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Abstract
Large Language Models (LLMs) hugely impacted many research
fields, including Information Retrieval (IR), where they are used for
many sub-tasks, such as query rewriting and retrieval augmented
generation. At the same time, the research community is investi-
gating whether and how to use LLMs to support, or even replace,
humans to generate relevance judgments. Indeed, generating rel-
evance judgements automatically – or integrating an LLM in the
annotation process – would allow us to improve the number of eval-
uation collections, also for scenarios where the annotation process
is particularly challenging. To validate relevance judgements pro-
duced by an LLM they are compared with human-made relevance
judgements, measuring the inter-assessor agreement between the
human and the LLM.

Our work introduces an innovative framework for estimating the
quality of LLM-generated relevance judgments, providing statistical
guarantees while minimizing human involvement. The proposed
framework allows to: i) estimate the quality of LLM-generated
relevance judgments with a defined confidence while minimizing
human involvement; and ii) estimate the quality of LLM-generated
relevance judgments with a fixed budget while providing bounds
on the estimate. Our experimental results on three well-known IR
collections using multiple LLMs as assessors show it is sufficient to
assess 16% of the LLM-generated relevance judgments to estimate
the LLM’s performance with a 95% confidence.
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1 Introduction
Traditionally, Information Retrieval (IR) evaluation collections were
built following the Cranfield paradigm [13]. According to the para-
digm, IR evaluation collections are composed of three elements: a
set of information needs, represented as queries, a corpus of docu-
ments, and a set of relevance judgments that describe the relevance
of the documents in response to the information needs. While the
information needs can be extracted from a query log and the corpus
can be crawled or obtained from existing repositories (e.g., news
or research papers), relevance judgements are far more complex
to collect as they require manual human work. In this regard, the
main evaluation campaigns, such as TREC [42], CLEF [24], FIRE,
and NTCIR [37], rely on expert assessors to collect the relevance
judgements. While this approach ensures high-quality judgments, it
also comes with a huge investment in temporal and economic costs.
Furthermore, there are specific scenarios where it is particularly
hard to find experts, such as when it comes to low-resource lan-
guages, or when the investment might be particularly demanding,
like in legal or medical domains. Thus, the advent of Large Lan-
guage Models (LLMs), which are capable of mimicking the human
language, propelled the research community to investigate new,
cheaper approaches to produce relevance judgements.

Despite these approaches are gaining popularity in both academia
[21, 46] and industry [43], it is not clear yet how to properly vali-
date the automatically-generated relevance judgements. Most of
the proposed works [21, 43, 46, 50] evaluate the quality of LLMs
as assessors by first using them to generate relevance judgements
for historical IR collections, and measuring the agreement with
the human-made judgements available in the collections. Although
reasonable, this approach assumes that an IR collection is already
available. Using historical test collections – often dated and possibly
leaked – does not guarantee that the quality of the LLM as assessor
generalizes to previously unseen topics or documents. If we wanted
to evaluate it on new data, the cost of validating an LLM as assessor
on such data would be at least equal to the cost of constructing a
new human-made collection.

Here, we propose a cost-effective strategy to validate an LLM
assessment process compared to an ideal gold standard, represented
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by the human assessor. To exemplify this, we focus on fully auto-
matically generated relevance judgements.

With this perspective in mind, we articulate our work on two
research questions:

• RQ1: How to estimate the quality of LLM-generated rele-
vance judgments minimizing the human involvement (cost)
while providing statistical guarantees?

• RQ2: How to estimate the quality of LLM-generated rel-
evance judgments with a limited budget while providing
statistical guarantees?

Contributions. To overcome the discussed limitations, we pro-
pose a statistical framework to validate an LLM as an assessor
by using the least amount of human-made relevance judgments
– which remain an integral part of the evaluation process. Our
framework relies on a combination of sampling strategies, point
estimators, and Confidence Intervals (CIs), which enable the estima-
tion of the LLM effectiveness as an assessor with strong statistical
guarantees. Specifically, we focus on estimating the Mean Absolute
Error (MAE) and Cohen’s 𝜅 of the judgments generated by the LLM,
adopting Simple Random Sampling (SRS) as the sampling strategy
and the Wald interval as CI. The SRS sampling strategy ensures
that the sampled judgments are representatives of the entire set of
LLM-generated relevance judgments. The Wald interval makes it
possible to provide statistical guarantees on the estimate obtained
considering only the sampled judgments. Our work advances the
current state of the art [23, 43? ] by: (1) minimizing the humanmade
judgments, hence avoiding overpowered tests; and (2) providing
strong statistical guarantees on the outcome of the evaluation.

The proposed framework is very effective. Indeed, human as-
sessors are required to validate fewer than 6% to 16% of the LLM-
generated relevance judgments to estimate the human-LLM inter-
assessor agreement or the LLM’s MAE, respectively. This holds for
the considered collections and LLMs and for a confidence of 95%
on the estimate.

The rest of this work is organized as follows: in Section 2 we
review the current methodologies to evaluate LLM-generated rel-
evance judgments; in Section 3 we describe our proposed quality
estimation framework; in Sections 4 and 5 we describe the annota-
tion process and validate its evaluation, respectively; in Section 6
we detail challenges and opportunities related to the framework.
Finally, in Section 7 provide the final remarks.

2 Related Work
Recent developments concerning LLMs opened up new research
frontiers. In the IR field, the creation of the relevance judgments rep-
resents one of the aspects strongly affected by those advancements.
Traditionally, relevance judgments were created manually [4, 47] by
human expert assessors or by exploiting real user click logs [8, 16–
20, 34]. This is the case for the relevance judgments of the best-
known collections. To mitigate the costs of the human annotations
many works started investigating how to use LLMs to replace hu-
mans for the relevance judgments creation [21, 43, 46, 50]. Faggioli
et al. [23] first discussed the perspectives related to the use of
LLMs in IR for the generation of the relevance judgments. Thomas
et al. [43] proposed a first methodology to generate the relevance

judgments with LLMs while exploring the effectiveness of sev-
eral different prompt configurations. Upadhyay et al. [46] provided
practical guidelines and a prompt refining of the approach intro-
duced by Thomas et al. [43]. In particular, the approach proposed
by Upadhyay et al. [46] is known as UMBRELA and has been used
to generate the relevance judgments related to the TREC Retrieval
Augmented Generation (RAG) 2024 track [? ]. Others, such as Türk-
men et al. [44], hypothesise that entire collections, including topics,
documents and relevance judgements, can be created by LLMs.

In addition, LLMs started to be exploited not only to generate
relevance judgments from scratch but also to fill in the blanks
(i.e., non-annotated query-document pairs) present in many test
collections [32, 45].

