
predicting the performance of NIR models.

To summarize, our contributions are:
• We propose a novel QPP framework based on the concept
of stages that overcome the classical dichotomy between
pre- and post-retrieval QPP. We further show how classical
predictors can be interpreted within the framework.

• Using our framework, we deviseMEM-QPP, amodel-agnostic
predictor that leverages semantic similarity between training
and test queries to predict the performance of NIR systems
in the In-Domain scenario.

• We further use the framework to adapt classical predictors to
the NIR scenario. In particular, we compare the distributions
of retrieval scores for TIR and NIR systems, and show that
they present a high level of similarity. Motivated by this,
we propose two sets of QPPs, SPLADE- and DenseCentroid-
predictors. Both sets of predictors adapt classical QPPs to
the NIR scenario, going beyond the current State of the Art.

The remainder of this work is organized as follows: Section 2
reviews the main efforts in NIR and QPP areas. Section 3 describes
the proposed QPP framework for NIR. Section 4 illustrates the chal-
lenges highlighted by the framework and outlines possible solutions
that can guide future researchers. Finally, Section 5 draws conclu-
sions and introduces future directions enabled by our framework.

2 BACKGROUND
With the advent of NIR based on PLMs, there is a growing interest
in developing QPP methods that are tailored to such systems. This
is especially appealing for systems tackling the retrieval step in
multi-stage pipelines, which differ the most from TIR models. We
survey here the main advances in NIR and classical QPP domains.
Then, we describe three related families of QPPs. The first family
exploits neural networks to nonlinearly combine different features
and generate predictions, without any notion of semantics. The
second type of QPPs explicitly encodes semantic signals to make

predictions, but has primarily been designed for TIR systems. The
third family regards QPP models that have been used to predict NIR
performance, which is the most similar setting to the one examined
in this paper.

Neural Information Retrieval. First-stage NIR models have re-
ceived increasing attention, due to their ability to overcome the
inherent limitations of TIR approaches, such as the vocabulary mis-
match [37]. They can be divided into two main categories: sparse
and dense [41]. Sparse retrieval models represent documents and
queries as sparse high-dimensional vectors in the vocabulary space
R |V | , allowing for efficient indexing and inference with standard
inverted indexes [5, 10, 19, 34, 35, 57, 59, 65, 69, 103, 107]. Among
them, SPLADE [34, 35] unifies term weighting and expansion in
an end-to-end fashion and has shown impressive performance on
both In- and Out-of-Domain settings. Dense retrieval models move
away from the sparse view by representing queries and documents
as continuous low-dimensional vectors in a latent semantic space
R𝑑 [39, 48, 51, 53, 61, 71]. Other approaches like ColBERT [54, 82]
or COIL [40] lie in between, by generating fine-grained term-level
dense representations for queries and documents. All these ap-
proaches rely on different inductive biases that are complementary
to some extent – as shown for hybrid retrieval models that combine
the strengths of sparse and dense retrieval methods to improve the
overall effectiveness [8, 58, 62, 97, 100]. Therefore, being able to
predict the performance of various systems is of particular interest.

Traditional QPP. Traditionally, QPPs can be divided into pre-
and post-retrieval predictors [7, 44, 45]. Pre-retrieval predictors use
features available before retrieval, such as the collection frequency
of query terms [67, 108], while post-retrieval predictors compute
predictions after one or more retrieval phases. Post-retrieval pre-
dictors can further be classified as coherency-based, score-based,
and robustness-based. Coherency-based predictors estimate the
coherence between the query and the retrieved documents (e.g.,
Clarity [14]), score-based predictors use the scores of retrieved
documents (e.g., Weighted Information Gain (WIG) [109]), and
robustness-based predictors measure similarity between original
ranking and one after perturbations (e.g., Utility Estimation Frame-
work (UEF) [86]).

Deep-Learning-driven QPP. In recent years, the advent of Deep
Learning (DL) has fostered the development of QPP approaches
based on neural networks. Zamani et al. [102] propose NeuralQPP,
one of the first attempts to apply DL to the QPP task. The authors
devise a DL approach that combines three distinct signals to formu-
late the prediction: the query text, the retrieval scores, and signals
derived from the terms distribution. On the other hand, Roy et al.
[79] experiment with pre-retrieval predictors. In their work, they
show how the distribution of terms in relation to query vectors,
estimated using Gaussian Mixture Models, correlates with system
performance. The study highlights the need to combine the pro-
posed pre-retrieval QPP with post-retrieval predictors to achieve
satisfactory results. Similarly, Arabzadeh et al. [4] propose, and later
extend [3], a set of measures based on neural embeddings that quan-
tify the specificity of each term. The underlying intuition is that
specific query terms can better identify relevant documents. These
measures serve as pre-retrieval predictors and have been shown to
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correlate with system performance. As for NeuralQPP [102], also
the predictors by [3, 4, 79] are evaluated on TIR systems.

NIR for QPP. To exploit semantic signals for QPP, Khodabakhsh
and Bagheri [55] propose three neural features based on dense
word representations: Neural Matching, Neural Aggregated Match-
ing, and Neural Distance. These features combine the embeddings
of query and document tokens to capture the semantic relation-
ships occurring between them. The authors use the matching sig-
nals provided by such features to encode semantic aspects within
classic predictors such as WIG [109], Normalized Query Commit-
ment (NQC) [88], Score Magnitude and Variance (SMV) [90], and
Clarity [14]. Datta et al. [21] present Deep-QPP, a method based
on a convolutional neural network that exploits word embeddings
and early-stage interaction signals. The method represents a su-
pervised approach to regress query performances, which has been
tested on Language Model (LM) [105]. Arabzadeh et al. [1] pro-
pose BERT-QPP, one of the first approaches to leverage PLMs for
QPP. Specifically, they fine-tune BERT [24] by utilizing the perfor-
mance of BM25 [75] on each training query and the first retrieved
document as a form of supervision. Several works stemmed from
BERT-QPP. Datta et al. [23] expand on BERT-QPP by incorporating
clusters of queries – rather than considering only one query at a
time – to extract more comprehensive signals. Likewise, Chen et al.
[9] build upon BERT-QPP and introduce a groupwise approach
that enables learning to predict the performance of a query using
signals from multiple queries simultaneously, instead of examining
only one query at a time, as in BERT-QPP. Arabzadeh et al. [2] also
exploit PLMs to devise a predictor for conversational search. The
authors leverage BERT to create a graph of retrieved documents
and determine if the documents can be categorized into a single
cluster. If multiple clusters exist, they identify the user’s informa-
tion need by asking clarifying questions to determine which cluster
contains the relevant documents. The approach is then tested on
BM25. Although these methods lean towards NIR models, their
primary use remains associated with TIR approaches. This creates
a misalignment between the query/document representations used
during the ranking and prediction phases, with the former being
more lexical and the latter more semantic. Faggioli et al. [28] exploit
the geometric properties of dense documents and queries repre-
sentations to predict the performance in the conversational search
task.

