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Abstract. Quantum Computing (QC) is an emerging research field that
is attracting significant interest from the scientific community due to its
potential to solve complex problems more efficiently than traditional
computers by leveraging the principles of quantum physics. Even though
real quantum computers exist, at the moment we are still in the early
stages of development of these innovative technologies, and many of their
capabilities and limitations are yet to be discovered.

In this work, we present an overview of the second edition of Quantum-
CLEF, a lab that focuses on the application of Quantum Annealing (QA),
a specific QC paradigm, for different tasks related to Information Re-
trieval (IR) and Recommender Systems (RS). The main objective of the
QuantumCLEF lab is to investigate QC, raise awareness, and develop
and evaluate new QC algorithms for different applications. This lab rep-
resents a great chance for researchers and industry practitioners to un-
derstand more about this new field by having access to real quantum
computers, which are still not easily accessible nowadays.

This edition consisted of three different tasks: Feature Selection for IR
and RS systems, Instance Selection for IR systems, and Clustering for
IR systems. There have been a total of 44 teams that registered for
this lab, and eventually, 5 teams managed to successfully submit their
runs following the lab guidelines. Participants have been provided with
examples, tutorials, and comprehensive materials due to the novelty of
the QC field, allowing them to understand how QA works and how to
program quantum annealers.

1 Introduction

Quantum Computing (QC) is a new computational paradigm that focuses on
leveraging the quantum mechanical principles such as superposition, entangle-
ment, and tunnelling to perform calculations. Quantum computers have the
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potential to revolutionize the way we solve tasks in several fields, especially
when dealing with complex combinatorial problems, due to their capabilities in
exploring large search spaces very efficiently [20].

Nowadays, there already exist real quantum computers. However, we are still
in their early stages of development, and researchers are studying the capabili-
ties of these machines while, at the same time, trying to overcome some of their
current limitations. In fact, quantum computers are really delicate to work with,
since noise (e.g., thermal fluctuations, electromagnetic interferences) can easily
break computation. Furthermore, existing quantum computers have a limited
number of qubits, which limits the size of problems that can be targeted. Nev-
ertheless, it is already possible to have access to these technologies to learn how
they can be applied and what benefits they offer.

In 2024, the QuantumCLEF lab [3TH34] was started with the goal of studying
how QC technologies could be used in the fields of IR and RS. It represented the
first evaluation challenge, giving participants access to real quantum computers
to develop and evaluate algorithms for different practical tasks. This year, a
second edition of the lab was conducted to further shed light on the potential of
QC for IR and RS, with the following goals:

— develop and evaluate new QC algorithms for IR and RS, comparing the
results (efficiency and effectiveness) with traditional approaches;

— gather all resources and data for future researchers to compare their results
with the ones achieved during the lab;

— allow participants to learn more about QC through comprehensive materials
and to use real quantum computers, which are still not easily accessible to
the public;

— raise the awareness of the potential of QC and form a new research commu-
nity around this new field.

In this paper, we present the overview of the second edition of QuantumCLEF
held in 2025 [30]. Similarly to the previous edition, this edition has focused on the
usage of Quantum Annealing (QA), a specific QC paradigm that can be used to
tackle optimization problems. We have granted participants access to the state-
of-the-art QA devices (quantum annealers) produced by D-Wave, one of the
leading companies in this sector. The QA paradigm is easier to understand with
respect to the Universal Gate-Based paradigm. Furthermore, D-Wave provides
several tools and libraries to program quantum annealers without requiring a
particularly deep knowledge of the quantum physics governing these devices.

QuantumCLEF 2025 was composed of three main tasks:

— Task 1: Feature Selection for IR and RS;
— Task 2: Instance Selection [I1} 12| 29] for IR;
— Task 3: Clustering for IR.

Participants were invited to design and implement their own algorithms to
address the proposed tasks using both QA and Simulated Annealing (SA). SA is
a well-established optimization technique that shares some similarities with QA,
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but it operates entirely on classical hardware and does not exploit or simulate any
quantum phenomena. Given the novelty and technical complexity, participants
were provided with extensive support materials, including instructional videos,
slides, tutorials, and code examples, to facilitate their understanding of QA and
to help them solve the tasks using quantum annealers.

To ensure easy accessibility, the Kubernetes Infrastructure for Managed Eval-
uation and Resource Access (KIMERA) infrastructure [35] has been used. This
platform not only allowed participants to run their algorithms on actual quantum
annealers but also helped improve reproducibility, comparability, and simplifi-
cation of the workflow management.

A total of 44 teams registered for the lab, out of which 6 teams actively
participated. Finally, 5 teams submitted at least one run. Due to an unforeseen
circumstance that prevented access to quantum computers in the last 5 days of
the challenge, many of the teams’ submissions involve the usage of SA only. De-
spite this issue, the submitted solutions featured innovative and well-structured
techniques that remain highly relevant to the proposed problems. Many of these
approaches are readily adaptable to QA, underlining their potential for future
quantum implementations. Overall, the experimental results show similar trends
to the previous 2024 edition: QA or Hybrid (H) approaches usually perform on
par with SA and other classical techniques, with the added advantage of gener-
ally higher efficiency in terms of annealing time.

The paper is organized as follows: Section [2]discusses related works; Section [3]
presents the tasks of the QuantumCLEF 2024 lab while Section [f] introduces the
lab’s setup ; Section 5| shows and discusses the results achieved by the partici-
pants; finally, Section [6] draws some conclusions and outlooks some future work.

2 Related Works

In this section, we provide an introduction to QA and SA. Furthermore, we
summarize the tasks and the main outcomes of the previous QuantumCLEF
edition.

2.1 Background on Quantum and Simulated Annealing

Quantum Annealing. QA is a QC paradigm based on special-purpose devices,
known as quantum annealers, designed to solve optimization problems that are
properly formulated using specific formats. The fundamental idea behind a quan-
tum annealer is to encode the problem into the energy configuration of a physical
system. Quantum-mechanical phenomena such as superposition, entanglement,
and tunneling are then exploited to guide the system toward its lowest energy
state, which corresponds to the optimal solution of the original problem.