In this view, also challenges and workshops in major top con-
ferences like SIGIR 2024 [1] and TREC 20241 have been organized.
An example is represented by the “LLMJudge” challenge [36], part
of the “LLM4Eval” workshop [35], which took place at SIGIR 2024.
This challenge was aimed at studying whether the LLMs can match
the accuracy of the human assessors and which are the most effec-
tive prompts and models.

The consequences of using LLMs to generate relevance judg-
ments are still debated. Some researchers argue that LLMs can be
comparable or even better than humans in the relevance judgments
generation task and/or similar tasks [28, 29, 39, 43]. Others claim
that the reliability of LLMs is not even close to that of humans
[3, 12] and that LLMs should not be used in this context [41]. Many
studies have been conducted in this direction [7, 9, 23, 51? ], but
there is still no agreement among the research community.

In this context, the most frequently used comparison metrics
are MAE and Cohen 𝜅. Another approach consists of considering
as a proxy of the quality of LLM-generated relevance judgements
their effectiveness on the downstream task of evaluating IR sys-
tems [43, 45, 46]. In particular, it focuses on measuring the consis-
tency of the ranking of the IR systems using either human-made rel-
evance judgements or LLM-generated ones. Ideally, LLM-generated
relevance judgements are more useful the more they rank IR sys-
tems the same way human-made relevance judgements would. The
most frequently used metrics for this purpose are Kendall 𝜏 and
Spearman 𝜌 . Nonetheless, these approaches do not provide guar-
antees on the quality of the generated data if the LLM-generated
relevance judgements are created for a new set of data, such as
new topics, documents, or both. For this reason, in this work, we
propose a newmethodology to estimate the quality of the relevance
judgment produced by an LLMminimizing the human involvement
and, therefore, the related costs.

2.1 The Need for a Statistical Framework
Several works on this research line test the performance of the pro-
posed approaches on historical collections for which human-made
relevance judgments already exist [21, 43, 46? ? ]. This approach
allows us to evaluate the quality of the LLM-generated relevance
judgements only on the available test collections — which could
be dated or could have been ingested by the LLM. For this reason,
there is no guarantee that the quality of a given LLM and used
prompt will generalise on previously unseen topics, documents,

1https://trec.nist.gov/pubs/call2024.html
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or even test collections. This approach does not help us evaluate
how good the LLM would be if we wanted to use it as a judge to
annotate a novel collection.

Other works have also employed sampling to reduce annota-
tion costs when evaluating the performance of automatic or semi-
automatic LLM-based relevance judgement creation [23, 43? ].

Compared to such efforts, our work aims at providing practition-
ers with a sound and grounded methodology to carry out such a
sampling. In particular, our contribution revolves around two key
axes. First, our work details the theoretical foundations to build
an evaluation procedure that minimises the annotation cost – for
humans and LLMs alike– saving time, money, and environmental
resources. Secondly, our work promotes good practices, describing
how to correctly compute the estimators, the variance, and the CI
when evaluating LLMs as assessors. Finally, it is worth noting that
the proposed framework can be seamlessly applied to both existing
collections – serving as a robust and efficient evaluation mechanism
– and new ones – acting as a reliable and cost-effective solution for
assessing the practical utility of LLM-generated judgements.

3 LLM Quality Estimation Framework
In this section, we first provide an intuition on the LLM quality
estimation framework, then we describe the proposed pipeline.

3.1 Intuition
To overcome the limitations highlighted in Section 2, it would ben-
eficial to have a validation methodology that: i) allows determining
the quality of the LLM-generated relevance judgements with fewer
human-made assessments than those available in the whole collec-
tion; ii) provides statistical guarantees about the extent to which the
quality of such relevance judgements generalises to unseen parts
of the collection. By relying on sampling to minimize assessments
while remaining representative of the entire collection and by com-
puting CIs to gauge the uncertainties inherent in the estimated
LLM quality, the evaluation methodology we propose provides the
above mentioned, desired properties.

Figure 1 illustrates the quality estimation pipeline. Assume we
are interested in evaluating the quality of a set of LLM-generated
relevance judgements. This set of relevance judgements contains
queries, documents, and corresponding relevance judgements. Dur-
ing the first step, indicated with A , the researcher decides, based
on external aspects – such as the available budget or the desired
level of confidence – how the procedure should be designed. The
proposed procedures are two, depending on whether it is required
to satisfy confidence (purple box) or budget (blue box) constraints.2
The second step, indicated with B , consists of sampling a subset
of queries, documents, and corresponding relevance judgements.
During the third step ( C ), these “triplets” are annotated in terms
of correctness. In other words, the LLM-generated judgments are
compared with the human-made ones and considered correct if
they match, and incorrect otherwise. Note that the assessment can
be done by an expert assessor, as in the TREC paradigm, or collected
through other procedures – such as via crowdsourcing or click logs.
During the fourth step, indicated with D , the LLM quality estimate

2The confidence based procedure is inspired by the work of Gao et al. [26] in the
context of data quality management.

and the corresponding CI are computed using the triplets sampled
and manually assessed in the previous steps. Depending on the con-
sidered quality measure, an appropriate estimator must be selected.
In this work we consider MAE and Cohen’s 𝜅 measures. During
the last step ( E ), for the confidence based procedure (purple box),
a constraint check is performed to verify whether the obtained
CI meets the required confidence, i.e. the Margin of Error (MoE)
is lower than a predefined threshold. If the check is satisfied, the
procedure outputs the quality estimate and the corresponding CI.
Otherwise, the procedure loops back to the sampling step ( B ).

Below, we provide an example illustrating the advantages of the
proposed quality estimation pipeline over prior work.

Example 3.1. Let us assume a researcher wants to create a new
IR collection. They collected, by crawling the Web, around 9𝑀 doc-
uments. Furthermore, let us also assume that, from a set of related
query logs, the researcher obtained 43 queries. At this point, the
researcher needs to create relevance judgments, but they have a
limited budget. Thus, the researcher decides to employ 3 LLMs to
generate the relevance judgments for 9𝑘 query-document pairs. To
make an informed use, they must validate the LLM-generated rele-
vance judgments. However, verifying all the LLM-generated judg-
ments would require an effort equal to simply creating human-made
relevance judgments. To overcome this limitation, the researcher
decides to adopt the proposed quality estimation framework for ev-
ery considered LLM. In this regard, they require a quality estimate
with a confidence level of 95%, setting a threshold 𝜖 = 0.05 for the
MoE. With this setup, the researcher applies the confidence-based
iterative procedure. First, they start by sampling and validating,
in each iteration, an LLM-generated relevance judgment. Then,
once the sample is validated, the researcher estimates the quality
with the corresponding estimator and computes the corresponding
CI. Finally, the iterative procedure stops when the MoE (i.e., half
the width of the CI) is small enough. At the end of the procedure,
the researcher validated fewer than 1500 LLM-generated relevance
judgments: not even 17% of the total judgements!3 Based on the
performed validation, the researcher can rely on the top perform-
ing LLM and its relevance judgments. In this way, the researcher
can publish their test collection, together with the LLM estimated
quality and the corresponding CI.