Since most of these predictors have been devised for and tested
on TIR models, they are not the focus of this paper, which instead
concerns QPP predictors for NIR models.

QPP for NIR. More closely related to ourwork, Hashemi et al. [43]
propose NQA-QPP, an approach based on three families of signals –
i.e., retrieval scores, lexical features of the query, and lexical features
of the query and answer – combined with a deep neural network
to address the Non-Factoid Question Answering task. [43] is one
of the first and few works evaluating the performance of QPP
on NIR models. Specifically, the authors consider BM25 and two
neural reranking strategies, aNMM [101] and Conv-KNRM [20]. It
is interesting to note that they are among the first to notice the large
gap between the prediction quality for BM25 and NIR models. The
authors attribute this outcome to the different scale and distribution
of scores generated by neural models.

Recently, Faggioli et al. [29] investigate to what extent traditional
QPP methods can predict the performance of NIR systems. The au-
thors conduct experiments applying QPPs to several TIR and NIR
systems, evaluating them on Deep Learning ’19 and Robust ’04 col-
lections. The results show that current QPPs perform significantly
worse on NIR systems. This situation occurs even when BERT-QPP
is considered as a predictor for NIR. Datta et al. [22] also note that
previous QPP methods are not as effective for NIR as they are for
TIR. To address this, the authors propose Weighted Relative Infor-
mation Gain-basedmodel (WRIG), a statistical method that involves
using probabilistic combinations of retrieval scores for multiple
formulations of the same query. To show the effectiveness of the de-
vised strategy, they use WRIG to predict the performance of BM25,
four variants of the Deep Relevance Matching Model (DRMM) [42],
and a first-stage NIR method, ColBERT [54].

3 A FRAMEWORK TO MODEL QPP FOR NIR
AND ITS CHALLENGES

Figure 1 reports a visual depiction of the proposed framework,
which is organized into stages. The figure is composed of three
layers corresponding to retrieval, QPP operations, and the features
that can be extracted at each stage. The first three stages concern
learned approaches, either for NIR or QPP. They contain the choice
of the training and test corpora (Stage 0), the collection of training
queries and annotations (Stage 1), and the learning procedure (Stage
2). Subsequently, we have Stage 3, which consists in collecting
test queries. This Stage, as well as Stages 4 and 5, are common
to NIR, TIR, and QPP. Stage 4 represents the moment when the
representation of queries and documents is computed. Starting
from Stage 4, IR and QPP operations might differ. For instance,
the IR model might be based on lexical representations, while the
QPP could use dense ones. In Stage 5, the similarity between the
query and the documents works for both IR and QPP operations.
On the other hand, for QPP, Stage 5 might also contain operations
over the entire corpus, such as computing its language model or
the retrieval score that it would achieve in response to a query.
Stage 6 consists in computing the distribution of the scores over
the retrieved documents to select the top-𝑘 ones most similar to
the query. Finally, a performance measure can be computed, which
in turn is the ground truth for the QPP.

In terms of QPP features, no model exploits features derived from
the first three stages yet. They are linked to the supervised nature
of NIR models. Stage 3 and 4 features are those most commonly
used by classical pre-retrieval QPPs. Finally, Stages 5 and 6 allow
devising features typically used by post-retrieval QPPs. To show
the benefit of the framework, we detail each stage – showing what
challenges, pitfalls, and opportunities might arise with respect to
each of them, as well as what features could be collected.

Stage 0 – Corpora. This first stage mainly concerns the zero-shot
scenario, in which training and inference corpora differ.

Challenge Stage 0 – Exploiting the difference between
training and inference collections: The main challenge as-
sociated with this stage concerns how to measure the difference be-
tween train and test corpora to determine whether a model trained
on the former achieves satisfactory results on the latter. The im-
portance of addressing this challenge will be highlighted by our
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Figure 1: A retrieval pipeline and its correspondence with multi-stage QPPs.

experiments in Section 4, which show how this is one of the most
prominent pitfalls in adapting QPP to NIR.

Stage 1 – Training Data. Features derived from this stage are
those concerning training queries and annotations. Such features
might include the textual content of the training queries or concern
aspects linked to how we choose the documents that should be fed
to the training model (e.g., hard negatives, number and quality of
the annotations).

Challenge Stage 1 – Exploiting training queries informa-
tion: The community should understand how to take advantage
of the information conveyed by training queries to improve QPP
in the NIR setup. To demonstrate this possibility, we propose a
novel predictor, dubbed MEM-QPP, in Subsection 4.2. This predic-
tor exploits Stage 1 and 3 features, and could therefore be framed
as pre-retrieval QPP. MEM-QPP considers, for a given test query,
how similar training queries are. The rationale is that the more
similar training and test queries are, the better the test queries can
be answered – this is directly linked to the fact that NIR models
might overfit on training queries [70, 89].

Stage 2 – Training Procedure. A straightforward Stage 2 predictor
is the loss function used by NIR approaches. For instance, if the
loss function does not decrease during training, it is easy for the
practitioner to diagnose a malfunctioning NIR system and predict
low performance. The training procedure of the NIR system itself
can therefore provide signals on how the system will perform.

Challenge Stage 2 – Lack of Labeled Data: Collections
containing a suitable amount of queries to train NIR models (e.g.,
MS-MARCO [6]) have a shallow pool of annotated documents – of-
ten just one. Therefore, we cannot accurately compute IR measures,
which are the labels required to train QPP models. Addressing this
challenge requires investing, as a community, in obtaining addi-
tional annotations and organizing shared tasks.

Stage 3 – Query text. The features that can be computed in this
stage are those used by traditional pre-retrieval methods, which
are based on linguistic aspects of the query. Such features include,
among others, the query length or the presence of synonymous or
polysemous words.

Challenge Stage 3 – Query representation: While no major
challenges arise with respect to Stage 3, our framework contributes
by separating pre-retrieval operations into Stage 3 and Stage 4. This
separation provides a clear dichotomy between predictors that use
only the query textual content and predictors that also take into
account the corpus representation.

