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Abstract
Protecting sensitive information within textual data strongly de-
pends on the context in which the data is presented. However,
current privacy-preserving obfuscation mechanisms based on 𝜀-
Differential Privacy (DP) produce an obfuscated private text chang-
ing the original phrase term-by-term without considering the con-
text in which such a term is placed. This paper introduces DP-
COMET, an 𝜀-DP obfuscationmechanism that evaluates a text’s con-
text before producing its private version. The mechanism defines a
representation of the original text that considers the entire context
within the text, producing an obfuscated version after adding noise
to this representation and depending on the privacy parameter 𝜀. We
test DP-COMET on different Natural Language Processing (NLP)
and Information Retrieval (IR) downstream tasks, and our findings
show that our obfuscation mechanism not only achieves compara-
ble performance results to traditional term-by-term mechanisms
but also produces obfuscated texts less similar to the originals.
To promote the reproducibility of DP-COMET, we make the code
publicly available at https://github.com/Kekkodf/DP-COMET.

CCS Concepts
• Security and privacy→ Privacy-preserving protocols; Pri-
vacy protections; Usability in security and privacy.
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1 Introduction
Approximately 80% of theweb’s content is in unstructured form [15],
i.e., textual data, like social network and blog posts, queries submit-
ted to search engines, and other textual shared content as primary

∗Corresponding Author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3760888

examples. This data often contains sensitive and private details of
users, which can be inadvertently ingested and processed if the data
is used to train a machine learning model, such as those used for
Natural Language Processing (NLP) and Information Retrieval (IR)
tasks. Therefore, when handling and processing such data, users’
privacy must be properly preserved [19, 22, 32].

The 𝜀-Differential Privacy (DP) [10] is among the most popular
frameworks used to formally quantify privacy and obfuscate the
data by adding noise. However, when obfuscating textual data, DP
state-of-the-art mechanisms work by obfuscating texts in a term-
by-term style [6, 12, 21, 23, 35, 36], i.e., tokenising the input text and
changing each term independently from the context they appear in.
Failing to consider the context of a word might result in inadequate
privacy protection [1, 7, 8, 26]: for example, the token “312” carries
different sensitivity levels in the sentences “The Eiffel Tower is 312
meters high” and “My Card CVV is 312”.

In this paper, we introduce the 𝜀-DP Contextual Obfuscation
MEchanism for Textual data (DP-COMET), a novel text obfusca-
tion strategy for NLP and IR tasks. Rather than relying on precom-
puted word embeddings and independently concatenating each
term, DP-COMET employs an encoder to project the entire sen-
tence into a latent contextualised embedding. Such an embedding
is then perturbed with statistical noise, whose distribution and
magnitude are derived from the DP framework as a function of the
privacy budget 𝜀. The noisy contextual vectors are then used to
retrieve a suitable obfuscation piece of text from a publicly avail-
able corpus. Finally, the obfuscation text is used instead of the
original one to carry out the downstream task. To empirically vali-
date the effectiveness of DP-COMET, we consider two downstream
tasks: sentiment analysis and query obfuscation protocol. Our find-
ings show that contextual privatised embeddings obtained with
DP-COMET present higher utility and stronger privacy guaran-
tees compared to term-by-term privacy mechanisms, exhibiting
higher task-specific effectiveness with lower semantic and lexical
similarity to the original text. The results indicate that DP-COMET
produces private texts that preserve a similarity of only 5% to the
original ones on average while achieving the same effectiveness as
state-of-the-art mechanisms.

Section 2 introduces the framework of 𝜀-DP, focusing on howDP
obfuscation mechanisms for textual data work. Section 3 presents
the DP-COMET mechanism and how it provides textual obfusca-
tion, producing private texts. Section 4 shows the experimental
comparison between DP-COMET and the traditional state-of-the-
art DP mechanisms regarding effectiveness and privacy analysis.
Finally, Section 5 reports the conclusions and outlines future work.
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Figure 1: High-level view of 𝜀-DP obfuscation for texts.

2 Preliminaries
2.1 𝜀-Differential Privacy (DP) framework
According to the 𝜀-DP mathematical definition [10], a mechanism
M : {𝐷𝑖 }𝑖∈N → Image(M) is said to be 𝜀-DP if and only if for any
two neighbouring datasets1 𝐷1, 𝐷2 and any 𝜀 ∈ R+, identified with
the terms “privacy budget”, Inequality 1 holds.