3.2 Pipeline
In the following, we first introduce the required notation, and then
describe each step of the quality estimation pipeline.

Notation. Let us denote with R the set of relevance judgments
produced by an LLM, where 𝑟 ∈ R represents a single relevance
judgment and 𝑡 (𝑟 ) refers to its real (human-determined) relevance
value. Let us also denote with S a sampling strategy and with
RS ⊂ R the set of LLM judgments sampled from R according
to S, where 𝑛 = |RS | is the sample size. Moreover, let us define
with cost(RS) the cost of the human work required to validate the
sampled LLM-generated relevance judgments, with 𝜃 the value of
the considered quality metric measured on R, with 𝜃 the estimate

3The numbers used in this example represent real values obtained while estimating
the MAE of an LLM assessor for the TREC Deep Learning (DL) 2019 collection (see
Section 5).
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Figure 1: Pipeline of the proposed LLM quality estimation framework.

of the quality metric measured on RS , and with 𝑉 (𝜃 ) the variance
of such estimate. To gauge the uncertainties in the estimate 𝜃 due
to sampling, a 1−𝛼 CI is provided, where 𝛼 denotes the significance
level. Finally, let us denote half the width of a CI as MoE.

3.2.1 Procedure Choice. The LLM quality estimation framework
is articulated in two procedures, focusing on two different facets:

(1) Confidence Based Procedure (RQ1): Estimating the qual-
ity of LLM-generated relevance judgments with a desired
confidence while minimizing human involvement.

(2) Budget Based Procedure (RQ2): Estimating the quality of
LLM-generated relevance judgments with a fixed budget.

In the first step of the quality estimation pipeline (block A in
Figure 1), the researcher needs to choose among one of the two
procedures depending onwhether they have to satisfy confidence or
budget constraints. The former requires to set a threshold 𝜖 for the
MoE, while the latter requires to set a threshold 𝑏 for the cost. Note
that the validation cost can be computed in multiple ways, such as
considering the time ormoney required to have human involvement
in the validation of the sample. In this work, we consider the number
of sampled LLM-generated relevance judgments as the validation
cost, since it represents a reasonable proxy for temporal ormonetary
costs. To obtain a reasonable estimate of the costs, it would be
sufficient to multiply the number of sampled relevance judgments
by the average temporal or monetary cost for a human to validate
a single LLM-generated judgment.

Below, we provide the formulation of each procedure.

Confidence Based Procedure Formulation. Given the LLM-gen-
erated relevance judgments R and an upper bound 𝜖 for the MoE
of a 1 − 𝛼 CI, the confidence based procedure can be formulated as
a minimization problem:

minimizeRS cost(RS)
subject to E[𝜃 ] = 𝜃,MoE(𝜃, 𝛼) ≤ 𝜖

(1)

This formulation allows to find the smallest sample RS that min-
imizes the cost for validating LLM-generated relevance judgments
while satisfying the confidence constraint MoE(𝜃, 𝛼) ≤ 𝜖 . Notably,

the parameter 𝜖 controls the confidence of the estimate, inducing
higher costs (i.e., a larger sample) when we want high confidence
and lower costs (i.e., a smaller sample) otherwise. Furthermore, the
constraint E[𝜃 ] = 𝜃 ensures that the obtained estimate is unbiased
[30], and therefore representative of the entire population R. This
procedure minimises the costs required to estimate the quality of
the LLM-generated judgments with a desired confidence level.

Budget Based Procedure Formulation. Given the LLM-generated
relevance judgmentsR and an upper bound𝑏 for the cost of the sam-
ple, the budget based procedure requires drawing a sample RS such
thatE[𝜃 ] = 𝜃 and cost(RS) = 𝑏. That is, the procedure allows draw-
ing a sample RS that satisfies the constraint cost(RS) = 𝑏, from
which an unbiased estimate 𝜃 and the corresponding MoE(𝜃, 𝛼)
can be computed. Through this procedure, it is possible to estimate
the quality of the LLM-generated relevance judgments with the
highest possible level of confidence given the available budget 𝑏.

3.2.2 Sampling. The second step of the quality estimation pipeline
(block B in Figure 1) involves sampling a batch of LLM-generated
relevance judgments from R. Importantly, the sampling strategy
S must be selected with care, as using a sampling strategy that
does not align with the estimator invalidates the statistical
guarantees. In this work, we adopt SRS as sampling strategy [14]
which agrees with the chosen MAE and Cohen’s 𝜅 estimators.

SRS draws a batch of judgments without replacement, each se-
lected with uniform probability from the set R. For the confidence
based procedure the batch corresponds to a single judgment, while
for the budget based procedure the batch contains the number of
judgments required to achieve the budget 𝑏. This difference stems
from the different nature of the two procedures. While the former
is an iterative process that keeps sampling judgments until the
confidence constraint is satisfied, the latter represents a one-shot
process that samples the highest possible number of judgments
given the budget constraint.

3.2.3 Human Validation. In the third step (block C in Figure 1),
the newly sampled relevance judgments are manually validated by
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humans. For this task, if the LLM judgment is considered incorrect,
the annotator must provide their own judgment.

Note that the human assessment follows two different schemes
depending on the considered procedure. For the confidence based
procedure, whichworks as an iterative process, the human assessors
always validate the newly sampled LLM judgment – which is then
added to the pool of assessed judgments. For the budget based
procedure, the entire set of sampled LLM judgments is validated
together.

3.2.4 Quality and Interval Estimation. In the fourth step (block
D in Figure 1) we want to estimate the quality of the LLM judg-
ments. Following the literature on the domain [21, 43, 46, 50] we
consider: MAE and Cohen’s 𝜅 . Since we want to minimize the costs
for evaluating such quality while providing statistical guarantees,
we need to i) compute an unbiased quality estimate 𝜃 , and ii) build
a corresponding 1 − 𝛼 CI to gauge its uncertainties. Thus, in the
following, we describe the adopted MAE and Cohen’s 𝜅 estimators,
as well as the considered 1 − 𝛼 CI.