Stage 4 – Representation. Together with Stage 3, this stage con-
tains features traditionally considered the most suited for pre-
retrieval QPP. Stage 4 corresponds, in an IR pipeline, to when a
representation of the queries and the documents has been com-
puted. At this point, it is possible to compute predictors such as
Inverse Document Frequency (IDF) and Inverse Collection Term
Frequency (ICTF) [15, 84], which require access to the inverted
index.

Challenge Stage 4 – Representationmisalignment between
QPP and NIR models: Representations used by traditional QPPs
are often aligned with those by the retrieval model. For example,
Clarity is based on a frequentist LM that, although providing a
different representation than those by the Vector Space Model [81]
or BM25 [75], presents a similar rationale. This is not the case for
most of the NIR systems, which rely on dense or sparse learned
representations.

Stage 5 – Corpus Score. The features of this stage are derived from
the document scores as well as the representation of the entire cor-
pus according to the chosenmodel. The representation of the corpus
is used to i) measure the relevance of the corpus – i.e., the retrieval
score – in response to the query; ii) in the Clarity case, measure how
likely it is that the corpus generated the retrieved documents. Such
features underlie most classical and theoretically well-grounded
post-retrieval approaches. To understand the importance of Stage 5,
we consider one of the main efforts in standardizing QPP models by
Kurland et al. [56], later expanded by Shtok et al. [87] and Roitman
et al. [78]. Kurland et al. [56] notice how post-retrieval predictors
can be framed using the following model:

𝑃𝑟𝑒𝑑 (D@𝑘 |𝑞) = 𝑝 (𝑟 |D@𝑘)
∑︁

𝑑∈D@𝑘

𝑝 (𝑑 |𝑞, 𝑟 )𝑝 (𝑑 |D@𝑘, 𝑟 ), (1)
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where 𝑞 is the query, 𝑑 is a document, 𝑟 is the “event of relevance”,
D@𝑘 the list of top 𝑘 documents retrieved and 𝑃𝑟𝑒𝑑 is the proba-
bility that D@𝑘 contains relevant documents for 𝑞 (the predictor).
The factor 𝑝 (𝑟 |D@𝑘) describes how likely it is that D@𝑘 contains
relevant documents, regardless of the query, and is based on proper-
ties of D@𝑘 , such as its cohesion or diversity [56, 78, 87]. 𝑝 (𝑑 |𝑞, 𝑟 )
is the document likelihood – usually approximated by the retrieval
score 𝑠 (𝑞, 𝑑). Finally, 𝑝 (𝑑 |D@𝑘, 𝑟 ) represents a regularization factor
that measures the strength of “association” between𝑑 andD@𝑘 , as-
suming the former is relevant. According to [56, 78], this factor can
be estimated by measuring how “closer” is 𝑑 toD@𝑘 than to the en-
tire corpus. Hence, following [56, 78, 87], classical predictors focus
on how this regularization factor is computed. For example, Clar-
ity estimates it by comparing the likelihood of generating 𝑑 from
D@𝑘 against the likelihood of generating it from the background
model induced by the corpus C [78]. Other QPP models, such as
SMV, NQC, or WIG set 𝑝 (𝑑 |D@𝑘, 𝑟 ) ∝ 1

𝑠 (𝑞,C) , where 𝑠 (𝑞, C) is
the relevance of the entire corpus to the query. 𝑠 (𝑞, C) is tradition-
ally approximated by the retrieval score of the concatenation of
all the documents, in response to the query [56, 78, 87]. In turn,
this query-sensitive regularization term allows for comparing the
predictions across queries [77, 88]. When we consider NIR models,
only two of the three components in Equation 1 can be derived
directly: 𝑝 (𝑟 |D@𝑘) and 𝑝 (𝑑 |𝑞, 𝑟 ). Specifically, 𝑝 (𝑟 |D@𝑘) is model-
agnostic, while 𝑝 (𝑑 |𝑞, 𝑟 ) represents the retrieval score as returned
by the NIR system. On the other hand, the regularization factor
𝑝 (𝑑 |D@𝑘, 𝑟 ) requires a notion of distance between the document
and the entire corpus that cannot be computed directly by current
NIR methods. Therefore, to use classical QPPs on NIR models, at
the current time, the only solution consists of applying Eq. 1 using
LM to instantiate its different components but considering the top-
𝑘 documents retrieved by the NIR approach, as done in [29]. The
reasons for this impairment are reported below.

Challenge Stage 5 –How to compute 𝑠 (𝑞, C) forNIRmodels:
In contrast to TIR models, computing the score that the collection
would achieve is not feasible for NIR models. This is because, with
current neural architectures, it is impossible to input the entire col-
lection into the model to obtain its representation. As a result, how
to compute 𝑠 (𝑞, C) is an open issue. If we could compute 𝑠 (𝑞, C),
adapting the majority of the QPP frameworks – such as those
outlined in [56, 78, 87] – to the NIR scenario would be seamless.
In Subsection 4.4, we propose two methodologies to approximate
𝑠 (𝑞, C) for sparse and dense NIR architectures.

Stage 6 – Scores Distribution. This stage concerns the features
derived from the distribution of the scores and underlies most of
the traditional QPPs, such as WIG, NQC, and SMV. Such predictors
are based on statistics – e.g., mean and variance – of the scores for
the top-𝑘 documents. This requires putting the single document’s
score (Stage 5 feature) in relation to other documents’ scores.

Challenge Stage 6 – Modeling scores distributions for NIR:
While TIR models usually have scores that are naturally inter-
pretable and often account for term matching, NIR models do not
have any a priori on the distributions of the possible scores they
follow. In particular, each model has its own embedding space struc-
ture, and scores depend on the model architecture itself. It might be
challenging to use traditional QPPs with scores fromNIRmodels, as

neural models could exhibit different behavior for each predictor. To
investigate this, in Section 4.3, we perform an analysis comparing
scores distributions for TIR and NIR models.

3.1 Reinterpreting the State of the Art
We illustrate, using some examples, how the current SotA QPP
approaches can be interpreted in light of the proposed framework.