To use quantum annealers for a given optimization problem, first, it must
be formulated as a minimization problem using the Quadratic Unconstrained
Binary Optimization (QUBO) formulation [19], a well-established mathematical
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framework. The QUBO problem is defined as:
min y =27 Qx (1)

where x is a vector of binary decision variables, and @ is a matrix of constant
values encoding the problem to be solved.

An additional step, known as minor embedding, is required to map this math-
ematical formulation onto the physical hardware of the quantum annealer, taking
into account the limited number of available qubits and their connectivity. In
fact, each Quantum Processing Unit (QPU) has a specific hardware topology
that can be represented as a graph: vertices correspond to qubits, and edges
correspond to couplers (interactions) between qubits. Minor embedding involves
selecting physical qubits to represent logical decision variables. If a variable re-
quires more connections than physically available on the QPU, a chain of qubits
is used to represent it, and its connections are distributed across these qubits.

As a consequence, the number of physical qubits required to represent a
problem can be significantly larger than the number of logical variables. Minor
embedding is, in itself, an NP-hard problem, typically solved using heuristic
algorithms [9].

If the problem is too large to fit directly onto the QPU, D-Wave offers a H
approach, which decomposes the problem into smaller sub-problems, and solves
them using a combination of classical and quantum methods.

Constraints can be incorporated into the problem formulation using penalty
terms P(x) [45], which assign a cost to infeasible solutions. These represent soft
constraints, meaning they push quantum annealers to favor feasible solutions
but do not strictly enforce compliance. In other words, solutions violating these
constraints are penalized within the optimization process and thus unlikely to
be returned by quantum annealers. These penalties are added to the original
objective function to obtain the final objective function:

min C(z) =y + P(x) (2)

The relative influence of these penalties can be tuned via hyperparameters, de-
pending on how strict the constraints need to be.

In summary, the process of solving a problem using a quantum annealer
involves the following stages [45]:

1. Formulation: express the problem as a QUBO.

2. Embedding: generate a minor embedding of the QUBO onto the specific
QPU architecture.

3. Data Transfer: submit the problem and its embedding to the quantum
annealer via the global network.

4. Annealing: execute the quantum annealing process, which involves pro-
gramming the QPU, sampling multiple solutions, and reading the results.
Due to the stochastic nature of the process, it is typically repeated hundreds
of times to obtain a distribution of candidate solutions. These are then fil-
tered and evaluated to select the most optimal and feasible one.
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Once the QUBO has been successfully embedded and transferred to the quan-
tum annealer, solving the problem typically takes only a few milliseconds.

Simulated Annealing. SA is a consolidated meta-heuristic that can be run
on traditional hardware [0 [7, 44]. It is a probabilistic algorithm that can be
used to find the global minimum of a given cost function, even in the presence of
many local minima. It is based on an iterative process that starts from an initial
solution and tries to improve it by randomly perturbing it. The cost function is
represented by the QUBO problem formulation, similar to what would be used
for QA. In SA, there is no minor embedding phase since the problem is directly
solved on a traditional machine.

We underline that SA is an optimization algorithm different from QA; it
is not a simulation of QA on a traditional machine, and, therefore these two
algorithms are not equivalent. However, SA can be used for benchmarking pur-
poses to compare the performance of QA with respect to a traditional hardware
counterpart.

Moreover, access to quantum annealers in QuantumCLEF is limited to en-
sure a fair distribution of resources. Therefore, SA can also be used to perform
initial experiments to assess a QUBO formulation feasibility without affecting
the available quota in the quantum environment.

2.2 QuantumCLEF 2024

The QuantumCLEF 2024 lab [32, B4], presented at CLEF 2024, explored the
application of QA for IR and RS. The lab consisted in two tasks:

— Feature Selection: this task focused on selecting optimal feature subsets
for training IR and RS systems using QA.

— Clustering: Leveraging document embeddings, this task involved grouping
similar documents via QA to speed up dense retrieval.

Participants were given access to D-Wave hardware through CINECA and
used the KIMERA [35] infrastructure for enhanced resource access, comparabil-
ity, and reproducibility.

Out of 26 registered teams, 7 submitted official runs [I], 2] 17, 26] 28] 306
A1]. The results demonstrated the feasibility of using real quantum annealers in
IR and RS, encouraging interdisciplinary research and offering benchmarks for
further exploration of QC in real-world applications.

3 Tasks

QuantumCLEF 2025, addresses three different tasks involving computationally
intensive problems: Feature Selection, Instance Selection, and Clustering. The
main goals for each task are:

— finding some possible QUBO formulations of the considered problem;
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— map the QUBO formulation to the physical QPU;
— evaluating the QA approach compared to corresponding traditional approaches
to assess both efficiency and effectiveness.

For each task, we provided Jupyter Notebooks as entry points for participants,
helping them to learn how to program quantum annealers and to successfully
complete the tasks following the submission guidelines. Additionally, we supplied
the tutorial slides presented at ECIR and SIGIR [I5] [16], which introduce the
core concepts of QC and QA. A video tutoriaﬁ was also made available, demon-
strating the usage of our KIMERA infrastructure and the provided notebooks.

For each tasks, participants are asked to submit their runs using both QA and
SA. It was recommended that participants use SA for testing purposes during
the development phase of their algorithms, due to the limited availability of QA
resources.

3.1 Task 1 - Quantum Feature Selection

This task focuses on formulating the well-known NP-Hard feature selection prob-
lem to make it solvable through a quantum annealer, similarly to what has al-
ready been done in previous works [14] 27].

Objectives. Feature Selection is a widespread problem for both IR and RS.
It consists of identifying a subset of the available features (e.g., the most infor-
mative, less noisy, less redundant, etc.) to train a learning model for improved
efficiency and, in some cases, effectiveness. This problem is very impacting since
many IR and RS systems involve the optimization of complex learning models,
and reducing the dimensionality of the input data can improve their perfor-
mance. Therefore, in this task, we aim to understand if QA can be applied to
solve this problem more efficiently and effectively, exploiting its capability of
exploring large problem spaces in a short amount of time.

