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Abstract. Query Performance Prediction (QPP) tends to fall short
when predicting the performance of dense Information Retrieval (IR)
systems. Therefore, the research community is investigating QPP ap-
proaches designed to synergize with this class of state-of-the-art IR mod-
els. At the same time, recent advances concerning dense IR have shown
that we can improve the retrieval performance by projecting embeddings
in a (query-wise) optimal linear subspace of the dense representation
space. The Dimension IMportance Estimation (DIME) framework was
proposed to identify such optimal subspaces on a query-by-query basis. In
this paper, we illustrate how to design QPP models that rely on measur-
ing the alignment between the query and document representations and
the optimal DIME dimensions, based on the hypothesis that good align-
ment indicates better retrieval performance. We experimentally evaluate
the proposed QPPs, showing that our approach outperforms the state-
of-the-art when predicting the performance of two commonly used dense
encoders, Contriever and TAS-B, on two popular TREC collections, Deep
Learning 2019 and 2020.

1 Introduction

Query Performance Prediction (QPP) consists in determining the performance
of a Information Retrieval (IR) system in the absence of human-made relevance
judgments [3, 19]. This task allows us to determine which queries are likely to
fail; it can be used to select the best IR system to answer a specific query; or as
a signal to combine multiple systems [3]. Most QPP approaches were designed
to be used with IR systems relying on lexical matching and they still struggle
to achieve optimal performance when used to predict the performance of dense
IR models, which employ semantic signals instead [2, 9, 10, 14, 15].

On a different research line, Faggioli et al. [13] observed that, when using a
dense IR models, only some (query-dependent) dimensions of the latent embed-
ding space contribute positively to the optimal ranking, while others are useless
or, even, detrimental. As a consequence, by projecting the query and documents
on a subspace that includes only the useful dimensions, it is possible to improve
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retrieval performance. Therefore, Faggioli et al. postulated the manifold cluster-
ing hypothesis, which states that “High-dimensional representations of queries
and documents relevant to them often lie in a query-dependent lower-dimensional
manifold of the representation space”. They propose a novel class of estimators,
called Dimension IMportance Estimators (DIMEs), to determine a linear sub-
space of the original embedding space where the retrieval is more effective by
predicting the importance of each dimension.

In this work, we apply the DIME framework to the QPP task, by proposing
a novel family of predictors that exploit information on the importance of the
dimensions of an embedding space to formulate their predictions. In detail, we
first determine which dimensions are relevant to a query. This information is then
used to instantiate a set of heuristics that measure the alignment between the
query and document representations with such relevant dimensions. The under-
lying hypothesis is that if these representations are already well aligned with the
important dimensions, we can expect effective retrieval and predict high per-
formance. Vice-versa, a poor alignment with the optimal dimensions suggests
a suboptimal retrieval that can lead to low performance. Our experimentation
suggests that our hypothesis holds. By measuring the correlation between the
representations of the retrieved documents with the importance of the dimen-
sions determined using a DIME, we can effectively predict the performance of
a set of state-of-the-art IR systems. More in detail, we can overcome the cur-
rent state-of-the-art QPPs when predicting the performance for two popular
dense encoders, Contriever [22] and TAS-B [21], on two TREC collections, Deep
Learning 2019 and 2020.

The remainder of this work is organized as follows: Section 2 reports the
related work. Section 3 introduces the DIME framework and describes the QPP
employed in this work. Section 4 reports our experimental evaluation, while in
Section 5, we draw our conclusions and outline the future work.

2 Related Work

Dense IR. Three main categories of Dense IR systems have been developed:
bi-encoders, cross-encoders, and multivector or late-interaction models [39]. In
this work, we focus on bi-encoders, and in particular, we consider symmetric
approaches that use the same encoder to project queries and documents within
the same latent space. Bi-encoders (a.k.a dual-encoders) rely on two separate
(but possibly identical) neural networks to embed queries and documents within
a latent space [39]. Once the representation for both documents and a query
has been computed, the documents are ranked according to the inner product
between the representation of the query and the one of the document. In re-
cent years, several such models have been released, e.g., STAR [38], ANCE [34],
Contriever [22], TAS-B [21] and they are considered state-of-the-art solutions.