MAE Estimator. Let us denote with 𝑓 (𝑟 ) = |𝑟 − 𝑡 (𝑟 ) | the func-
tion that takes as value the absolute difference between the LLM-
generated relevance judgment 𝑟 ∈ R and the human-determined
relevance level 𝑡 (𝑟 ). Then, once the sampleRS of judgments, drawn
via SRS, is validated by humans, we can define an unbiased estima-
tor 𝜇 of the real MAE 𝜃 = 𝜇 (R) as the sample proportion [30]:

𝜃 = 𝜇 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑟𝑖 ) (2)

where 𝑟𝑖 ∈ RS is the 𝑖-th sampled relevance judgment. The variance
of this estimator, which corresponds to the standard error, is defined
as:

𝑉 (𝜃 ) = 𝑉 (𝜇) =
∑𝑛
𝑖=1 (𝑟𝑖 − 𝑡 (𝑟𝑖 ))2

𝑛(𝑛 − 1) (3)

Cohen’s 𝜅 Estimator. Cohen’s 𝜅 represents a measure of agree-
ment between multiple raters [15]. In this work, we consider two
raters: the LLM and the human assessor.4 Let us define with 𝑘 the
number of considered relevance levels, with 𝑝𝑖 𝑗 the fraction of rele-
vance judgments whose value is set to i by the LLM and to j by the
human assessor, with 𝑝𝑖 . the marginal probability 𝑝𝑖 . =

∑𝑘
𝑗=1 𝑝𝑖 𝑗

and with 𝑝. 𝑗 the marginal probability 𝑝. 𝑗 =
∑𝑘
𝑖=1 𝑝𝑖 𝑗 . Moreover,

we denote as 𝑝𝑜 the sum 𝑝𝑜 =
∑𝑘
𝑖=1 𝑝𝑖𝑖 and as 𝑝𝑒 the sum 𝑝𝑒 =∑𝑘

𝑖=1 𝑝𝑖 .𝑝.𝑖 . Then, once the sample RS of judgments, collected with
SRS, is validated by humans, we can define an unbiased estimator
𝜅̂ of the real Cohen’s 𝜅 as the sample 𝜅 [40]:

𝜃 = 𝜅̂ =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
(4)

Regarding the estimator variance, many studies have been con-
ducted towards finding the best formulation [5, 6, 25, 27, 40]. In
this work, we consider the Fleiss estimator variance [25], since it is
the most popular and supports multi graded relevance. The Fleiss

4Note that here we refer to a human assessor as either a single assessor or the combi-
nation of multiple assessors, whose judgments are aggregated in some way.

estimator variance is defined as:

𝑉 (𝜃 ) = 𝑉 (𝜅̂) = 1
𝑛(1 − 𝑝𝑒 )2

{
𝑘∑︁
𝑖=1

𝑝𝑖 .𝑝.𝑖 × [1 − (𝑝.𝑖 + 𝑝.𝑖 )]2+

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1,𝑖≠𝑗

𝑝𝑖 .𝑝. 𝑗 (𝑝.𝑖 + 𝑝 𝑗 .)2 − 𝑝2𝑒

}
(5)

Interval Estimation. To quantify the uncertainties in the esti-
mated quality, we adopt the Wald CI [11]. The Wald interval is
obtained by inverting the Wald large-sample normal test, leading
to the well-known formulation:

𝜃 ± 𝑧𝛼/2

√︃
𝑉 (𝜃 ) (6)

where 𝜃 represents the estimated quality, 𝑉 (𝜃 ) the estimator vari-
ance, 𝛼 the considered significance level, and 𝑧𝛼/2 the critical value
of the standard normal distribution for 𝛼 .

Note that, asymptotically, the larger the sample size𝑛, the smaller
the CI, and the more confident we can be about the estimate 𝜃 of 𝜃 .

3.2.5 Constraint Check. The last step of the quality estimation
pipeline (block E in Figure 1) only concerns the confidence based
procedure. In this step, the MoE of the obtained 1 − 𝛼 CI must
be checked to determine if it satisfies the constraint or if more
iterations are required to converge. The process terminates if the
CI is sufficiently small, hence, as soon as the required criterion,
MoE(𝜃, 𝛼) ≤ 𝜖 , is met. This avoids oversampling while providing
statistical guarantees.

Note, however, that the considered stopping condition may in-
cur into some issues when the sample size is (very) small, as the
variance may shrink too much. To overcome this limitation, a mini-
mum number of assessments over the sampled relevance judgments
should be obtained before activating this control step. A typical
rule-of-thumb is to gather at least 30 assessments, satisfying the
condition to apply the Central Limit Theorem [26].

Once the constraint is satisfied, we can report the final quality
estimate and 1 − 𝛼 CI. For the budget based procedure, the quality
estimate and the 1 − 𝛼 CI obtained in the previous step are directly
returned as the final quality estimates.

4 Experimental Methodology
In this section we describe the experimental setup and how we
generate and process the relevance judgments.

4.1 Experimental Setup
Collections. To evaluate the quality estimation framework, we

use three different test collections: the TREC DL 2019 [19, 34] pas-
sage collection, the TREC DL 2020 [16, 34] passage collection and
the TREC Robust 2004 [47, 48] document collection. The tree col-
lections contain respectively 43, 54 and 249 queries. TREC DL col-
lections are based on the MSMARCO passages corpus [34] which
contains 8.8M passages. The TREC Robust 2004 collection relies on
the TIPSTER disks 4 and 5 document corpus, minus congressual
records, containing 528k documents. For readability, we refer to
passages and documents as “documents”.
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Relevance judgements for TREC DL 2019 and TREC DL 2020
correspond to the following four-graded relevance labels: (0) “irrele-
vant”; (1) “related”; (2) “highly relevant”; and (3) “perfectly relevant”.
On the other hand, TREC Robust 2004 relevance judgements cor-
respond to one of the following three labels: (0) “not relevant”, (1)
“relevant”, and (2) “highly relevant”.

We consider only query-document pairs for which the corre-
sponding relevance judgments are available (i.e., belonging to the
original pool). This allows us to simulate the annotation process of
the LLM-made relevance judgments.

In terms of relevance judgements, TREC DL 2019 has approxi-
mately 9.3k annotated query-document pairs while TREC DL 2020
has around 11k annotated pairs. TREC Robust 2004 has approxi-
mately 311k annotated query-document pairs. Therefore, we em-
ploy a subset of the available relevance judgments for this collection.
Specifically, we use 5% of the query-document pairs (∼ 15𝑘), sam-
pled uniformly. This stems from the non-negligible temporal and
economic cost of the LLMs, and to adopt a more ethical approach
towards IR research and to reduce our carbon footprint [10, 38].
Furthermore, this allows us to use relevance judgment sets with
comparable sizes for all the three collections.

Large Language Models. In our experiments, we exploit the fol-
lowing LLMs: Llama 3.1 405B Instruct [22], an open LLM devel-
oped by Meta with 405 Billion parameters; Llama-3.1-8B-Instruct
[22], an open LLM developed by Meta with 8 Billion parameters,
representing a smaller version of Llama 3.1 405B Instruct; Mistral
7B-Instruct v0.3 [31], an open LLM developed by Mistral AI with 7
Billion parameters; Phi 3.5 mini Instruct [2], an open LLM devel-
oped by Microsoft with 3.8 Billion parameters. We use the “Instruct”
version of these LLMs as it is fine-tuned to improve their ability to
follow instructions and respond to structured questions.