Feature selection fits very well the QUBO formulation, in which there is one
variable x per feature and its value indicates whether it should be selected or
not. The challenge lies in designing the objective function, i.e., the matrix @ (see
Equation [1)).

Sub-tasks. Task 1 is divided into two sub-tasks:

— Task 1A: Feature Selection for IR. This task involves selecting the optimal
subset of features using QA and SA that will be used to train a Lamb-
daMART [8] model according to a Learning-To-Rank framework;

— Task 1B: Feature Selection for RS. This task involves selecting the optimal
subset of features using QA and SA that will be used to train a kNN recom-
mendation system model. The item-item similarity is computed with cosine
on the feature vectors, a shrinkage of 5 is added to the denominator and the
number of selected neighbors for each item is 100.

4 |https: / /www.youtube.com/watch?v=fKrnaJn40Kk/| (accessed June 17, 2025)
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Datasets. For Task 1A, we decided to employ the well-known MQ2007 [38]
and the Istella S-LETOR [22] datasets. MQ2007 represents an easier challenge
since it has 46 features, allowing direct embedding of the problem formulations
inside the QPU of quantum annealers. Istella instead has 220 features, making it
impossible to embed problem formulations directly, thus requiring some further
processing steps for the participants to fit the problem into the current physical
QPU hardware.

For Task 1B instead, we decided to employ a custom dataset of music recom-
mendations containing 1.9 thousand users and 18 thousand items. The dataset
contains both collaborative data, with 92 thousand implicit user-item interac-
tions, as well as two different sets of item features that are derived from item
descriptions and user-provided tags, called Item Content Matrix (ICM). The
small set, ICM_100, includes 100 features and can be embedded directly on the
QPU with small adjustments, the large set, ICM_400, has 400 features and re-
quires significant pruning to fit in the QPU or the use of Hybrid methods. Both
sets of features contain noisy and redundant features.

Evaluation Measures. The official evaluation measure for both Task 1A and
Task 1B is nDCG@10.

Baseline. For sub-task 1A the baseline is a Feature Selection model that uses a
Recursive Feature Elimination approach paired with a Linear Regression model
to select the most relevant subset of features.

For sub-task 1B the baseline is a kNN recommendation system model that
uses all the available features. The hyperparameters are the same used for the
model computed on the selected features, i.e., the item-item similarity is com-
puted with cosine, adding a shrink term of 5 to the denominator, and the number
of neighbors is 100.

Runs Format. Participants in both tasks 1A and 1B can submit a maximum
of 5 runs per dataset using QA or Hybrid methods and a maximum of 5 runs
using SA. Each run that uses QA or Hybrid methods should correspond to a run
that employs SA to make a fair comparison between them.

The results of the run must be a text file which lists the features that were
selected, one per line. The discarded features are not reported in the run file.
Furthermore, the last line must report the list of IDs associated with the prob-
lems solved using QA, SA, or Hybrid to obtain the final subset of features by
the considered approach.

Each run file must be left in each team’s workspace in a specific directory
called /config/workspace/submissions, which is already available.

The submission file name should comply with the format
[Task]_[Dataset]_[Method]_[Groupname]_[SubmissionID].txt, where:

— [Task]: it should be either 1A or 1B based on the task the submission refers
to;
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[Dataset]: it should be either MQ2007, Istella, 100_-ICM or 400_-ICM based
on the dataset used;

— [Method]: it should be either QA or SA based on the method used,;
[Groupname]: the team name;

[SubmissionID]: a custom submission ID that must be the same for the
submissions using the same algorithm but performed with different methods

(e.g., QA or SA).

3.2 Task 2 - Quantum Instance Selection

This task focuses on formulating the Instance Selection problem and solving it
with quantum annealers. Instance Selection focuses on identifying and selecting
the most representative samples in a dataset to train a learning model. In this
way, the training phase will be more efficient and the trained model will achieve
a comparable level of effectiveness.

Objectives. Instance Selection is an important task in the fields of IR and RS,
particularly when dealing with large-scale datasets. By selecting a representative
subset of instances from a larger dataset, Instance Selection aims to reduce the
time required to train a learning model and maintain (or even improve) its
effectiveness [TIHI3]. It has already been shown that using QA for this task is
possible and it allowed to reduce the training dataset size by up to 28% without
compromising model performance [29].

In this task, the participants should identify subsets of the considered datasets
that are then used to train a Llama3.1 7B model [42] [42] for Text Classification
and Sentiment Analysis. A good Instance Selection approach should improve the
training efficiency while retaining the model’s effectiveness.

Datasets. For this task, we considered two different datasets:

— Vader NYT: A sentiment-labeled dataset from New York Times articles;
— Yelp Reviews: A collection of customer reviews labeled with sentiment scores.

Both datasets have been split into training and test sets. The training sets have
also been split into 5 folds following a 5-fold cross-validation approach.

Evaluation Measures. The performance will be evaluated on the test sets
from the 5-fold cross-validation splits using the Macro-F1 score, ensuring a fair
and comprehensive assessment of effectiveness. Furthermore, the evaluation will
also consider the time required to fine-tune the model and the dataset reduction
rate.

Baseline. For this task, the baseline is the Llama3.1 7B model trained on the
whole initial datasets.
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Runs Format. Participants can submit a maximum of 5 runs per dataset using
QA or Hybrid methods and a maximum of 5 runs using SA. Each run that uses
QA or Hybrid methods should correspond to a run that employs SA. In this
way, it is possible to make a fair comparison between them.

The results of the run must be a text file which lists the documents that
were selected, one per line. The discarded documents are not reported in the
run file. Furthermore, the last line must report the list of IDs associated with
the problems solved using QA, SA, or Hybrid to obtain the final subset of features
by the considered approach.

Each run file must be left in each team’s workspace in a specific directory
called /config/workspace/submissions, which is already available.