Traditional QPP. Depending on the features they rely upon, traditional QPPs
are divided into pre- and post-retrieval predictors [3, 19, 20]. The former rely on
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signals that can be derived without considering the ranked list of documents pro-
duced in response to the query. Such signals are, for example, the collection fre-
quency of terms appearing in the query [24, 40]. On the other hand, post-retrieval
predictors infer their predictions by taking as input also the ranked list of docu-
ments in response to the query. Traditional QPPs, such as Clarity [6], Weighted
Information Gain (WIG) [41], Normalized Query Commitment (NQC) [30], and
Score Magnitude and Variance (SMV) [32], are designed to operate on traditional
IR methods, such as BM25 [25] or language models. The characteristic of such
models is that they rely on exact lexical match, i.e., the presence of the query
terms in the document was considered a relevance signal. On the contrary, neu-
ral IR, including dense approaches, rely on semantic matching: therefore novel
QPP are needed to synergize at best with such systems [15].

QPP for Neural IR. While over time many QPP systems that employ seman-
tic signals were developed [1, 23, 26, 36], most of them employ such signals to
predict the performance of lexical IR models, making them less effective in pre-
dicting the performance of dense IR models that rely on semantic signals to
determine which documents are relevant. Among the QPPs specifically designed
to carry out QPP for neural IR, Hashemi et al. [18] introduce the Non-Factoid
Question Answering QPP (NQAQPP). This approach combines retrieval scores,
query lexical features, and both query and answer lexical features within a deep
neural network framework to address the prediction of the performacne in the
Non-Factoid Question Answering task. Hashemi et al.’s work is also one of the
earliest to evaluate the effectiveness of QPP on neural IR models, specifically
testing it on aNMM [35], and Conv-KNRM [8]. They note a significant gap in
predictive accuracy between BM25 and neural IR models, which they attribute
to the distinct score distributions produced by neural models. In a recent study,
Faggioli et al. [15] examine the ability of traditional QPP techniques to pre-
dict the performance of neural IR systems. Through a series of experiments,
they find a notable decline in the performance of existing QPP models when
applied to neural IR systems. This trend persists even when using BERT-QPP
as a predictive model for neural IR. This pattern is also observed by Datta
et al. [9, 10]. Singh et al. [31] propose an innovative QPP that uses an auxiliary
pairwise ranker (DuoT5) as an unsupervised QPP model. This model measures
how often the ranking produced by the IR system aligns with the pairwise com-
parisons made by the auxiliary model. Meanwhile, Faggioli et al. [12] leverage
the geometric properties of dense representations for performance prediction in
conversational search. They develop the Hypervolume (HV) predictor, which cal-
culates the volume of the axis-aligned bounding box that encompasses the top-k
retrieved documents and the query. Arabzadeh et al. [2] introduced a strategy
specifically tailored for dense IR systems. The predictor they proposed, known
as DenseQPP (DQPP), operates by assessing the similarity between the original
ranked list and the ranked list generated after the query is perturbed with appo-
sitely crafted Gaussian noise. On a similar line, the approach proposed by Sala-
mat et al. [28] employs the dense representation to predict the query difficulty.
More recently, Faggioli et al. [11] propose the Dense-Centroid (DC) framework.
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In this case, the underlying idea is to adapt traditional QPP to the dense IR
systems. To do so, the centroid of the corpus is used as a proxy representation of
the collection. Such representation is then used to replace the language model of
the collection used by several classic predictors such as WIG, NQC and SMV.

3 Methodology

We introduce here the notation and background on DIMEs as proposed in [13]
and we describe the proposed QPP developed in this work.