Pre-retrieval QPPs. This class of QPP models focuses mostly on
Stage 3 and Stage 4 features. Consider, for example, predictors
that exploit syntactic features of the query, such as its length [46],
or more articulate linguistic features, such as external knowledge
bases or thesauri to identify synonyms or polysemous words [67].
They rely only on the textual content of the query and, there-
fore, can be framed as Stage 3 predictors. Other QPPs, such as
those in [4, 79], exploit latent representations of the query tokens
based on word embeddings. It is important to note that the query
representation provided by [4] does not depend on the corpus.
As a result, the proposed predictors are based solely on Stage
3 features. Finally, other approaches, such as Simplified query
Clarity Score (SCS) [47], Similarity Collection-Query (SCQ) [108],
VAR [108], IDF and ICTF [15, 84], are based on frequentist aspects
of the query and the corpus. Thus, these predictors exploit Stage 4
features. Despite relying on conceptually different query represen-
tations, all of these QPP models have traditionally been considered
pre-retrieval, as they occur prior to Stage 5.

Classical post-retrieval QPPs. According to [56, 78, 87], most of
the classical post-retrieval predictors, such as Clarity [14],WIG [109],
NQC [88], and SMV [90], follow the framework described by Equa-
tion 1. These approaches re-weigh statistics of the retrieval scores
for the top-𝑘 retrieved documents (Stage 6 feature) – e.g., the mean
or the standard deviation – with the retrieval score the corpus
would achieve (Stage 5 feature).

Learned post-retrieval QPPs. Some additional challenges arise if
we consider QPPs based on learned representations. As an example,
let us consider BERT-QPP [1], which feeds the query text (Stage 3)
and the text (Stage 0) of the first 𝑘 retrieved documents (Stage 6) to
a bi-encoder network based on BERT. Thus, BERT-QPP uses both
pre- and post-retrieval features. However, the representations used
by BERT-QPP differ from those used by the target IR system. Indeed,
BERT-QPP was originally developed to predict BM25 performance,
as detailed in [1]. A similar reasoning also holds for most of the
learned QPPs, such as [43, 102].

4 NIR PERFORMANCE PREDICTION:
ADDRESSING SOME CHALLENGES

We now evaluate the framework, showing its capabilities. In Sec-
tion 4.2, we illustrate how to devise a model-agnostic predictor that
exploits features derived from Stages 1 and 3 (the text of the training
and test queries) and that relies on the memorization capabilities
of NIR models. Following our observations about Stage 6 features,
in Section 4.3, we analyze the IR scores distributions for TIR and
NIR models. The similarities of the scores distributions of the two
IR families motivate us to try adapting traditional QPP models to
the NIR scenario. To this end, in Section 4.4, we illustrate how to
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obtain the proper regularization term (Stage 5 feature) depending
on the architecture of the considered NIR model.

4.1 Experimental Setup
We evaluate QPPs drawn from our framework using three collec-
tions: Robust ’04 [95], Deep Learning ’19 [13], and TREC-COVID [73].
These collections vary in terms of the number of topics, corpus, and
availability of training queries. Robust ’04 contains 249 topics and is
commonly used for ad-hoc document TIR without training queries.
Deep Learning ’19 has 43 annotated topics and has been designed
towards NIR models by providing over 500𝑘 In-Domain training
queries – with a few annotated passages – from the MS-MARCO
collection. TREC-COVID is a bio-medical dataset capturing the
growth of the COVID-19 literature over time. It is based on the
CORD-19 document corpus [96], and contains 50 test queries.

In terms of NIR, we consider the following State-of-the-Art mod-
els: four dense models (Bi-Encoder, TAS-B [48], CoCondenser [39],
and Contriever [51]), a dense late-interaction model (ColBERT-
v2 [82]), and a sparse model (SPLADE [33, 34]). Following standard
practices, all models are fine-tuned on the MS-MARCO passage
dataset and evaluated in a zero-shot manner on Robust ’04 and
TREC-COVID – where training queries are not available. To han-
dle longer documents, we truncate them to the models’ maximum
length. We train the Bi-Encoder from scratch, while for the other
models, we rely on open-source weights. For retrieval, we either
use internal code – based on FAISS [52] and HuggingFace trans-
formers [98] – or the code from the corresponding open-source
repositories – as in the case of SPLADE and ColBERT-v2. As addi-
tional baselines, we consider three TIR approaches: the probabilistic
model BM25 [74], the Dirichlet LanguageModeling approach (LMD)
[105], and the axiomatic F1-EXP [32], which together define a di-
verse set of traditional models. In terms of QPP, we experiment
with models that are theoretically grounded in previously defined
QPP frameworks [56, 78, 87]. In particular we consider Clarity [14],
WIG [109], NQC [88], SMV [90], and their UEF versions [86]. All
predictors have been fine-tuned by considering different cutoffs for
D@𝑘 with 𝑘 ∈ {5, 10, 50, 100, 500}, following the 2-fold partition-
ing procedure described in [22, 88, 102, 104] with 30 repetitions. To
test for the statistical significance of the results, we apply one-way
ANalysis Of the VAriance (ANOVA) [80] with Tukey’s Honestly
Significant Differences (HSD) post-hoc comparison procedure [94],
which also corrects for multiple comparisons. Given its popularity
in the NIR scenario, we focus on normalized Discounted Cumu-
lative Gain (nDCG)@10 as the target measure that we wish to
predict. To evaluate the performance of the QPPs, we employ Pear-
son’s and Kendall’s correlations and scaled Mean Absolute Rank
Error (sMARE) [30, 31]2.

4.2 Stage 1 and 3 Features: NIR Models as
Memorizers

Following the framework devised in Section 3 we propose a QPP
strategy – dubbedMEM-QPP– based on Stage 1 and Stage 3 features,
i.e., the textual content of training and test queries. The rationale
underneath MEM-QPP is that, if a test query has a “close” training

2To avoid cluttering, we report Kendall’s correlation only when it behaves differently
than other measures.

query, then the NIR systemmight have learned how to retrieve from
it. Vice versa, for test queries that are too “far” from the training set,
we can assume that the system did not gain enough information
on that topic, making it hard to perform well at inference time. It
is directly linked to memorization capabilities of PLMs [36, 70, 85,
89], and is inspired from Lupart et al. [63], who propose a similar
indicator which correlates with performance drops on zero-shot
settings. More formally, it is defined as follows:

MEM-QPP(𝑞𝑡 ) =
𝑑𝑒𝑓

max{𝑠 (𝑞𝑡 , 𝑞𝑟 ) : 𝑞𝑟 ∈ Q𝑇 }

where 𝑞𝑡 is a test query, Q𝑇 is the set of training queries, and
𝑠 (𝑞𝑡 , 𝑞𝑟 ) is a similarity function. In other terms, MEM-QPP mea-
sures the similarity between test queries and the most similar
training query. To embed the learned component, we consider as
similarity functions 𝑠 three NIR models: Bi-Encoder, SPLADE and
ColBERT-v23. Notice that the representation is not necessarily the
same between the predictor and the predicted IR system. For exam-
ple, we could use Bi-Encoder as the similarity function to instantiate
MEM-QPP and predict the performance of a SPLADE run.