Other Parameters. For the confidence based procedure, we ex-
perimented both with a 95% and a 99% CI, i.e., 𝛼=0.05 and 𝛼=0.01,
respectively. 𝜖 is also set to 0.05. To have a meaningful initial esti-
mate, as discussed in Section 3.2.5, we consider an initial sample
RS of 30 human-annotated relevance judgments.

For the budget based procedure, we evaluate the cases where
the researcher can collect up to 𝑏 human-made relevance judge-
ments, with 𝑏 ∈ {50, 100, 200, 500, 1000, 2000, 5000, 10000}. To pro-
vide a time estimate, we assume 1 and 4 minutes to annotate an
LLM-generated query-passage and a query-document judgment,
respectively. Therefore, converting the number of annotations in
hours, we assume the researcher can allocate between 1 and 167
hours to annotate passages (i.e., the values of 𝑏 multiplied by the
time to annotate a passage), and between 3 and 667 hours for the
documents.

4.2 Relevance Judgements Generation
We employ the UMBRELA [46] prompt to generate the relevance
judgements. This prompt has been used to generate the relevance
judgments for the TREC [42] 2024 RAG Track5. The prompt com-
bines a query and a document and causes the LLM to answer with a
label among: “irrelevant”, “related”, “highly relevant” and “perfectly
relevant” (i.e., those used for TREC DL 2019 and TREC DL 2020).

5https://trec-rag.github.io/

Thus, to generate the relevance judgements for a given LLM and a
given collection, we (i) select a (previously unseen) query-document
pair; (ii) customize the UMBRELA prompt for the chosen query-
document pair; (iii) provide the prompt in input to the LLM; (iv)
obtain the relevance judgment for the query-document pair from
the LLM; and (v) halt the procedure if all the query-document pairs
in the collection have been judged or repeat from (i) otherwise.

Differently from the TREC DL collections, the relevance judg-
ments of the TREC Robust 2004 collection have three grades. Thus,
in this case, we map “perfectly relevant” of UMBRELA to “highly
relevant” in the collection, the “highly relevant” to “relevant” and
“related” and “irrelevant” to “not relevant”.

5 Experimental Evaluation
In this section, we discuss the empirical evaluation of the proposed
framework. In Section 5.1 we present the MAE and Cohen’s 𝜅
estimation results computed for a 95% CI and in Section 5.2 we
report the MAE and the Cohen’s 𝜅 estimation results for a 99% CI.

5.1 Standard Confidence Relevance Results
Our first two experiments focus on obtaining an estimate of the
MAE and the Cohen’s 𝜅 with a confidence of 95% (𝛼=0.05).

MAEEstimate. The results obtained applying the proposed frame-
work to estimate the MAE for a confidence of 95% are reported in
Table 1. The row “Real MAE” contains the MAE computed by
comparing all the human-made relevance judgements with the
LLM-generated ones: this is the value for the entire population
that we wish to estimate through sampling with the proposed pro-
cedures. For the confidence based procedure, the table shows the
value of the estimate along with the related CI and the number of
human-made relevance judgments (cost) used to estimate the value.
For the budget based procedure, the table contains a row for each
budget value with the corresponding estimate and CI.

The results for the confidence based procedure show that it is
very cost-effective. Indeed, for the collections and LLMs used in
our experimental setup, less than 1700 LLM generated relevance
judgments must be validated by a human to obtain an MAE esti-
mate and a 1 − 𝛼 CI for an 𝛼 and 𝜖 values of 0.05. Thus, given the
number of relevance judgments generated by the LLM for each of
the collections, by exploiting the proposed confidence based proce-
dure, the MAE estimate can be computed by considering less than
16% of the created judgments.

Concerning TREC DL 2019, we notice that the number of human-
made relevance judgements required to estimate the error of the
relevance judgements generated by Llama 8B with a confidence
level of 5% is 1470, which decreases for the other LLMs – with
LLama 405B requiring only 787 relevance judgements. These values
are correlated with the MAE (both real and estimated). This pattern
is in line with what was observed by Marchesin and Silvello [33]:
the larger the error, the more the annotations that are needed to
correctly estimate it. This can be framed as an information theory
problem: the more uniform a set is, the fewer samples we need to
describe it, with the perfectly uniform sets on the extremes (i.e.,
when we have MAE equal to 0 or equal to 3 since we consider 4
relevance levels). Nonetheless, in this case, Phi 3.5 mini represents
an exception since it requires less annotations than LLama 8B even

https://trec-rag.github.io/
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Table 1: MAE estimation results for the confidence and budget based procedures when 𝛼=0.05

TREC DL 2019 TREC DL 2020 TREC robust 2004

Model Llama 405B Llama 8B Mistral 7B Phi 3.5 mini Llama 405B Llama 8B Mistral 7B Phi 3.5 mini Llama 405B Llama 8B Mistral 7B Phi 3.5 mini

Real MAE 0.632 1.001 0.908 1.170 0.604 0.983 0.913 1.221 0.565 0.882 0.856 1.494

co
nf

.
ba

se
d Estimate (C.I.) 0.626 ±0.050 1.022 ±0.050 0.958 ±0.050 1.197 ±0.050 0.604 ±0.050 0.962 ±0.050 0.893 ±0.050 1.207 ±0.050 0.529 ±0.050 0.853 ±0.050 0.820 ±0.050 1.453 ±0.050

Judgments # (hours) 787 (13.1h) 1470 (24.5h) 1050 (17.5h) 1120 (18.7h) 810 (13.5h) 1446 (24.1h) 1160 (19.3h) 1205 (20.1h) 867 (57.8h) 1594 (106.2h) 724 (48.2h) 1644 (109.6h)