3.1 Background on Dimension IMportance Estimation

Consider a query q for which the user wants to retrieve documents from a cor-
pus D. We define R(q,D; ν) the ranked list produced by the IR model ν in
response to q. Assuming relevance judgments are available, we can compute a
measure M(R(q,D; ν)) that takes as input the list of retrieved documents and
outputs a performance score. This work focuses on dense IR models employing
an encoder ϕ to project the text (i.e., the query and the documents) into a d
dimensional embedding space Rd. The encoder is often a neural network trained
with the objective of maximising the dot product between a query and corre-
sponding relevant documents. Therefore, the score assigned to a document D
in response to a query q is s(q,D) = ⟨ϕ(q), ϕ(D)⟩. With an abuse of notation,
we call R(q,D;ϕ, ⟨⟩) the ranker that takes in input the query and the corpus,
embeds them in the d−dimensional space using ϕ, computes the dot product ⟨⟩
between the query and each document, and ranks the documents accordingly.
We define the masked dot, ⟨v⃗, w⃗⟩\{i} =

∑d
j=1;j ̸=i vj ·wj , the dot product between

two arbitrary vectors v⃗ and w⃗, where the i-th dimension is ignored. Faggioli et al.
[13] experimentally showed that, given a query q, it exists a set δ ⊂ {1, ..., d} s.t.

M(R(q,D;ϕ, ⟨⟩)) < M(R(q,D;ϕ, ⟨⟩\δ)) (1)

In other terms, given an encoder ϕ and a query q there is a set of dimensions
that are harmful to the retrieval: by simply discarding those dimensions when
computing the dot product, it is possible to improve the quality of the retrieval4.
Faggioli et al. [13] showed that the improvement depends on the collection con-
sidered and on the encoder ϕ, reaching peaks as big as +0.30 nDCG@10 points,
moving from 0.5 to 0.8. Furthermore, they observe that the optimal dimen-
sions are query-dependent, with each query being optimized by a different set
of dimensions. While discarding some dimensions allows astonishing retrieval
improvements, e.g. up to +73.4% in nDCG@10 when using TAS-B for RB ‘04
queries with 40% dimensions, determining which dimensions are optimal is not

4 Faggioli et al. [13] conjecture that the optimal subspace can be any subspace of the
original embedding space but, to make the problem tractable, they focus only linear
subspaces where some dimensions are removed.
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trivial. Therefore, Faggioli et al. [13] propose a novel class of models, called “Di-
mension IMportance Estimators (DIMEs)”, that rely on heuristics to determine
which dimensions to preserve/remove. A DIME is a function u : (Rd; θ) → Rd

that takes in input a representation of a query ϕ(q) ∈ Rd – and possibly some
additional parameters θ – and outputs a vector r⃗ ∈ Rd that describes how much
each dimension is important. The relation between the importance ri and rj of
respectively dimensions i and j is defined as follows:

M(R(q,D;ϕ, ⟨⟩\{i}) < M(R(q,D;ϕ, ⟨⟩\{j})) =⇒ ri > rj (2)

In other terms, the i-th dimension is more important than the j-th (ri > rj)
if the DIME u considers it more likely the result will be worse by removing i
instead of j when computing the dot product.

The most effective DIMEs, according to Faggioli et al., are the Active Feed-
back DIME (uREL) and the LLM Pseudo Relevant Feedback DIME (uLLM ). The
former employs a relevant document DR (e.g., obtained by inspecting a query
log or the user’s clicks) and the importance of a dimension is defined as follows:

uREL
i (q;DR) = ϕ(q)i · ϕ(DR)i, (3)

where ϕ(q)i and ϕ(DR)i are respectively the i-th dimensions of the query and
relevant document’s representations. Similarly, uLLM is based on generating a
pseudo-relevant document LLM(q) by feeding the query to an LLM. The di-
mension importance in this case is defined as:

uLLM
i (q;LLM) = ϕ(q)i · ϕ(LLM(q))i (4)

Faggioli et. al. [13] employ the proposed DIMEs by selecting the l most
important dimensions with a fixed l.

3.2 The Proposed Query Performance Predictors

The predictors proposed here comprise an input and an aggregator component:

– The input describes which input is used to compute the prediction. There
are three options: the query vector, the document vectors, or the interaction
vectors (the Hadamard product between the query and document vectors).

– The aggregator component describes how to combine the input vectors with
the DIME.