MEM-QPP allows understanding of on which topics the training
phase was not thorough enough. Once test queries that are likely to
fail are identified, the system administrator can expand the training
set to include annotations for such queries. Also, note that such an
indicator is insufficient to fully characterize models’ performance:
some queries are intrinsically more difficult than others, regard-
less of how many times they have been seen at training time. We
hypothesize, however, that performance should still be correlated
with such indicators – even loosely.

Table 1 reports the empirical evaluation of the three considered
variants of MEM-QPP on four NIR models and three different col-
lections. To avoid cluttering, we report the performance of the best
– on average – pre-retrieval (i.e., ICTF and IDF) and post-retrieval
(i.e., WIG and UEF variants of WIG and NQC) predictors.

MEM-QPP using the Bi-Encoder similarity is the best predictor
on Deep Learning ’19 for three out of four NIR systems: TAS-B,
SPLADE, and ColBERT-v2. It exhibits an improvement as large as
17% in the case of SPLADE. Nevertheless, it fails to beat the base-
lines when the Bi-Encoder is also used as the ranking function. In
Out-of-Domain (OOD) collections, MEM-QPP fails to overcome the
considered baselines. This is a first glimpse of how important it
would be to be able to devise Stage 0 features. Indeed, MEM-QPP
performs well when used as a predictor for In-Domain IR, as for
the Deep Learning ’19 track. Since the NIR approaches were both
trained and tested on MS-MARCO passages, we might assume that
the models embed part of the information about the relevance of
the documents. Vice versa, MEM-QPP is not as effective when we
consider the zero-shot setup. In a nutshell, when we shift the cor-
pus, this information is lost, and MEM-QPP fails. The results show
that MEM-QPP is an indicator of how much information from the
training set the NIR system can memorize. In real-case scenarios,
where training and test documents come from the same distribution,
MEM-QPP is a simple yet useful predictive signal. On the other
hand, its ineffectiveness for OOD collections is related to “Chal-
lenge Stage 0”. If we consider different similarity functions besides
Bi-Encoder, we see that they fail to achieve satisfactory results (cfr.

3In our experiments, we use the same models as the ones used in retrieval.
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Table 1: Performance of MEM-QPP predictor, compared to state-of-
the-art QPPs on three collections and four NIR.

Bi-Encoder TAS-B SPLADE ColBERT-v2
Prs. ↑ sARE ↓ Prs. ↑ sARE ↓ Prs. ↑ sARE ↓ Prs. ↑ sARE ↓

Deep Learning ’19 (In-Domain)

ICTF 0.026 0.312 0.243 0.285 0.099 0.325 0.177 0.299
IDF 0.036 0.310 0.246 0.279 0.099 0.321 0.175 0.296

WIG 0.514 0.237 0.298 0.295 0.187 0.315 0.290 0.286
UEF𝑁𝑄𝐶 0.410 0.224 0.204 0.285 0.212 0.287 0.101 0.315
UEF𝑊𝐼𝐺 0.618† 0.207† 0.315 0.293 0.260 0.304 0.286 0.286

MEM𝑆𝑃𝐿𝐴𝐷𝐸 0.161 0.281 0.066 0.321 0.160 0.300 0.118 0.318
MEM𝐶𝑜𝑙𝐵𝐸𝑅𝑇 𝑣2 0.144 0.311 0.187 0.298 0.194 0.293 0.167 0.303
MEM𝑏𝑖𝑒𝑛𝑐𝑜𝑑𝑒𝑟 0.451 0.262 0.369† 0.258† 0.430† 0.264† 0.397† 0.259†

Robust ’04 (Out-of-Domain)

ICTF 0.021 0.324 0.032 0.317 0.088 0.307 0.027 0.326
IDF 0.039 0.322 0.051 0.315 0.100 0.305 0.046 0.322

WIG 0.636 0.168 0.344 0.260 0.333 0.263 0.507 0.223
UEF𝑁𝑄𝐶 0.640 0.164 0.427† 0.241† 0.462† 0.232† 0.502 0.213
UEF𝑊𝐼𝐺 0.646† 0.156† 0.425† 0.242† 0.436 0.244 0.548† 0.201†

MEM𝑆𝑃𝐿𝐴𝐷𝐸 0.055 0.309 0.009 0.325 -0.042 0.339 -0.015 0.339
MEM𝐶𝑜𝑙𝐵𝐸𝑅𝑇 𝑣2 -0.067 0.351 0.130 0.309 0.097 0.320 0.003 0.332
MEM𝑏𝑖𝑒𝑛𝑐𝑜𝑑𝑒𝑟 0.067 0.323 0.158 0.298 0.147 0.302 0.053 0.314

TREC-COVID (Out-of-Domain)

ICTF -0.186 0.376 -0.036 0.345 -0.281 0.374 -0.132 0.358
IDF -0.139 0.369 0.031 0.339 -0.232 0.365 -0.116 0.363

WIG 0.562† 0.205† 0.724† 0.167† 0.555† 0.211† 0.381† 0.258†
UEF𝑁𝑄𝐶 0.155 0.297 0.060 0.351 0.384 0.245 0.045 0.301
UEF𝑊𝐼𝐺 0.479 0.227 0.596 0.198 0.497 0.227 0.329 0.256†

MEM𝑆𝑃𝐿𝐴𝐷𝐸 0.052 0.324 0.286 0.278 0.027 0.312 0.153 0.282
MEM𝐶𝑜𝑙𝐵𝐸𝑅𝑇 𝑣2 -0.108 0.363 -0.198 0.394 -0.173 0.352 -0.034 0.343
MEM𝑏𝑖𝑒𝑛𝑐𝑜𝑑𝑒𝑟 0.099 0.312 0.210 0.286 -0.044 0.322 0.220 0.299
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Figure 2: sARE measured for MEM-QPP on predicting the perfor-
mance of a SPLADE NIR, on Deep Learning ’19.