co
st

ba
se
d

Judgments #:
50 0.580 ±0.178 1.060 ±0.293 1.100 ±0.258 1.340 ±0.221 0.660 ±0.214 1.140 ±0.269 0.900 ±0.239 1.220 ±0.258 0.420 ±0.169 0.760 ±0.283 0.840 ±0.180 1.620 ±0.285
100 0.590 ±0.134 1.100 ±0.196 1.070 ±0.165 1.270 ±0.150 0.670 ±0.145 1.120 ±0.190 0.930 ±0.168 1.210 ±0.190 0.510 ±0.141 0.840 ±0.196 0.800 ±0.131 1.600 ±0.201
200 0.625 ±0.096 1.070 ±0.136 1.020 ±0.115 1.260 ±0.112 0.665 ±0.107 1.025 ±0.131 0.940 ±0.122 1.215 ±0.131 0.520 ±0.105 0.855 ±0.139 0.835 ±0.097 1.510 ±0.147
500 0.614 ±0.061 1.020 ±0.086 0.964 ±0.075 1.206 ±0.075 0.580 ±0.065 0.974 ±0.084 0.902 ±0.076 1.200 ±0.078 0.544 ±0.067 0.882 ±0.090 0.808 ±0.061 1.462 ±0.093
1000 0.645 ±0.045 1.033 ±0.061 0.962 ±0.051 1.215 ±0.053 0.596 ±0.045 0.940 ±0.059 0.898 ±0.053 1.213 ±0.055 0.542 ±0.047 0.862 ±0.063 0.835 ±0.043 1.461 ±0.065
2000 0.636 ±0.032 1.028 ±0.043 0.952 ±0.036 1.202 ±0.038 0.596 ±0.032 0.962 ±0.043 0.910 ±0.038 1.222 ±0.039 0.548 ±0.032 0.855 ±0.045 0.842 ±0.031 1.465 ±0.045
5000 0.624 ±0.020 1.005 ±0.027 0.907 ±0.022 1.162 ±0.024 0.593 ±0.020 0.971 ±0.028 0.912 ±0.024 1.216 ±0.025 0.556 ±0.021 0.854 ±0.028 0.861 ±0.019 1.469 ±0.029
10000 - - - - 0.607 ±0.014 0.986 ±0.020 0.916 ±0.017 1.228 ±0.018 0.562 ±0.015 0.866 ±0.020 0.855 ±0.014 1.492 ±0.020

if its MAE is larger. This is due to the randomness of the sampling
procedure that, for the case of Phi 3.5 mini, allows to sample a
more uniform set earlier. The pattern repeats almost identically
also for the TREC DL 2020. In such a case, to estimate the MAE
of Llama 8B, we need 1446 human-made relevance judgements
(∼12.7% of those available in the TREC DL 2020). On the contrary,
to estimate the performance of LLama 405B we need 810 human-
made relevance judgements (∼7.1%). The general pattern slightly
changes if we consider TREC Robust 2004. In fact, in this case, Phi
3.5 mini requires the largest amount of human-made relevance
judgements: 1644 (10.3% of the 15k relevance judgements that we
considered for the TREC Robust 2004). Moreover, for the TREC
Robust 2004 Mistral 7B is the model requiring the lowest amount of
human-made judgments even if it does not have the smallest MAE.
Similarly for the case of Phi 3.5 mini on the TREC DL 2019, this is
due to the randomness of the sampling procedure that allows to
sample a uniform set.

As expected, the results for the budget based procedure (lower
part of Table 1) show that, if we increase the budget, the CIs shrink.
If we consider 50 relevance judgements in Table 1, we notice that
the CIs sizes are between 0.169 and 0.293 MAE points. While most
of them consistently contain real MAE, confirming the validity of
the framework, they are likely considered too large to provide a
sufficiently precise estimate of the MAE. In line with the analy-
sis of the confidence based procedure, when we consider around
1000 human-made relevance judgements, we obtain CIs that are
between 0.045 and 0.065 MAE points. In several settings, this level
of precision of the estimate might be considered sufficient and was
achieved with, approximately 16 to 66 hours, depending on whether
the human annotator is annotating paragraphs or documents. If
we move to 5000 human-made relevance judgements, the CI sizes
are between 0.019 and 0.029 MAE points. Doubling the number of
human-made relevance judgements allows us to have intervals as
small as 0.014 to 0.020 MAE points. That is, doubling the budget did
not impact substantially the precision of our estimates. Importantly
we want to stress that the interval can be made arbitrarily small
with a sufficiently high budget. That is, using more and more data
could induce overly narrow intervals and overpowered statistical
test which would not generalise to previously unseen data. Figure
2 reports the MoE computed for each budget using different LLMs
as annotators and explicitly illustrates how increasing the budget

allows us to increase the confidence and reduce the variability of
the estimate and the size of the CIs.6

Cohen’s 𝜅 Estimate. The results obtained applying the proposed
framework to estimate the Cohen’s 𝜅 for 𝛼=0.05 are reported in
Table 2. The table is structured in the same way as for the MAE
(Table 1) and the row “Real Cohen’s 𝜅” contains the Cohen’s 𝜅
computed by comparing all the human-made relevance judgements
with the LLM-generated ones.

The effectiveness of the framework is confirmed by the confi-
dence based procedure result. For the collections and LLMs used
in our experimental setup, less than 550 LLM generated relevance
judgments must be evaluated by a human to obtain a Cohen’s 𝜅
estimate and a 1−𝛼 CI for an 𝛼 and 𝜖 values of 0.05. Thus, less than
6% of the LLM-generated judgments must be manually validated
to estimate the Cohen’s 𝜅 – considering the number of judgments
generated by the LLMs for each of the collections.

Moreover, for the confidence based procedure, the closer the
real Cohen’s 𝜅 value is to 0.5, the more human annotations are
required for the estimate. Indeed, the Cohen’s 𝜅 takes values in the
range [-1, 1], where a value of 1 indicates that there is complete
agreement between the raters, a value of 0 indicates that there is no
agreement.7 Thus, a Cohen’ s 𝜅 value of 0.5 represents a uniform
distribution which requires more annotations to be handled [33].

The results of the confidence based procedure confirm such
a behaviour. In TREC DL 2019, Llama 405B, whose Cohen’s 𝜅 is
the closest to 0.5 (0.288), requires the annotation of the highest
number of LLM-generated judgments (512), while Phi 3.5 mini,
whose Cohen’s𝜅 is the furthest from 0.5 (0.053), requires to annotate
the least amount of LLM-generated judgments (268). The same
occurs in the TREC DL 2020 and TREC Robust 2004.

As expected, the results for the budget based procedure (lower
part of Table 2) show that, if we increase the budget, the CIs shrink.
Indeed, it is possible to notice that, for a budget value 𝑏 of 50, the CI
sizes are between 0.069 and 0.173 Cohen’s𝜅 points, while for a value
𝑏 of 500, we obtain CIs that are between 0.018 and 0.052 Cohen’s
𝜅 points. Such confidence levels on the estimate might often be
considered satisfying and can be achieved with approximately 8

6Note that, occasionally the interval might not contain the real value (e.g., TREC DL
19 with Mistral 7B and 𝑏 = 1000). Being our procedure based on 𝛼 = 0.05 we can
expect this to occur in 5% of the cases: reducing 𝛼 decreases this probability at the
cost of more annotations.
7Negative values indicate specular ratings
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Figure 2: MAE estimation MoE computed for each budget for all the collections and LLMs considered.