The submission file name should comply with the format
[Dataset]_[FoldNumber]_[Method]_[Groupname]_[SubmissionID].txt, where:

— [Dataset]: it should be either Vader or Yelp based on the dataset used;

— [FoldNumber]: it should be a number in [0, 4], representing the considered
fold;

— [Method]: it should be either QA or SA based on the method used;

[Groupname]: the team name;

— [SubmissionID]: a custom submission ID that must be the same for the
submissions using the same algorithm but performed with different methods

(e.g., QA or SA).

3.3 Task 3 - Quantum Clustering

This task focuses on the formulation of the Clustering problem in such a way
that it can be solved with a quantum annealer. It involves grouping the items
according to their characteristics. Thus, “similar” items fall into the same group
while different items belong to distinct groups.

Objectives. Clustering is important for IR and RS as it helps organize large
collections, assists users in exploring content, and provides similar search results
for a query.

This task focuses on IR in a document retrieval setting where documents
are represented as embeddings from a Transformer model. Each document is a
vector, and clusters are based on distances between vectors, representing dissim-
ilarity. Participants should use QA and SA methods to cluster documents into
10, 25, and 50 clusters, reporting the centroids and their associated documents.

Clustering enables faster search by matching the query to the nearest centroid
and retrieving documents only from that cluster instead of the entire collection.

Clustering fits the QUBO formulation, and various methods have already
been proposed [3| 4} [43]. Most of these methods involve the usage of one variable
per document, thus making it very hard to consider large datasets due to the
limited number of physical qubits and interconnections between them. There are
ways to overcome this issue, such as by applying a coarsening or a hierarchical
approach.
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Datasets. For this task, we considered a custom split of the ANTIQUE [21]
dataset containing 6486 documents, 200 queries, and manual relevance judg-
ments. Each document and each query have been transformed into a correspond-
ing embedding with the pre-trained all-mpnet-base-v2 mode]ﬂ The queries are
divided into 50 for the Training Dataset and 150 for the Test Dataset.

Evaluation Measures. The official evaluation measures for Task 2 are:

— the Davies-Bouldin Index to measure the overall cluster quality without con-
sidering the document retrieval phase;
— nDCG@10 to measure the retrieval effectiveness based on the clusters found.

Baseline. For this task, the baseline is a traditional k-Medoids approach using
the cosine distance as a distance function.

Runs Format. Participants can submit a maximum of 5 runs for each number
of clusters (i.e., 10, 25, 50) using QA or Hybrid methods and a maximum of 5
runs using SA. Each run that uses QA or Hybrid methods should correspond
to a run that employs SA. In this way, it is possible to make a fair comparison
between them.

The run file must be a text file (JSON formatted) with a list of 10, 25, and
50 vectors that represent the final centroids achieved through their clustering
algorithm. Each centroid should also be followed by the list of documents that
belong to the given cluster. Furthermore, the last line must report the list of IDs
associated with the problems solved using QA, SA, or Hybrid to obtain the final
clusters by the considered approach.

Each run file must be left in each team’s workspace in a specific directory
called /config/workspace/submissions, which is already available.

The submission file name should comply with the format
[Centroids]-[Method]_[Groupname]_[SubmissionID].txt, where:

— [Centroids]: it should be either 10, 25, or 50 based on the number of cen-
troids;

— [Method]: it should be either QA or SA based on the method used;

[Groupname]: the team name;

— [SubmissionID]: a custom submission ID that must be the same for the
submissions using the same algorithm but performed with different methods

(e.g., QA or SA).

4 Lab Setup

In this section, we detail the infrastructure used during this lab, and we present
the guidelines the participants had to comply with to submit their runs.

% |https:/ /huggingface.co/sentence-transformers/all-mpnet-base-v2
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Table 1: The hardware resources corresponding to the machine where KIMERA
was deployed and to the participants’ workspaces.

Hardware resources.
- CPU RAM Hard Drive
Infrastructure 32 cores 128 GB RAM| 1 TB HDD
Workspace [/1200 millicores| 12 GB RAM |20 GB HDD

Table 2: The monthly quotas to use quantum resources according to the tasks.

Monthly quotas for the tasks.
March

Task February April May

Task 1: Feature Selection

30 seconds

30 seconds

30 seconds

30 seconds*

Task 2: Instance Selection

120 seconds

120 seconds

120 seconds

120 seconds*

120 seconds

120 seconds

120 seconds

120 seconds*

Task 3: Clustering
* From 05/05/2025 to 10/05/2025 (submissions deadline), quantum annealers were unavailable

4.1 Infrastructure

Access to quantum annealers is limited. D-Wave enforces it through monthly
time quotas and the use of API keys to monitor and control usage. Since sharing
our API key with participants is not possible, we decided to use KIMERA, which
enables participants to access quantum annealers without requiring their own
API keys or agreements with D-Wave. It also ensures fairness and reproducibil-
ity, since all participants are provided with identical computational workspaces,
each equipped with the same CPU and RAM resources. This uniform environ-
ment facilitates consistent efficiency measurements. Moreover, it also allows par-
ticipants to monitor quotas and develop, test, and run code directly from their
browsers, eliminating the need for local experiments and for owning computa-
tional resources. Finally, all participants’ submissions are stored in a database
to track quota usage and collect data for analysis and reporting.

The final infrastructure was deployed on a machine hosted at the Depart-
ment of Information Engineering at the University of Padua. Table (1| reports
the specifications of the hardware resources corresponding to the machine and
to each team’s workspace. All participants were given the same monthly quota
to use quantum resources. Table [2| reports the monthly quotas according to the
three tasks.

4.2 General Guidelines

Each team has access to its personal area inside our infrastructure with the
credentials that have been provided to them. All runs must be executed by
using the workspaces that have been created for each one of the participating
teams, thus ensuring a fair comparison and easy reproducibility.
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Table 3: The teams that participated and submitted to QuantumCLEF 2025.

Team Affiliation Country
DSQGT qClef [37]|Georgia Institute of Technology United States
FAST-NU [40] National University of Computer and Emerging Sciences |Pakistan

Language Processing and Information Systems (GPLSI),

GPLSI [10] University of Alicante. Spain
Malto [I8] Politecnico di Torino Ttaly
SINAI-UJA [24] |Universidad de Jaén Spain

All participants cannot exceed their given quotas (see Table [2)) to execute
problems on quantum devices. The quotas can be monitored by each participat-
ing team through a dashboard that is constantly being automatically updated,
reporting usages of the different methods (i.e., QA, H, and SA) and some general
statistics.