Table 1). To explain this, notice that Bi-Encoder stands apart from
methods like SPLADE and ColBERT-v2 in that it uses a bi-encoder
design more generally optimized to capture sentence similarity. On
the other hand, SPLADE and ColBERT-v2 are more specific archi-
tectures dedicated to retrieval. Consequently, when these functions
are used to recognize similarities between training and test queries,
they exhibit inferior performance. Finally, we are interested in un-
derstanding on which queries MEM-QPP performs the best. To this
end, we compute the scaled Absolute Rank Error (sARE) [30, 31] be-
tween the prediction and the nDCG@10 performance. The presence
of observations that lean toward the right on the upper part of Fig-
ure 2 indicates that MEM-QPP performs better in predicting when
the query is not well handled – lower (sARE) error for lower nDCG.
This finding is surprising, given the train-test leakages observed in
MS-MARCO [106]. Therefore, a small MEM-QPP indicates that the
NIR model did not learn properly the query topic – and the training
set could be expanded to account for this.

Table 2: Mean Kolmogorov–Smirnov 𝐷-statistic (over queries) on
three collections and several TIR and NIR models.

BM25 LMD F1EXP Bi-Encoder TAS-B SPLADE ColBERT-v2

Deep Learning ’19 (In-Domain)

N1N0 0.182 0.223 0.219 0.156 0.149 0.155 0.145
L1L0 0.056 0.199 0.114 0.044 0.044 0.043 0.046
G1G0 0.162 0.265 0.203 0.049 0.059 0.086 0.080

Robust ’04 (Out-of-Domain)

N1N0 0.168 0.175 0.192 0.189 0.148 0.163 0.135
L1L0 0.064 0.078 0.083 0.057 0.044 0.047 0.047
G1G0 0.121 0.101 0.139 0.081 0.064 0.095 0.053

TREC-COVID (Out-of-Domain)

N1N0 0.144 0.155 0.142 0.127 0.136 0.123 0.107
L1L0 0.055 0.087 0.069 0.043 0.040 0.039 0.045
G1G0 0.078 0.101 0.107 0.040 0.040 0.038 0.045

4.3 Stage 6 Features: Scores Distributions
Looking at the proposed framework in Figure 1, we observe that
Stage 6 features – i.e., the distribution of the scores – are a key as-
pect of traditional QPPmodels. If we look back at Equation 1, we see
that traditional post-retrieval predictors modeled under such frame-
work include the term 𝑝 (𝑑 |𝑞, 𝑟 ). This term represents the document
score in response to the query – assuming its relevance. Therefore,
a number of works from the traditional QPP literature focus on
modeling the retrieval score distributions [16, 17]. In particular,
they aim to determine what are the score distributions for relevant
and non-relevant documents and how far apart they are. Cummins
[17] shows that, in the TIR scenario, scores for both relevant and
non-relevant documents follow a Log-Normal distribution. When
moving to the NIR setting, we would like to know if considerations
for the TIR scenario still hold, or if we should re-consider Stage 6
features. In other terms, we are interested in determining if NIR
scores for relevant and non-relevant documents follow the same
distributions as TIR ones. If so, this would allow us to adapt classical
predictors to neural ranking models. Therefore, we test different
distribution pairs to empirically observe which one fits the best to
the NIR data. In particular, we experiment with Normal/Normal,
Log-Normal/Log-Normal, and Gamma/Gamma, respectively 𝑁1𝑁0,
𝐿1𝐿0, and 𝐺1𝐺04. More specifically, using Maximum Likelihood
Estimation, we fit two distributions on the retrieval scores: one for
relevant documents 𝑓 (𝑠 |1) and one for non-relevant 𝑓 (𝑠 |0). Then,
by referring to 𝜆 as the proportion of relevant documents, we define
the mixture model of the scores as 𝑓 (𝑠) = 𝜆 𝑓 (𝑠 |1) + (1 − 𝜆) 𝑓 (𝑠 |0).
Comparing the fitted mixture model with the observed IR scores
gives a measure of goodness-of-fit. Following [17], we then evaluate
the fitted mixtures distributions using the Kolmogorov–Smirnov 𝐷-
statistic. In Table 2, we compare the goodness-of-fit of the mixture
to the observed scores for several IR models. In almost all scenarios,
regardless of the collection or the IR model considered, the best
mixture for the data is the one produced using two Log-Normal. It is
surprising to note that although BM25, ColBERT-v2, and Bi-Encoder
have different score ranges due to their respective architectures,
relevant and non-relevant document scores still exhibit a similar
distribution – and goodness-of-fit. Thus, the similar probabilistic

4We also experimented with other combinations using the Exponential distribution,
that performed worse and are not reported to avoid cluttering.
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distribution between NIR and TIR scores motivates us to use NIR
scores in traditional QPPs.

4.4 Stage 5 Features for NIR QPP
We start from what was observed regarding Stage 5 features in
Section 3. According to [56, 78, 87], the importance of the regu-
larization term required to compute 𝑝 (𝑑 |D@𝑘, 𝑟 ) in Equation 1
is key to define a well-grounded QPP model. This regularization
allows obtaining comparable predictions across different queries.
Depending on the model, the regularization term can be expressed
either in the form of the corpus score 𝑠 (𝑞,𝐶) or as a probability
distribution representing the corpus’ language model 𝑝 (𝑤 |𝜃𝐶 ).

When it comes to applying a QPP to a specific TIR model, such
regularization can be computed either by a) looking at the internal
representation of the corpus – e.g., by considering the corpus term
frequency – or b) actually passing the concatenation of all docu-
ments to the model. In the NIR setting, models are trained to score
documents, given a query. This prevents us from directly defining
the score 𝑠 (𝑞,𝐶) for NIR models – it is not as straightforward as
for TIR to devise indicators that measure the goodness of the en-
tire collection. Secondly, it is computationally unfeasible, at the
current time, to compute a representation of the entire corpus by
concatenating all the documents: encoders are only able to deal
with strings from hundreds to thousands of tokens for the most
efficient transformers [91] – while it is reasonable to assume that
modern corpora have millions to billions of tokens

The solution we propose consists in approximating the repre-
sentation of the corpus using the representation of each document.
We provide two methodologies, one to compute the corpus repre-
sentation for sparse models, and the other for dense ones.

4.4.1 Regularization term for sparse NIR models. Sparse models,
such as SPLADE, compute high-dimensional sparse representations
in the vocabulary space R |V | for documents.