Table 2: Cohen’s 𝜅 estimation results for the confidence and budget based procedures when 𝛼=0.05

TREC DL 2019 TREC DL 2020 TREC robust 2004

Model Llama 405B Llama 8B Mistral 7B Phi 3.5 mini Llama 405B Llama 8B Mistral 7B Phi 3.5 mini Llama 405B Llama 8B Mistral 7B Phi 3.5 mini

Real Cohen 𝜅 0.288 0.164 0.136 0.053 0.269 0.154 0.131 0.064 0.066 0.042 0.010 0.009

co
nf

.
ba

se
d Estimate (C.I.) 0.298 ±0.050 0.179 ±0.050 0.136 ±0.050 0.023 ±0.050 0.293 ±0.050 0.137 ±0.050 0.168 ±0.050 0.103 ±0.050 0.077 ±0.050 0.042 ±0.049 0.025 ±0.050 0.002 ±0.049

Judgments # (hours) 521 (8.7h) 405 (6.8h) 362 (6.0h) 268 (4.5h) 541 (9.0h) 414 (6.9h) 354 (5.9h) 232 (3.9h) 330 (22h) 184 (12.3h) 164 (10.9h) 84 (5.6h)

bu
dg

et
ba

se
d

Judgments #:
50 0.287 ±0.164 0.200 ±0.134 0.042 ±0.132 -0.014 ±0.100 0.225 ±0.160 0.081 ±0.135 0.170 ±0.130 0.166 ±0.092 0.160 ±0.173 0.148 ±0.128 0.015 ±0.105 0.003 ±0.069
100 0.309 ±0.117 0.162 ±0.094 0.032 ±0.096 -0.049 ±0.080 0.221 ±0.113 0.057 ±0.100 0.140 ±0.094 0.146 ±0.075 0.134 ±0.112 0.082 ±0.083 0.038 ±0.077 0.004 ±0.046
200 0.276 ±0.081 0.154 ±0.069 0.066 ±0.066 -0.019 ±0.058 0.238 ±0.081 0.104 ±0.072 0.159 ±0.066 0.112 ±0.055 0.092 ±0.067 0.044 ±0.050 0.015 ±0.043 0.007 ±0.029
500 0.287 ±0.051 0.167 ±0.045 0.127 ±0.042 0.048 ±0.037 0.296 ±0.052 0.134 ±0.046 0.156 ±0.043 0.067 ±0.035 0.069 ±0.039 0.050 ±0.029 0.019 ±0.026 0.016 ±0.018
1000 0.275 ±0.036 0.151 ±0.033 0.118 ±0.030 0.040 ±0.027 0.266 ±0.037 0.144 ±0.033 0.149 ±0.031 0.053 ±0.025 0.070 ±0.027 0.047 ±0.020 0.016 ±0.017 0.016 ±0.012
2000 0.290 ±0.025 0.152 ±0.023 0.116 ±0.021 0.044 ±0.019 0.274 ±0.026 0.153 ±0.023 0.143 ±0.022 0.065 ±0.017 0.062 ±0.019 0.045 ±0.015 0.018 ±0.013 0.010 ±0.009
5000 0.290 ±0.016 0.158 ±0.015 0.135 ±0.014 0.054 ±0.012 0.281 ±0.016 0.157 ±0.015 0.130 ±0.014 0.063 ±0.011 0.070 ±0.012 0.050 ±0.010 0.011 ±0.008 0.010 ±0.005
10000 - - - - 0.266 ±0.012 0.151 ±0.010 0.130 ±0.010 0.062 ±0.008 0.070 ±0.009 0.045 ±0.007 0.011 ±0.006 0.009 ±0.004

to 33 hours, depending on whether the human annotator validates
passages or documents. When we focus on budget values of 5000
and 10000, the CI sizes are between 0.005 and 0.016 and between
0.004 to 0.012 Cohen’s 𝜅 points, respectively. Thus, for high budget
levels, doubling the number of human-made relevance judgements
did not substantially impact the precision of our estimates. As
before, being our procedure statistical with an 𝛼 = 0.05, the CI
can occasionally miss the real Cohen’s 𝜅 value – as with Phi 3.5
mini in the TREC DL 20 collection (𝑏 = 50). However, it is also
important to notice that Cohen’s 𝜅 variance estimators (especially
lower one-sided ones) are known in literature [40] to be less reliable
when Cohen’s 𝜅 has values closer to or lower than 0.

By comparing the results of the confidence and budget based
procedures, some singular behaviours can be observed. For instance,
when considering the LLama 8B model and the TREC Robust 2004
collection, the confidence based procedure has a MoE of 0.049 and
requires to evaluate 184 judgments, whereas the budget based es-
timate results in a MoE of 0.050 when the budget 𝑏 is set to 200.
Although in most of the cases evaluating more samples corresponds
to a gain in confidence, occasionally, it may happen that larger sam-
ples contain several outliers – thus making the procedure less stable
and forcing the MoE to increase. Nevertheless, this behaviour is
very limited and has a negligible impact in our results.

5.2 High Confidence Relevance Results
Our third and fourth experiments focus on obtaining an estimate
of the MAE and the Cohen’s 𝜅 with a confidence of 99% (𝛼=0.01).

MAEEstimate. The results obtained applying the proposed frame-
work to estimate the MAE for 𝛼=0.01 are reported in Table 3 (struc-
tured as the one reported for 𝛼=0.05, Table 1).

The general behaviour of the framework is completely consis-
tent with what discussed in Section 5.1, when considering 𝛼=0.05.
Nonetheless, for the confidence based procedure, to reach a higher
confidence on the estimate it is necessary to sample more judg-
ments. Indeed, if we consider the TREC DL 2019 and LLama 405B,
1416 judgments must be sampled to estimate the MAE for 𝛼=0.01,
while 787 (∼55%) are sufficient for 𝛼=0.05. However, given the num-
ber of relevance judgments generated by the LLM for each of the
collections, by exploiting the proposed confidence based procedure,
the MAE estimate can be computed by considering less than 27%
of the created judgments.

For the cost based procedure,instead, a comparison of the MAE
estimation results for 𝛼=0.05 and 𝛼=0.01, shows that given a model,
collection and cost threshold the CIs are larger when the required
confidence is higher. This behaviour is consistent since, fixed a
certain judgments number, to be more confident on the estimate it
is necessary to increase the size of the CI.

Finally, increasing the confidence increases the reliability of the
CIs. Indeed, all of the estimated CIs contain the real MAE value,
both for the confidence and cost based estimates. This highlights
the robustness and reliability of the procedures.