All participants’ runs must follow the file formats that are detailed in Section
and for an easy automated evaluation with the prepared scripts.

5 Results

In this section, we present the results achieved by the participants and we discuss
their approaches. Out of the 44 registered teams, 5 teams managed to upload
some final runs. In total, the number of runs is 69, considering both SA, QA, and
H(H was introduced in Section . Table |3 reports the 5 teams that correctly
participated and submitted some final runs.

In total, throughout the entire lab, participants have submitted 7183 prob-
lems (vs 976 in QuantumCLEF 2024). Specifically, 6333 of them were solved
with SA, while 848 were solved using QA and 2 with the H method. The total
execution time of SA has been more than 4 hours, while the total QA and H
execution time has been roughly 1 minute.

The QA execution time in this whole Section refers to the Annealing phase
as described in Section [2.] therefore it includes the time required to program
the QPU, sampling, and reading the result. The embedding time and network
latencies are not taken into account and are left to be considered for possible
future editions of the QuantumCLEF lab.

5.1 Task 1A: Quantum Feature Selection for IR

Here we present the results achieved by the teams participating in task 1A,
considering each dataset separately.

MQ2007 dataset. As it is possible to see in Table[d] teams considered different
numbers of features in their submissions. In general, we can observe that most of
the submissions achieve similar nDCG@10 values, especially when considering a
number of features ny > 20.
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Table 4: The results for Task 1A on the MQ2007 dataset. Rows marked in grey
() represent the results achieved with QA/H, rows marked in yellow( ) refer
to the baselines’ results, and the remaining refer to results achieved with SA.

Annealing

Group ‘Submission id ‘nDCG@lO

time (ms)|Type|N° features
DSQGT qClef|1A_MQ2007_SA_DSQGT Clef_pfi-k-25-cmi 0.4500 2219|SA 25
DS@GT qClef|1A_MQ2007_SA_DSQGT qClef_pfi-k-20-cpfi 0.4318 2185|SA 20
DS@QGT qClef|1A_MQ2007_SA_DSQGT qClef_mi-k-25 0.4510 2214|SA 25
DS@QGT qClef|1A_MQ2007_SA_DSQGT qClef_mi-k-15 0.4485 2136|SA 15
DS@GT qClef|1A_MQ2007_SA_DSQGT Clef_pfi-k-30-cmi 0.4523 2157|SA 30
DSQ@GT qClef 1A-MQ2007_-QA_DSQGT qClef_mi-1 0.4436 183|QA 15
DSQ@GT qClef 1A_MQ2007_-QA_DSQGT qClef_mi-2 0.4552 160|QA 13
FAST-NU MQ2007_SA_FAST-NU_SA-2918 0.4212 4073|SA 15
FAST-NU 1A_MQ2007_SA_FAST-NU_SA-2915 0.3358 4164|SA 15
FAST-NU 1A_MQ2007-QA_FAST-NU_ae194be3-5267-45dd-aa0e-36a58579d719 0.4311 339|QA 15
FAST-NU 1A_MQ2007-QA_FAST-NU_26065450-e42a-4d92-bfb9-ff367d132142 0.4409 287|QA 15
FAST-NU 1A_MQ2007-QA_FAST-NU_1bba5207-9919-4048-b4a0-80f89b03f603 0.4375 275|QA 15
SINAL-UJA  |response_k21_nr3000 0.4530 3448|SA 21
SINAL-UJA  |response_k23_nr3000 0.4478 6632(SA 23
SINAL-UJA  |response_k25 nr3000 0.4510 2998(SA 25
SINAL-UJA  |response_k27_nr3000 0.4438 6637|SA 27
SINAL-UJA  |response_k29_nr3000 0.4491 6614[SA 29
SINAI-UJA  response k21 nr100 0.4580 34|QA 21
SINAI-UJA  response_k23 nr100 0.4437 37|QA 23
SINAI-UJA  response_k25 nr100 0.4550 31|QA 25
SINAI-UJA  response k27 nr100 0.4425 34|QA 27
SINAI-UJA  response_k29 nr100 0.4528 34|QA 29

BASELINE ALL_FEATURES 0.4473 -|- 46
BASELINE RFE HALF_FEATURES 0.4450

Figure[l| shows the nDCG@10 values and Annealing timings of the runs that
used QA and SA. From this figure it is possible to see that, in terms of efficiency
(i.e., Annealing time), runs using QA required a substantially shorter amount of
time with respect to SA. On average, QA required =~ 26.83 times less compared
to SA, thus representing a more efficient alternative.

Considering effectiveness, QA seems to be performing more consistently. In
fact, on average it performs = 1.02 times better compared to SA. Moreover, SA
led to 2 outliers that underperformed with respect to the overall results.

Teams adopted different approaches to address this task:

— Team DSQ@QGT qClef, inspired by a previous work [25], employed QUBO
formulations that focused on different combinations of importance measures
and redundancy measures for feature selection[37];

— Team FAST-NU adopted a Mutual Information-based approach, selecting
features that maximize the information associated with relevance [40)];

— Team SINAI-UJA also leveraged a Mutual Information-based approach,
but also focused on post-processing the returned samples through normal-
ization and projection techniques, aiming to find better solutions [24].

Istella dataset. As it is possible to see in Table [5| also in this case, different
numbers of features were considered among the submissions. It is interesting to
see that the baseline method employing Recursive Feature Elimination for the
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Fig. 1: The box plots of the nDCG@10 values and Annealing timings associated
with the runs using QA and SA on the MQ2007 dataset.

Table 5: The results for Task 1A on the Istella dataset. Rows marked in grey
() represent the results achieved with QA /H, rows marked in yellow( ) refer
to the baselines’ results, and the remaining refer to results achieved with SA.