Given a document 𝑑𝑖 ∈ 𝐶 and a term 𝑡 𝑗 ∈ V , we define the
weight of the term 𝑡 𝑗 in the document 𝑑𝑖 as 𝑑𝑖 𝑗 = SPLADE(𝑡 𝑗 , 𝑑𝑖 ).
If we want to represent the entire corpus, we need to compute a
weight 𝑐 𝑗 for each of its terms. Since the new representation is in the
same space as a TIR Bag-of-Words (BoW) model, a straightforward
way to represent the weight of each term 𝑗 in the corpus is:

𝑐 𝑗 =

∑
𝑑𝑖 ∈𝐶 𝑑𝑖 𝑗∑
𝑑𝑖 ∈𝐶 |𝑑𝑖 |

(2)

This weight is unlikely to be the same that the term 𝑗 would
obtain if we would have fed the entire collection to the sparse NIR
model. Nevertheless, it can be used to compute the score of the
entire corpus given the query (used byWIG, NQC, and SMV) as well
as devising a language model to compute the Clarity predictions.

To evaluate the proposed QPPs, we apply them to SPLADE. We
first compute the performance of a set of QPPs using the traditional
approach based on LM. We then replace it with the SPLADE BoW
representations of queries and documents, using the strategy pro-
posed by [60] to use SPLADE together with classical index-based
IR libraries. Once the SPLADE BoW inverted index has been com-
puted, we use it and apply classical predictors as they are. We refer
to these new predictors as “SPLADE variant of the predictors”, and
indicate them with “S-”.

Table 3: Comparison between traditional SotA predictors and
SPLADE versions for a SPLADE run. sMARE, being an error, should
be minimized. In bold the best value, † indicates values that are sta-
tistically equivalent to the best, while △ indicates that the SPLADE
version is statistically better than the original one.

Deep Learning ’19 (In-Domain) Robust ’04 (OOD) TREC-COVID (OOD)
Prs. ↑ Knd. ↑ sMARE ↓ Prs. ↑ Knd. ↑ sMARE ↓ Prs. ↑ Knd. ↑ sMARE ↓

Cly 0.014 0.046 0.319 0.263 0.176 0.278 0.079 0.104 0.297
NQC 0.126 0.098 0.309 0.448 0.311 0.236 0.478 0.382 0.218
SMV 0.132 0.094 0.311 0.444 0.306 0.240 0.496 0.403 0.211
WIG 0.187 0.059 0.315 0.333 0.219 0.263 0.555 0.409 0.213
UEF𝐶𝑙𝑦 0.252† 0.128 0.293 0.408 0.279 0.244 0.037 0.010 0.320
UEF𝑁𝑄𝐶 0.212 0.154 0.287 0.462 0.328 0.232 0.384 0.271 0.245
UEF𝑆𝑀𝑉 0.215 0.154 0.287 0.454 0.328 0.232 0.416 0.304 0.236
UEF𝑊𝐼𝐺 0.260† 0.110 0.304 0.436 0.288 0.244 0.497 0.368 0.227

S-Cly 0.139△ 0.057△ 0.312△ 0.217 0.146 0.288 0.001 0.024 0.337
S-NQC 0.230△ 0.139△ 0.294△ 0.456△ 0.325△ 0.232△ 0.589† 0.433△ 0.205△

S-SMV 0.239† 0.152△ 0.297△ 0.449△ 0.322△ 0.232△ 0.601† 0.484† 0.189†

S-WIG 0.234† 0.165△ 0.297△ 0.294 0.195 0.272 0.491 0.349 0.229
S-UEF𝐶𝑙𝑦 0.231 0.199† 0.270† 0.423△ 0.292△ 0.246 -0.056 -0.055 0.339
S-UEF𝑁𝑄𝐶 0.244† 0.157△ 0.287 0.474† 0.335† 0.227† 0.382 0.264 0.261
S-UEF𝑆𝑀𝑉 0.238† 0.156 0.293 0.465△ 0.336† 0.226† 0.441△ 0.298 0.243
S-UEF𝑊𝐼𝐺 0.236† 0.187† 0.272† 0.439 0.298△ 0.241 0.287 0.191 0.270

Table 3 reports the empirical results of our analysis. The newly
devised predictors are capable of beating the State of the Art con-
sistently on all datasets, and by considering almost every mea-
sure. In particular, we observe that, in the case of Deep Learning
’19, the SPLADE version of almost all predictors is better than
the “original” version, with the exception of UEF-Clarity and UEF-
WIG when using Pearson’s correlation. Regardless, most of the
novel predictors achieve statistically comparable performance to
the best-performing system. There is not a unique winner in the
case of the Deep Learning ’19 collection: UEF-WIG is the best-
performing method when Pearson’s correlation is used as an eval-
uation measure, while SPLADE UEF-Clarity is the best when it
comes to Kendall’s correlation and sMARE. If we consider Robust
’04 collection, SPLADE regularization provides an improvement
for both NQC and SMV, and for all UEF versions of the predictors,
while the performance for Clarity and WIG degrades. This suggests
that the variance of the scores is a better indicator of performance
when using SPLADE as a retrieval method – NQC and SMV (and
thus their UEF variants) being based on such statistics. Akin to
what was observed on Deep Learning ’19, there is not a unique
winning predictor on Robust ’04. SPLADE UEF-NQC is the best
method in terms of Pearson’s correlation, while SPLADE UEF-SMV
is the best both with respect to Kendall’s correlation and sMARE.
Finally, in the case of TREC-COVID, we notice patterns similar
to those observed for Robust ’04. In particular, only the NQC and
SMV actually benefit from the usage of the novel regularization.
Nevertheless, the boost obtained by SPLADE-SMV makes it the
best performing predictor for the TREC-COVID collection. The
improvement observed in Deep Learning ’19, not observed on other
collections, is similar to what was previously seen for MEM-QPP.
This improvement can be attributed to the model used to instantiate
the new predictors, which was trained on MS-MARCO. This further
highlights the importance of Step 0 features.

4.4.2 Regularization Term for dense NIR models. For dense NIR
models, documents and queries are projected into a low-dimensional
latent space. Therefore, their representations are 𝑑-dimensional vec-
tors, with 𝑑 << |V|. Such representations are usually obtained by
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Table 4: Comparison between traditional SotA predictors andDense-
Centroid versions for four dense NIR runs. sMARE, being an error,
should be minimized. In bold the best value, † indicates values that
are statistically equivalent to the best, while △ indicates that the “DC”
version is statistically better than the original one.