Pr[M(𝐷1) ∈ S] ≤ 𝑒𝜀 · Pr[M(𝐷2) ∈ S] ∀S ⊆ Image(M) (1)

Given two similar inputs, 𝐷1 and 𝐷2, a DP mechanism should pro-
vide similar corresponding outputs. The lower the privacy budget 𝜀,
the harder it is to identify which input (i.e., either 𝐷1 or 𝐷2) the out-
put corresponds to. Conversely, larger 𝜀 values reduce the privacy
guarantees, making it easier to identify the input corresponding to
a given output. Typically, this is achieved by introducing statistical
noise that depends on the privacy parameter 𝜀 in the computation.

When dealing with metric spaces, the standard notion of DP
(Eq. 1) is often too strict. Hence, Chatzikokolakis et al. [3] relaxed
it by introducing the concept of metric-DP. Let X be a vector space.
A mechanism M provides metric-DP if, considering a distance
function 𝛿 : X × X → R and any 𝜀 ∈ R+, Inequality 2 holds.

Pr[M(𝑥) = 𝑥] ≤ 𝑒𝜀 ·𝛿 (𝑥,𝑥
′ ) · Pr[M(𝑥 ′) = 𝑥] ∀𝑥, 𝑥 ′, 𝑥 ∈ X (2)

This relaxation allows us to map points close in X on the same
output 𝑥—with the notion of “close” being regulated by 𝜀—thus
increasing privacy. On the other hand, points that are already far
apart are more likely to be mapped to different outputs.

2.2 𝜀-DP Obfuscation Mechanisms for Text
Providing privacy to textual data requires changing the text so that
an adversary can not entirely reconstruct the information contained
in the original text while maintaining (part of) its utility. 𝜀-DP
obfuscation mechanisms for textual data [2, 32, 37] take strings as
input and, after a computation process, produce a modified version
of the original text [11, 14, 17], thus protecting its original content.

The state-of-the-art text obfuscation 𝜀-DP mechanisms [12, 23,
35, 36] have three phases, depicted in Figure 1. The preprocessing
step is the initial phase, i.e., the input string is tokenised, and each
token is converted into a latent vector representation, using non-
contextual embedding approaches, such as GloVe [27]. After the
tokenisation, the distortion phase changes the encoding by adding
statistical noise sampled from a probability distribution—defined
by the DP mechanism—whose magnitude often depends on the
privacy budget 𝜀. Finally, during the selection step, the algorithm

1𝐷1, 𝐷2 differ only for at most one record, i.e., a single row is cut or added from one.

replaces the original token by selecting an obfuscation term starting
from the noisy embedding built during the previous step. Examples
of approaches that follow this paradigm include [12, 35, 36], whose
major differences consist of the distribution of the noise and how
the obfuscation term is sampled. Recent advances, such as the one
proposed by Meisenbacher et al. [23], employ contextualised pre-
trained masked language models, e.g., BERT [9]. Despite this, the
major limitation of all these approaches lies in the fact that all
of them obfuscate the terms individually, disregarding the entire
sentence and all possible relations between the different terms.

3 Obfuscation with DP-COMET
To overcome the limitations mentioned above, we propose to obfus-
cate the representation of the entire string so that its full semantic
meaning is protected, rather than just its individual tokens. To
this end, we require an encoder 𝜙 : W∗ → R𝑑 that maps strings
into a 𝑑-dimensional latent embedding space. Here,W denotes a
vocabulary of tokens—e.g., the English vocabulary—and W∗ repre-
sents a string of arbitrary length. We do not impose any specific
constraints on this embedding function; for example, it could be
any sentence-level transformer-based encoder [33]. One common
approach is to use the [CLS] token representation from a BERT
model. We define t = 𝜙 (𝑡), where 𝑡 ∈ W∗, as the latent representa-
tion of the original sensitive string 𝑡 . DP-COMET then computes
an obfuscated version t̃ = t + 𝜂, where 𝜂 ∼ 𝑝𝜀 is noise sampled
from a distribution 𝑝 and regulated by the privacy parameter 𝜀.
In light of NLP-oriented downstream tasks, we require a function
𝜓 : R𝑑 → W∗ that, given t̃, maps it back into a human-readable
string 𝑡 = 𝜓 (t̃), which can be directly used for downstream ap-
plications such as training, classification, or retrieval. In practice,
both 𝑝 and𝜓 must satisfy the metric-DP requirement described in
Equation 2. In the following paragraph, we focus on two suitable
probability distributions 𝑝𝜀 used for sampling the noise in a DPway:
Cumulative Multivariate Perturbation Mechanism (CMP)[12] and
Mahalanobis (Mhl)[35]. Finally, we describe the mapping function
𝜓 and discuss the magnitude of the budget 𝜀.