Annealing
Group Submission id ‘nDCG@lO time (ms) |Type|N° features
DSQGT qClef|1A Istella_SA_DSQGT qClef_mi_25 0.6025 126631|SA 25
DSQGT qClef|1A Istella_SA_DSQGT qClef_mi_30 0.5104 133814|SA 30
DSQGT qClef|1A Istella_SA_DSQGT qClef_mi_50 0.6524 159964 |SA 50
DSQGT qClef|1A Istella_SA_DSQGT qClef_mi_60 0.6682 173222|SA 60
DS@QGT qClef|1A Istella_SA_DSQGT qClef_mi_70 0.6523 184047|SA 70
DS@QGT qClef|1A Istella_QA_DSQGT qClef_mi_50 0.5586 9987|H 50
BASELINE |ALL_FEATURES 0.7146 -|- 220
BASELINE |RFE HALF FEATURES 0.5560 -|- 110

extraction of 110 features performed worse than most of the participants’ runs
that considered a much lower number of features. Furthermore, running Recur-
sive Feature Elimination to keep the top 110 features required a considerable
amount of time (almost 2 hours of computation) and a considerable amount of
RAM (24 GB), which is much higher than the teams’ workspace specifications.

Overall, it is possible to see how a different choice of features can lead to
very different outcomes. In particular, the baseline RFE_HALF_FEATURES,
performed poorly compared to other submissions that considered a lower num-
ber of kept features. This can probably be due to a poor feature choice from
the baseline. Team DS@QGT qClef leveraged QUBO formulations including
importance measures and redundancy measures for feature selection [37].

In general, we can also see that the H approach required a much lower An-
nealing time than the SA counterparts, making use of a combination of QA and
traditional hardware computations.
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Table 6: The results for Task 1B. Rows marked in grey () represent the results
achieved with QA/H, rows marked in yellow( ) refer to the baselines’ results,
and the remaining refer to results achieved with SA.

Annealing

Submission id ‘nDCG@lO

Dataset|Group time (ms)|Type|N° features
M 100‘Malto 1B_100_ICM_SA_MALTO_1B - 100_ICM submission 0.0207 6149[SA 51
B BASELINE |ALL_FEATURES 0.0226 - 100
Malto 1B_400_ICM_SA_MALTO_1B - 400_ICM submission - 200 0.0294 80781|SA 200

ICM_400 [Malto 1B_400_ICM_SA_MALTO_1B - 400_ICM submission 0.0182 70269|SA 53
BASELINE|ALL_FEATURES 0.0328 - 400

5.2 Task 1B: Quantum Feature Selection for RS

Here we present the results achieved in task 1B. Results are divided according
to the two feature sets.

Table [0] presents the performance of different submissions for Task 1B, fo-
cusing on the impact of feature selection on the recommendation quality, as
measured by nDCG@10, as well as on the computational cost, measured via
annealing time.

For the ICM_100 dataset, the SA-based submission from the Malto group
using 51 features achieved an nDCG@10 of 0.0207, which is slightly below the
baseline score of 0.0226 obtained using all 100 features. This suggests a marginal
performance degradation due to feature reduction, but with a 49% reduction
in the number of features used could represent a good trade-off for improving
efficiency at run-time.

In contrast, for the ICM_400 dataset, results are more varied. The best SA-
based configuration (with 200 features) achieved an nDCG@10 of 0.0294, closer
to the baseline performance of 0.0328, though still lower. Another SA configu-
ration using only 53 features underperformed (nDCG@10 of 0.0182), indicating
that excessive feature reduction can harm recommendation quality. The anneal-
ing times were considerably higher for this dataset (around 70-80 seconds), due
to the increased search space associated with the larger feature set.

Team Malto addressed Task 1B by computing feature importance using a
Random Forest classifier trained on the full feature set. They constructed a
QUBO objective function that incorporated these importance scores along with
pairwise Pearson correlations to penalize redundant features [I8].

Overall, these results highlight that SA can effectively reduce the number of
features while maintaining competitive recommendation quality, especially when
a moderate number of features are retained. However, aggressive feature selection
may lead to substantial performance degradation, and the method incurs non-
trivial computational costs, particularly with larger datasets. These observations
underscore the importance of balancing performance, computational efficiency,
and the level of feature reduction when applying feature selection techniques in
real-world recommender systems.
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Table 7: The results for Task 2 on the Yelp dataset averaged over 5 folds. Rows
marked in grey () represent the results achieved with QA/H, rows marked

in yellow( ) refer to the baselines’ results, and the remaining refer to results
achieved with SA.

Avg Fine-Tuning|Avg Annealing

Group Submission id Avg Macro F1|Avg Reduction time (s) time (ms) |Type
DS@GT qClef| Yelp_SA _qclef_bcos_075 99.5(0.2) 0.25 1548.5(2.8) 25997|SA
DSQGT qClef|Yelp_SA_qclef_it_del 075 99.3(0.3) 0.25 1549.2(1.5) 25784(SA
DS@GT qClef| Yelp_SA_qclef sve_075 99.3(0.4) 0.25 1550.5(2.6) 25917|SA
DS@GT qClef| Yelp_QA qelef_beos 99.4(0.2) 0.274 1500(54.7) 1767|QA
GPLSI Yelp_SA_gplsi_2-SentimentPairs(docs=just-final... 90.8(5.7) 0.963 170.8(3.8) 35810|SA
GPLSI Yelp_SA_gplsi_2-SentimentPairs(docs=pair-related... 99.2(0.3) 0.627 822.2(395) 35810|SA
GPLSI Yelp_SA _gplsi_2-LocalSets 99.4(0.2) 0.512 1045.5(5.3) 28789[SA
GPLSI Yelp_SA_gplsi_2-Sentiment KmeansCard 98.5(1.1) 0.875 338.8(21) 17823|SA
GPLSI Yelp SA_gplsi 2-emoconflictCard 98.6(0.5) 0.728 628.2(65.9) 34024|SA
GPLSI Yelp_QA _gplsi_2-SentimentKmeansCard 98.7(0.2) 0.869 351(25.1) 553|QA
GPLSI Yelp_QA _gplsi_2-emoconflictCard 98.8(0.6) 0.702 678.8(80.9) 549|QA
Malto |Yelp SA-MALTO.2 - vader_nyt-2L.0 | 99.2(0.2)| 0.751] 582(2)| 142949|SA
BASELINE  |[BASELINE_ALL | 99.4(0.1) -l 2027.1(1.1)] -

5.3 Task 2: Quantum Instance Selection for IR

Here we present the results achieved by the teams participating in Task 2, divided
by dataset.