Cohen’s 𝜅 Estimate. When 𝛼=0.01 the same considerations made
for MAE apply for the estimation results of Cohen’s 𝜅. This high-
lights the reliability of the proposed framework in different esti-
mation environments and its independence from the used quality
metric. For the confidence based procedure, compared to when the
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Table 3: MAE estimation results for the confidence and budget based procedures when 𝛼=0.01

TREC DL 2019 TREC DL 2020 TREC robust 2004

Model Llama 405B Llama 8B Mistral 7B Phi 3.5 mini Llama 405B Llama 8B Mistral 7B Phi 3.5 mini Llama 405B Llama 8B Mistral 7B Phi 3.5 mini

Real MAE 0.632 1.001 0.908 1.170 0.604 0.983 0.913 1.221 0.565 0.882 0.856 1.494

co
nf

.
ba

se
d Estimate (C.I.) 0.643 ±0.050 1.012 ±0.050 0.947 ±0.050 1.206 ±0.050 0.591 ±0.050 0.957 ±0.050 0.910 ±0.050 1.219 ±0.050 0.555 ±0.050 0.858 ±0.050 0.827 ±0.050 1.478 ±0.050

Judgments # (hours) 1416 (23.6h) 2497 (41.6h) 1809 (30.2h) 1971 (32.8h) 1364 (22.7h) 2546 (42.4h) 2008 (33.4h) 2106 (35.1h) 1484 (98.9h) 2765 (184.3h) 1298 2822 (192.1h)

bu
dg

et
ba

se
d

Judgments #:
50 0.580 ±0.234 1.060 ±0.385 1.100 ±0.339 1.340 ±0.291 0.660 ±0.281 1.140 ±0.353 0.900 ±0.314 1.220 ±0.340 0.420 ±0.222 0.760 ±0.372 0.840 ±0.237 1.620 ±0.374
100 0.590 ±0.176 1.100 ±0.258 1.070 ±0.217 1.270 ±0.197 0.670 ±0.190 1.120 ±0.249 0.930 ±0.220 1.210 ±0.249 0.510 ±0.185 0.840 ±0.258 0.800 ±0.172 1.600 ±0.264
200 0.625 ±0.126 1.070 ±0.178 1.020 ±0.152 1.260 ±0.147 0.665 ±0.141 1.025 ±0.173 0.940 ±0.160 1.215 ±0.172 0.520 ±0.138 0.855 ±0.182 0.835 ±0.128 1.510 ±0.193
500 0.614 ±0.080 1.020 ±0.112 0.964 ±0.098 1.206 ±0.099 0.580 ±0.085 0.974 ±0.110 0.902 ±0.100 1.200 ±0.102 0.544 ±0.088 0.882 ±0.118 0.808 ±0.080 1.462 ±0.122
1000 0.645 ±0.059 1.033 ±0.080 0.962 ±0.068 1.215 ±0.070 0.596 ±0.059 0.940 ±0.077 0.898 ±0.070 1.213 ±0.072 0.542 ±0.061 0.862 ±0.083 0.835 ±0.057 1.461 ±0.085
2000 0.636 ±0.042 1.028 ±0.056 0.952 ±0.047 1.202 ±0.050 0.596 ±0.042 0.962 ±0.056 0.910 ±0.050 1.222 ±0.051 0.548 ±0.043 0.855 ±0.059 0.842 ±0.040 1.465 ±0.059
5000 0.624 ±0.026 1.005 ±0.035 0.907 ±0.029 1.162 ±0.031 0.593 ±0.027 0.971 ±0.036 0.912 ±0.032 1.216 ±0.033 0.556 ±0.028 0.854 ±0.037 0.861 ±0.026 1.469 ±0.038
10000 - - - - 0.607 ±0.019 0.986 ±0.026 0.916 ±0.022 1.228 ±0.023 0.562 ±0.020 0.866 ±0.026 0.855 ±0.018 1.492 ±0.027
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Figure 3: Number of judgments required for the confidence-based Cohen’s 𝜅 estimate with 𝛼 = 0.05 and 𝛼 = 0.01.

confidence is set to 95%, the number of judgments to be validated
grows. Figure 3 shows the increment in the number of validations
needed for each collection and model. However, this number is still
very limited and corresponds to less than 10% of the LLM-Generated
relevance judgments. For the cost based procedure, given a certain
model, collection and cost threshold, the CI grows. Finally, increas-
ing the confidence results in the computed CI always containing
real Cohen’s 𝜅 value. This underlines the reliability of the frame-
work. The table reporting the complete results is available online.8

6 Challenges and Opportunities
The validity of LLM-generated relevance judgements is a topic
under debate, as such judgments may be affected by biases or circu-
larity issues [12, 23]. In light of this, we stress that demonstrating
whether and how LLMs should be used as assessors is well beyond
the scope of this paper. Nevertheless, assuming that LLMs will
eventually be integrated systematically in the creation of relevance
judgments for test collections, we further stress the importance
of cost-effective and reliable solutions to evaluate their quality.
Furthermore, as a guideline for future collections involving LLM-
generated relevance judgments,we recommend releasing also the
prompt used to generate them, its effectiveness on historical collec-
tions, and the estimate of the quality of the judgement computed
following the procedure described in this work. This documenta-
tion could act as a “reliability badge” in a similar spirit to the one
introduced by Webber et al. [49] to make systems’ performance
comparable within and between test collections. If we establish
proper releasing and sharing practices from the outset, we can
ensure consistency and make the process more future-proof.

On a different note, the proposed framework employs SRS as sam-
pling strategy, which is a relatively simple solution. However, using
more sophisticated approaches, like stratified sampling, would re-
quire the definition of appropriate strata, a challenging step in this

8https://github.com/MerloSimone/LLMQualityEstimation

context that, if done inappropriately, might increase the variance in-
stead of reducing it [30]. Moreover, it is essential to use appropriate
estimators to provide statistical guarantees on the quality estimates.
As described above, the estimators depend on the sampling strategy.
For several measures, especially those that can be computed on a
downstream task of the relevance judgements, such estimators have
not been discovered yet. Hence, the study of more sophisticated
sampling strategies and estimators for IR measures represents a
critical direction for future research. Finally, the proposed frame-
work can be adapted to operate in many other contexts, such as
hybrid scenarios where human assessors are supported by LLMs
– e.g., as summarizers or fact checkers – or where LLMs work as
pre-assessors [23],thus emphasizing the generality of our proposal.

7 Conclusions
In this paper we introduced a new framework to estimate the qual-
ity of the relevance judgments produced by an LLMwhile providing
statistical guarantees. We analysed two different facets: (1) com-
puting an estimate of the quality with a fixed confidence while
minimizing the cost, and (2) computing an estimate of the quality,
along with the confidence of the estimate, when the budget is fixed.
For each of these facets we introduced a new procedure to estimate
the MAE of the LLM and the inter-assessor agreement between the
LLM and the humans. We showed that the proposed procedures
allow to estimate the quality of the relevance judgments generated
by LLMs independently from the collection considered. Further-
more, the results highlighted that it is possible to strongly limit the
human involvement required for the estimation while maintaining
strong statistical guarantees.
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