Probability Distribution 𝑝𝜀 . We instantiate the DP-COMET frame-
work by taking inspiration from what is typically done at a token
level. In detail, as noise probability distribution 𝑝𝜀 , we employ the
distributions used by two well-established state-of-the-art token-
level obfuscation mechanisms: CMP [12] and Mhl [35] methods.

CMP [12] samples the perturbation noise from a 𝑑-dimensional
Laplace whose scale depends on the embedding space dimension
and the parameter 𝜀. The sampled noise is later normalised to
project it in the unit ball, achieving 𝜀-DP as demonstrated in [34].

Mhl, proposed by Xu et al. [35], is an evolution of CMP that
tunes the noise distribution towards densely populated areas of
the embedding space, ensuring that the noise 𝜂 ∼ 𝑝𝜀 points to-
wards different points, and increasing the chances of perturbing
the vector with a different one every time. To achieve this, the
normalised noise is rescaled using the 𝜆-regularised Mahalanobis
norm, thus following an elliptical distortion of the vector, stretching
the direction of the noisy embedding towards more similar vectors.

The mapping function𝜓 . Since the considered downstream tasks
(sentiment analysis and IR) operate directly on text, we need to
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remap the perturbed vector t̃ to a perturbed string 𝑡 . To obtain
a meaningful string, we propose to take it from a set of strings
T . In other terms, 𝜓 is such that 𝜓 (t̃) = 𝑡 , with 𝑡 ∈ T . This has
two advantages: first, we ensure that the output string is a well-
formed natural language sentence, and second, if the set of strings
is publicly available, an adversary observing it would not have
more information than what is already publicly available. Hence,
the final step is to define how 𝜓 should extract 𝑡 from T , given
t̃. Following the strategy proposed in [12], we consider 𝜓 (t̃) =

argmax𝑡 ∈T (t̃ · 𝜙 (𝑡)). In other terms, 𝜓 selects as obfuscation for
the original text 𝑡 , the string 𝑡 ∈ T , whose representation 𝜙 (𝑡) has
the largest dot product with the obfuscation vector t̃.

On the magnitude of 𝜀. Feyisetan et al. [12] observed that, for
larger text embeddings, larger 𝜀 achieve the same privacy-utility
trade-off. In other words, different embedding sizes shift the privacy
trade-off represented by 𝜀, making it impossible to directly compare
it across different embedding sizes: a larger 𝜀 does not correspond to
lower privacy if the embedding space is larger. Feyisetan et al. [12]
and Xu et al. [35] consider at most embeddings with 300 dimensions.
Modern contextual encoders have from hundreds to thousands of
dimensions.2 This makes it even more challenging to compare the
mechanisms for the same 𝜀. Tomitigate this, inspired by the solution
adopted by Vaswani et al. [33] for the Transformer attention, we
rescale Σ (the covariance of the embedding space matrix, used to
sample noise) by

√
𝑑 , the square root of the embedding dimension.

Importantly, since it does not impact how the noise is sampled, this
rescaling maintains the CMP and Mhl mechanisms 𝜀-DP, but makes
the trade-off of privacy vs. utility dependent only on the 𝜀 budget,
uncoupling it from the embedding size 𝑑 .

4 Empirical Experiments
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Figure 2: Accuracy results across different privacy budgets 𝜀
with the obfuscated tweets on the sentiment dataset [24].

Setup. We validate DP-COMET by testing it on two downstream
tasks: the NLP sentiment analysis and the IR query obfuscation
protocol. For the first task, we consider two datasets of labelled
tweets from the Kaggle platform [24, 31]. The former is our ref-
erence collection, while the latter is used as a set T from which
DP-COMET takes the obfuscated pieces of text. We use a BERT
model for sentiment analysis [28] to predict the tweets’ labels. For
2In our experiments, we used Contriever [18] with an embedding dimension of 768.

the query obfuscation protocol [13], we use two TREC collections –
DL‘20 [4] (54 queries) and Medline‘04 [30] (50 queries) – obfuscat-
ing each query 50 times, cf. Section 4.2. As set T , we use the MS-
MARCO query set [25] composed by ∼809k queries. We employed
TAS-B [16] as a retriever and Dragon+ [20] for the reranking.