Yelp dataset. Table [7] reports the results achieved by the different teams on
the Yelp dataset for Task 2. As it is possible to see, the teams approached the
task by trying different reduction rates (from ~ 25% to =~ 96%). In particular,
the submission Yelp_SA_gclef-bcos_075 managed to improve the effectiveness of
the Llama3.1 7b model with respect to the baseline. This could be due to the
removal of noisy documents in that dataset, which lowered the performance of
the model if used during the fine-tuning.

Notably, the submission Yelp_QA_gplsi_2-SentimentKmeansCard shows how
QA was able to produce a reduction rate of ~ 87% and a high level of effectiveness
(i.e., 98.7 vs 99.4 of the full dataset). Generally, it is possible to observe that
QA requires less Annealing time than SA, while its performance is overall on
par with SA. We list here some of the approaches considered by the teams:

— Team GPLSI [10] considered different approaches, such as prioritizing di-
versity by selecting pairs with very high or low similarity and minimizing
semantic overlap (Sentiment Pairs) or selecting training instances using lo-
cal set geometry through the combination of noise filtering and clustering
with Euclidean distance (Local Sets);

— Team DSQGT qClef extended a previous approach [29)] for selecting docu-
ment embeddings. The team used cosine similarity for off-diagonal @-matrix
entries, but introduced two new strategies for diagonal terms: weighting in-
stances by their distance to an Support Vector Machine (SVM) decision
boundary and measuring their influence using a logistic regression leave-one-
out approach. The team tested each method individually and in combination,
using batching to handle the datasets [37].
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Table 8: The results for Task 2 on the Vader dataset averaged over 5 folds. Rows
marked in grey () represent the results achieved with QA/H, rows marked

in yellow( ) refer to the baselines’ results, and the remaining refer to results
achieved with SA.

Avg Fine-Tuning|Avg Annealing
Group Submission id Avg Macro F1|Avg Reduction time (s)

time (ms) |Type

DSQGT qClef| Vader_SA _qclef_sve_075 65.4(7.1) 0.25 1529(2.4) 25530[SA
DSQGT qClef| Vader_SA _qclef_combined 075 65.9(4.7) 0.25 1529.4(3) 25300[SA
DSQGT qClef| Vader SA it_del 075 65.6(3) 0.25 1520.5(2.3) 25348|SA
DSQGT qClef] 075 62.5(10.4) 0.25 1528.6(2.2) 25735|SA
DS@GT qClef| Vader_ QA _qclef_bcos 62.6(7.5) 0.283 1493.3(83) 1874|QA
GPLSI Vader_SA _gplsi_2-LocalSets 63.3(4.9) 0.505 1048.3(6.7) 29110[SA
GPLSI Vader_SA_gplsi_2-SentimentPairs-docs=just-final... 47.4(5.4) 0.962 172.8(5.7) 42408(SA
GPLSI Vader_SA _gplsi_2-SentimentPairs-docs=pair-related... 62.2(4.1) 0.7 671.8(352.8) 42408 (SA
GPLSI Vader_QA _gplsi_2-SentimentPairs-docs=just-final... 50(64)* 0.835% 172.9(26.9)* 545*% QA
GPLSI Vader_QA _gplsi_2-SentimentPairs(docs=pair-related... 62.1(1.8)* 0.658* 750.7(2653.2)* 545*%|QA
Malto |Vader SA_MALTO_2 - vader_nyt 2L | 63.1(2.5)| 0.751] 574.5(1.7)| 126087|SA
BASELINE |BASELINE ALL | 88.9(0.8)| -| 1997.3(5.7)| -|-

* The submission did not include all 5 folds

Overall, the results clearly highlight the critical importance of Instance Se-
lection, particularly in the current context where computational efficiency and
sustainability have a constantly increasing impact. By carefully selecting repre-
sentative subsets of data, it is possible to significantly reduce the computational
cost associated with fine-tuning large language models. Specifically, the fine-
tuning time for the Llama3.1 7B model was reduced by approximately up to
a factor of 9, with a negligible performance trade-off (i.e., losing less than 1
absolute point in macro-F1 score).

This demonstrates that substantial gains in efficiency can be achieved with-
out severely compromising model effectiveness, making Instance Selection a key
technique for training or fine-tuning models, especially when they are computa-
tionally expensive.

Vader dataset. Table [8|reports the results achieved by the different teams on
the Vader dataset for Task 2. Also in this case, the teams considered different
reduction rates (from ~ 25% to ~ 96%). However, differently from the previous
results, all the subsets produced by the different approaches lead to a higher loss
in terms of effectiveness of the fine-tuned Llama3.1 7b model.

It is possible to observe that submission Vader-SA-MALTO_2 - vader nyt_2L
produced a subset of ~ 25% of the original dataset size while allowing to
achieve a Average Macro F1 score which is higher than the subset produced by
Vader_SA_qclef_bcos_075 subset that instead was ~ 75% of the original dataset
size, showing how different datasets can yield to potentially very different results.

For this task, the participating teams adopted similar approaches to the ones
used for the other Yelp dataset. Also in this case, the QA approaches required
considerably less time with respect to the SA approaches while achieving similar
trends in terms of effectiveness.
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Table 9: The results for Task 3. Rows marked in grey () represent the results
achieved with QA/H, rows marked in yellow( ) refer to the baselines’ results,
and the remaining refer to results achieved with SA.