Bi-Encoder TAS-B CoCondenser Contriever
Prs. ↑ sMARE ↓ Prs. ↑ sMARE ↓ Prs. ↑ sMARE ↓ Prs. ↑ sMARE ↓

Deep Learning ’19 (In-Domain)

SMV 0.300 0.246 0.185 0.288 0.347 0.259 0.330 0.250
NQC 0.283 0.258 0.184 0.290 0.338 0.254 0.341 0.248
WIG 0.514 0.237 0.298 0.295 0.102 0.331 0.336 0.282

DCSMV 0.570† 0.202† 0.321† 0.260† 0.452† 0.248† 0.475△ 0.228†

DCNQC 0.565† 0.213△ 0.331† 0.259† 0.444† 0.252△ 0.496† 0.224†

DCWIG 0.445 0.264 0.214 0.284△ 0.368△ 0.244† 0.498† 0.246△

Robust ’04 (Out-of-Domain)

SMV 0.600 0.180 0.366 0.256 0.317 0.272 0.331 0.262
NQC 0.614 0.175 0.376 0.254 0.317 0.264 0.330 0.261
WIG 0.636† 0.168† 0.344 0.260 0.390 0.247 0.263 0.278

DCSMV 0.618△ 0.171△ 0.437△ 0.231△ 0.426△ 0.245△ 0.376† 0.250†

DCNQC 0.631△ 0.167† 0.443† 0.228† 0.434† 0.236† 0.368△ 0.249†

DCWIG -0.231 0.374 0.346△ 0.261 0.264 0.270 0.331△ 0.263△

TREC-COVID (Out-of-Domain)

SMV 0.241 0.277 0.102 0.326 0.246 0.285 0.022 0.331
NQC 0.211 0.286 0.114 0.329 0.250 0.279 -0.005 0.333
WIG 0.562† 0.205† 0.724† 0.167† 0.677† 0.181† 0.714† 0.168†

DCSMV 0.441△ 0.246△ 0.081 0.336 0.460△ 0.217△ 0.097△ 0.314△
DCNQC 0.412△ 0.250△ 0.091 0.327△ 0.483△ 0.217△ 0.054△ 0.314△
DCWIG 0.394 0.247 0.044 0.327 0.568 0.209 -0.056 0.338

pooling contextualized term representations of the input sequence –
for instance, by averaging or simply considering the [CLS] token in
the case of BERT. Once all document representations di for 𝑑𝑖 ∈ 𝐶

have been computed, we can approximate the representation of the
entire collection by considering the centroid of all vectors:

C =

∑
𝑑𝑖 ∈𝐶 di
|𝐶 | (3)

By referring to q as the representation of the query, the score of
the collection is computed as 𝑠 (𝑞, C) = q𝑇C.

Using the novel regularization explicitly designed for dense mod-
els, we can instantiate traditional predictors. We call these new pre-
dictors Dense-Centroid (DC). Differently from what was observed
for sparse models, this collection representation does not allow to
instantiate Clarity, since it does not provide a language model.

We report in Table 4 the empirical evaluation of the proposed
predictors based on the DC representation of the collection. Table 4
shows that for Deep Learning ’19 we are able to improve over the
original versions of the models in almost all scenarios. The only ex-
ception is WIG for the Bi-Encoder and TAS-B retrievers, where the
original model performs the best. For Robust ’04 we notice similar
patterns, with improved results on almost all scenarios except for
the Bi-Encoder, where the original version of WIG remains the best
approach in terms of Pearson’s correlation, while, for what con-
cerns sMARE the best method is DCNQC. Notice that, for Robust
’04 we observe smaller improvements compared to those exhibited
on Deep Learning ’19. Finally, when it comes to TREC-COVID, the
original WIG remains the best-performing solution on all retrieval
models. Regardless, the DC versions of both SMV and NQC achieve
better results than their original counterparts in the majority of the
scenarios, with TAS-B being the only exception.

4.4.3 Discussion. As a first observation, our experiments highlight
the importance of Stage 0 features, which at the current time do not

exist. Indeed, Tables 1, 3, and 4 show that the improvement is evident
for Deep Learning ’19 collection, which shares the corpus with the
collection on which NIR models have been trained. If we switch
to the zero-shot setup, that is TREC-COVID and Robust ’04, either
the benefit decreases (Tables 3 and 4) or disappears (Table 1). There
are also wide differences between target collections. Both Tables 3
and 4 exhibit an advantage in using NIR-derived regularization
terms for Robust ’04, while the DC procedure fails on the TREC-
COVID collection. This allows us to hypothesize that TREC-COVID
is more distant from MS-MARCO than Robust ’04.

Not all models are equally easy to predict. This emphasizes the
need for the community to also focus on Stage 2 features – i.e., those
driven by the training procedure. In fact, although dense models
may have a similar architecture, their training differs, leading to
variations in performance among predictors. For instance, as shown
in Table 4, Bi-Encoder does not benefit from MEM-QPP, while TAS-
B does, yet Bi-Encoder, in general, tends to be easier to predict.

Not all QPPs benefit from the same features. For example, WIG
appears to be the method that benefits the least from the proposed
Stage 5 features. This can be explained by considering that WIG
is one of the best methods. Therefore, it is likely that the Stage 5
features on which it depends are already expressive enough.

This highlights another advantage of our framework: it allows an
understanding of where features come from and which ones should
be used in the predictor. Rather than changing features, we can
select the best fitting according to the context. Having a complete
overview of what features exist, how they can be extracted, and
in which setting they work the best, will allow practitioners to
combine them into powerful and tailored QPP models.

5 CONCLUSION AND FUTUREWORK
In this work, we propose a novel QPP framework that allows us
to interpret and devise features suited for predicting the perfor-
mance of NIR models. The framework is drawn upon a NIR retrieval
pipeline divided into 6 stages, each providing challenges and op-
portunities for predicting the retrieval performance. We show the
benefit of the proposed framework from both descriptive and ex-
perimental perspectives. Concerning its descriptive capabilities, we
frame traditional QPP models within the proposed framework. We
show that most of the classical pre-retrieval predictors exploit Stage
3 and 4 features, while post-retrieval ones are based on Stages 5 and
6. Furthermore, we used the Stage 1 features – the text of the train-
ing queries – to define a model-agnostic predictor that exploits the
memorization capabilities of NIR models and predicts the perfor-
mance in the in-domain scenario. Later on, following the framework
structure, we proposed a strategy to adapt traditional post-retrieval
QPPs. These new predictors modify the regularization term used by
classical QPPs to fit sparse and dense architectures and outperform
the current state of the art. We argue that our framework can serve
as a periodic table for future practitioners to identify unexplored
aspects that can further enhance the advantages of QPP systems for
the NIR scenario. As future work, we plan to expand the framework
to also include re-ranking systems. Furthermore, we plan to adapt
the framework to additional tasks where NIR performs best, such
as question answering and conversational search.
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