For both tasks, we employ Contriever [18] as text encoder 𝜙 . The
state-of-the-art mechanisms, i.e., CMP,Mahalanobis (Mhl) and their
respective Vickrey’s variants [36], are instantiated with GloVe [27]
300-d embeddings in the pyPANTERA privacy framework [5]. To
measure the privacy levels, we computed the Jaccard score and
cosine similaritywith all-MiniLM-L6-v2 [29] between the original
and the obfuscated texts. The source code is publicly available3.

4.1 NLP: Sentiment Analysis
Effectiveness Analysis. This analysis aims to assess the model’s

ability to predict the sentiment of obfuscated tweets at different lev-
els of formal privacy defined by the parameter 𝜀. Figure 2 shows the
accuracy results of the Tweet-Sentiment classifier [28] across the
different privacy budgets. The trends in Figure 2 reveal two distinct
patterns in performance across different obfuscation mechanisms:
state-of-the-art mechanisms that employ term-by-term obfuscation
tend to exhibit reduced accuracy in high-privacy contexts, specifi-
cally under low 𝜀 privacy budgets. Contrarily, the accuracy achieved
with DP-COMET, both using DP-COMET-CMP and DP-COMET-
Mhl methodologies, outperforms that of the state-of-the-art at the
same 𝜀 levels. As the privacy budget value increases, the second
pattern emerges with CMP and Mhl mechanisms surpassing the
accuracy obtained using the other four strategies. These results
are in line with previous ones presented in pyPANTERA [5]. How-
ever, the accuracy alone does not allow us to tell whether we have
achieved better results, simply sacrificing more privacy: we analyse
the accuracy with respect to privacy in the next section.

Privacy Analysis. To assess the privacy guarantees, we compute
lexical and semantic similarity between the original and obfus-
cated texts, using Jaccard similarity at the term level and the cosine
similarity between their all-MiniLM-L6-v2 [29] embeddings, re-
spectively. High similarity indicates low privacy. Table 1 shows
the results across the 𝜀 values. CMP and Mahalanobis exhibit a
significant privacy loss, as highlighted by the increasing cosine and
Jaccard scores with an increase in 𝜀. Conversely, Vickrey’s mecha-
nisms and the DP-COMET variants are more robust according to
both similarity measures, with DP-COMET retaining the lowest
similarity, especially at higher 𝜀. If we combine the results reported
in Figure 2 and Table 1, we observe that with high levels of formal
privacy, i.e., low 𝜀, the DP-COMET mechanisms achieve higher per-
formances without completely destroying the effectiveness on the
task.When 𝜀 increases, the DP-COMET is by far the most protective
strategy, with accuracy comparable to Vickrey’s.

4.2 IR: Query Obfuscation Protocol
Effectiveness Analysis. The effectiveness of the document re-

trieval task is measured by considering the final reranked list of re-
trieved documents. Figure 3 shows the effectiveness trends obtained
considering the Precision@10 (Figures 3(a), 3(b)) and nDCG@10

3https://github.com/Kekkodf/DP-COMET
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Table 1: The Similarity scores between obfuscated and original tweets of [24]. They reflect the degree of resemblance in terms of contextual,
i.e., Cosine Similarity, and lexical, i.e., Jaccard Score. The lower the score, the better the privacy.

Cosine Similarity (all-MiniLM-L6-v2 [29]) Jaccard Score

𝜀 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0

CMP 0.064 0.079 0.203 0.373 0.564 0.700 0.771 0.823 0.000 0.002 0.077 0.211 0.402 0.579 0.703 0.841
Mahalanobis 0.066 0.072 0.136 0.229 0.371 0.517 0.640 0.824 0.000 0.003 0.043 0.108 0.220 0.358 0.499 0.840
VickreyCMP 0.064 0.076 0.166 0.242 0.321 0.394 0.429 0.551 0.000 0.001 0.041 0.085 0.123 0.145 0.151 0.178
VickreyMhl 0.059 0.07 0.113 0.169 0.238 0.303 0.360 0.539 0.000 0.003 0.024 0.052 0.087 0.118 0.137 0.175

DP-COMET-CMP 0.111 0.182 0.288 0.313 0.321 0.327 0.342 0.350 0.022 0.041 0.049 0.048 0.054 0.057 0.059 0.057
DP-COMET-Mhl 0.109 0.124 0.197 0.242 0.242 0.313 0.295 0.344 0.017 0.025 0.045 0.042 0.041 0.052 0.051 0.057

Table 2: The Similarity scores between obfuscated and original queries. They reflect the degree of resemblance in terms of contextual, i.e.,
Cosine Similarity, and lexical, i.e., Jaccard Score. The lower the score, the better the privacy. Due to limited page space, to avoid encumbering,
the full similarity results table, also available on DL’20 [4], is accessible in the online repository.