N° centroids|Team Submission id nDCG@10|DBI |Annealing Time (ms)|Type
GPLSI 10_SA _gplsi_3-FPS-Medoids 0.5783|7.5147 15375 SA
GPLSI 10_SA _gplsi_3-SubMedoidsQUBO 0.5579(6.8779 15305| SA
GPLSI 10_SA _gplsi. CLARA-CLARANS 0.5444/6.6710 15395  SA

10|GPLSI 10_SA gplsi MBK-Medoids 0.5600/6.4258 15510) SA
DSQGT qClef|10_.SA_DSQGT qClef_1 0.5800(7.4776 83 SA
DSQGT qClef|10_.SA_DSQGT qClef 2 * 0.0172]4.4706 83 SA
BASELINE |BASELINE_10 0.5509 7.9892 - -
GPLSI 25_SA _gplsi_3-FPS-Medoids 0.5475(5.5577 20875|  SA
GPLSI 25_SA _gplsi_3-SubMedoidsQUBO 0.52985.6255 40687|  SA
25|GPLST 25 SA gplsi CLARA-CLARANS 0.5310(5.6507 20532| SA
GPLSI 25_SA _gplsi MBK-Medoids 0.5193]5.3755 20758|  SA
BASELINE |BASELINE_25 0.5284 6.1201 - -
GPLSI 50_SA _gplsi_3-FPS-Medoids 0.5592(4.4531 9869 SA
GPLSI 50_SA _gplsi_3-SubMedoidsQUBO 0.5148]4.9325 23719|  SA
50 GPLSI 50_SA _gplsi. CLARA-CLARANS 0.5017(5.1703 9976|  SA
GPLSI 50_SA _gplsi_MBK-Medoids 0.5383]4.5025 24004| SA
DSQGT qClef[50_.SA_DSQGT qClef 3 * 0.00643.4217 228] SA
BASELINE |BASELINE_50 0.4656 5.3679 = =

* Dimensionality reduction was applied

5.4 Task 3: Quantum Clustering for IR

Here we present the results achieved by the teams participating in Task 3. Table
[ reports the results achieved in this task.

It is possible to see that in this task, teams focused only on the usage of SA
to solve the clustering problem. From the achieved results, we can notice how
both GPLSI and DSQGT qCLEF teams managed to provide some submissions
that performed better with respect to a traditional k-medoids baseline in terms
of nDCG@10 and Davies-Bouldin Index. This suggests that their proposed ap-
proaches managed to successfully identify representative clusters of vectors that
could help efficiently and effectively retrieve documents corresponding to queries.

We briefly detail some of the approaches considered by the teams:

— Team GPLSI [I0] developed a method that filters the dataset embeddings
to 150 pivots, optimizes centroid selection through annealing, and assigns
documents to improve retrieval efficiency. The pivot selection was carried out
in different ways, using heuristic approaches (FPS and CLARA-CLARANS),
k-Means, and a technique inspired by the qIIMAS team from the previous
QuantumCLEF edition [36] (SubMedoids). These techniques try to choose
pivots that provide good coverage of the whole dataset;

— Team DS@QGT qClef used a two-step approach. First, they applied clas-
sical clustering methods (k-Medoids, HDBSCAN [23], GMM, and GMM-
HDBSCAN), optionally with dimensionality reduction (e.g., UMAP [5], PACMAP),
to select a manageable subset of instances. In the second step, they applied
the QUBO-based k-medoids formulation on this reduced subset [37].

It is really interesting to see how the submission with id 50_SA_gplsi_3-FPS-
Medoids managed to achieve a higher level of nDCG@10 with respect to BASE-
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LINE_10. This improvement is especially impressive given that the method uti-
lized a substantially larger number of clusters, 50 in total, versus the 10 used by
the baseline. Despite the increase in cluster count, which could potentially lead
to over-segmentation and reduced retrieval performance, the clusters generated
by the GPLSI’s approach proved to be more effective.

Submissions 10_SA_DSQGT_qClef -2 and 50_SA_DSQGT_qClef-8 marked with
an asterisk (*), involved the usage of UMAP [§] dimensionality reduction tech-
nique. The dimensionality of the document vector embeddings was reduced to
only 2 dimensions, potentially causing a big loss of information. Due to this
aggressive reduction, the effectiveness of these runs was negatively impacted,
leading to low nDCG@10 values.

6 Conclusions and Future Work

In this paper, we have presented the overview of the second edition of the Quan-
tumCLEF lab that was held in 2025. QuantumCLEF represents the first lab
at CLEF focusing on the study, development, and evaluation of QC algorithms
using real quantum computers. This lab was composed of three tasks concerning
the problems of Feature Selection, Instance Selection, and Clustering, focusing
on computationally complex problems faced by IR and RS systems. Participants
used the KIMERA [35] infrastructure for a smooth workflow. The infrastructure
has granted participants access to both computational resources and cutting-
edge quantum annealers provided by D-Wave, thus giving the possibility of ex-
perimenting with real quantum computers.

A total of 44 teams registered for the lab, and 5 of them successfully man-
aged to submit their runs. The results have shown that QA and H managed to
achieve comparable results in terms of effectiveness with respect to SA while
achieving a higher level of efficiency in terms of Annealing time. This shows that
QC is starting to become a powerful technology that could help in the resolution
of complex problems, especially in the future once it has matured enough. Fur-
thermore, the QA results are competitive with respect to traditional baselines,
showing thatQA solutions are able to achieve good levels of effectiveness.

This second edition of the QuantumCLEF lab represented a great opportu-
nity not only to develop and evaluate QC algorithms on real quantum com-
puters (quantum technologies are still not easily accessible to the general public)
but also to raise awareness of the potential of QC, which is likely to become a
powerful technology in the future. In fact, participants were provided with com-
prehensive materials such as videos, slides, and examples that allowed them to
learn how QC and QA work. Moreover, we opted for maximum transparency,
allowing participants to work with the actual D-Wave libraries. In this way, par-
ticipants familiarized themselves with them and, thus, are now able to program
quantum annealers even outside our infrastructure to solve other problems in
their research field.

In the future, we plan to organize a third edition of QuantumCLEF with
different tasks and more challenges. We would like to invest in a more powerful
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infrastructure that will grant access to more participants and that will provide
more resources (in terms of CPU and RAM) to each workspace. If possible,
we would also like to extend the infrastructure to include gate-based quantum
computers [39], in addition to the already available quantum annealers.
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