TREC - Medline‘04 [30]

Cosine Similarity (all-MiniLM-L6-v2 [29]) Jaccard Score

𝜀 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0

CMP 0.043 0.063 0.278 0.488 0.646 0.735 0.772 0.791 0.000 0.003 0.125 0.304 0.505 0.653 0.728 0.781
Mahalanobis 0.042 0.053 0.167 0.314 0.485 0.621 0.710 0.790 0.000 0.003 0.061 0.162 0.314 0.469 0.594 0.781
VickreyCMP 0.046 0.062 0.188 0.276 0.352 0.401 0.437 0.558 0.000 0.003 0.055 0.094 0.128 0.137 0.139 0.169
VickreyMhl 0.044 0.056 0.122 0.196 0.267 0.328 0.382 0.551 0.000 0.002 0.028 0.064 0.094 0.116 0.134 0.171

DP-COMET-CMP 0.026 0.275 0.535 0.557 0.570 0.577 0.584 0.591 0.006 0.029 0.066 0.072 0.073 0.074 0.075 0.076
DP-COMET-Mhl 0.025 0.137 0.453 0.515 0.549 0.562 0.569 0.589 0.006 0.015 0.053 0.067 0.069 0.071 0.075 0.077
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Figure 3: Comparison on DL‘20 and Medline‘04 of the P@10
and nDCG@10 obtained using different obfuscations.

(Figures 3(c), 3(d)) on the DL‘20 and Medline‘04. In both collections,
the DP-COMET mechanisms outperform the state-of-the-art both
in terms of P@10 and nDCG@10 across all the epsilon configura-
tions. In particular, at lower values of 𝜀, DP-COMET reveals a clear
advantage over the other models operating at the same 𝜀. These re-
sults highlight the importance of considering the contextual query
phrase, as it significantly improves the quality of search results.

Privacy Analysis. Table 2, reports original and obfuscated strings
similarity figures for the Medline‘04 collection. To avoid encumber-
ing, the similarity analysis on the DL‘20 collection is available in the
online repository and shows a similar trend. Regarding the cosine
similarity analysis on Medline‘04, we observe that the CMP and
Mahalanobis mechanisms at high values of 𝜀 do not preserve any pri-
vacy, producing texts that are similar to the originals with similarity
as high as 0.791. Conversely, Vickrey’s and DP-COMET exhibit a
lower similarity than CMP andMahalanobis for all the epsilons. The
Jaccard similarity confirms such patterns, with DP-COMET achiev-
ing a score of 0.006 at 𝜀 = 1 and 0.077 with 𝜀 = 50. DP-COMET
shows robust privacy protection, reducing the proportion of com-
mon words between original texts and the respective obfuscations.

5 Conclusion
Privacy in NLP and IR tasks remains an open challenge. Standard
obfuscation mechanisms employ 𝜀-DP to provide privacy in a term-
by-term fashion, i.e., changing each word independently from its
context. In this paper, we introduced DP-COMET, a textual obfus-
cation mechanism that, within the 𝜀-DP framework, considers the
context in which a term is used, thus selecting the obfuscated texts
based on the contextual similarity with the original. Our findings
indicate that DP-COMET outperforms state-of-the-art methods in
NLP and IR tasks, particularly at low privacy budget values, while
ensuring strong privacy guarantees. In particular, for sentiment
analysis, DP-COMET offers robust contextual and lexical privacy
protections for the original text when analysing its obfuscations.

In future work, we intend to investigate newmethods for produc-
ing obfuscated text using LLMs to dynamically generate new textual
information based on contextual representations. Additionally, we
plan to explore the impact of other probability noise distributions
on DP-COMET performances in the privacy vs. utility tradeoff.
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GenAI Usage Disclosure
FollowingACM’s guidelines on the use of generative AI tools (Gram-
marly Pro), we disclose that generative AI technologies were used
solely to assist in code debugging and grammar checking during the
preparation of this paper. All research ideas, experiments, analysis,
and writing were conducted and critically reviewed by the authors.
No part of the scientific content or creative reasoning has been
generated or substantially rewritten by generative AI tools.
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