All the predictors are instantiated by first inputting a query and comput-
ing the dimension importance using a DIME. Such DIME values are combined
with the input vectors using the aggregator function. A predictor can be de-
scribed as aggregator (input; DIME)). In terms of notation, the predictors are
identified by ⟨input ID⟩-⟨aggregator ID⟩-⟨DIME ID⟩; for example, D-C-LLM
indicates the QPP that uses documents as input (D), relies on the correlation
aggregator (C) and estimates the dimension importance using uLLM as DIME.
We now describe each class of components in more detail.
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The input component. Our predictors can be based on a single vector (e.g.,
they can consider only the representation of the query) or can employ multiple
vectors. In our framework, in the former case, a statistic is computed for each
vector to formulate the prediction. In the latter case, each vector’s statistic is
computed individually and then aggregated by computing the mean. More in
detail, let us call α(v) the score that an aggregator component assigns to a
vector v. For the moment, we consider α : Rd → R an arbitrary function that
takes in input a vector and outputs a real number. Based on this definition, we
can define three input components: “Q-” (Query), “D-” (Document), and “I-”
(Interaction). Given an arbitrary aggregator function α, the input components
are defined as follows:

– “Q-” input: given a query q, the prediction is Q-α(q) = α(ϕ(q)) (i.e., the
aggregator, directly applied on the query vector).

– “D-” input: given k documents D1, ..., Dk, the prediction is

D-α(D1, ..., Dk) =
∑k

i=1
α(ϕ(Di))

k . In this case, the aggregator is applied
separately on each document vector and then averaged.

– “I-” input: given a query q and a k documents D1, ..., Dk, the prediction

is I-α(q,D1, ..., Dk) =
∑k

i=1
α(ϕ(q)◦ϕ(Di))

k , where ◦ represents the Hadamard
product (i.e., the element-wise multiplication between the two vectors).

Since the predictors based on the Q- input employ only the representation of
the query and do not require access to the retrieved list of documents, they can
be considered pre-retrieval predictors. On the contrary, predictors based on D-
and I- input employ the top-k documents retrieved, making them post-retrieval
predictors. Additionally, notice that D- and I- predictors will have the number
of documents considered k as an additional hyper-parameter.

The aggregator component

Negative Importance (NI) aggregator. If a DIME considers a dimension to be
detrimental, i.e., it would be better to remove it to increase the retrieval perfor-
mance, this dimension should be as small as possible to obtain the best perfor-
mance. Vice-versa, observing a high absolute value on such dimensions suggests
non-effective retrieval. Therefore, the Negative Importance (NI) aggregator cor-
relates the performance of the query with the inverse of the magnitude of the not
important dimensions according to the DIME. We focus on the absolute value of
the dimension: if the DIME would like to exclude it, the best case occurs when
the absolute value is close to zero.

Let’s call δ−l ⊂ {1, ..., d}, with |δ−l | = l, the set of l dimensions having the
smallest relevance score ri according to an arbitrary DIME. In this case, the
aggregator function can be defined as follows:

NI(v⃗; l, δ−l ) =
l∑

i∈δ−l
abs(vi)

(5)



Query Performance Prediction using Dimension Importance Estimators 7

Where v⃗ is the input vector for which we want to compute the aggregation.
As mentioned before, this value can be used to instantiate a predictor based
on Q-, D-, or I- input (respectively Q-NI, D-NI, and I-NI). Notice that the NI
aggregator function has l as a hyperparameter.

Positive Importance (PI) aggregator. The second aggregator function, called
the Positive Importance (PI) aggregator, associates good performance with
vectors having a large absolute value on dimensions considered important by
the DIME. It can be considered the opposite of the NI aggregator. In line
with the NI aggregator, we define δ+l ⊂ {1, ..., d}, with |δ+l | = l, the set of
l dimensions having the highest relevance score ri according to an arbitrary
DIME. The aggregator function in this case is:

PI(v⃗; l, δ+l ) =

∑
i∈δ+l

abs(vi)

l
(6)

As before, the predictor has l as a hyperparameter. The predictors are called
Q-PI, D-PI, and I-PI, depending on which vector v⃗ is fed in input.

Ratio (R) aggregator. This aggregator computes the product between NI and
PI. It is based on the same rationale as the previous two: large important di-
mensions are a positive signal, while large detrimental dimensions are a negative
one. This aggregator is defined as follows:

R(v⃗; l1, l2, δ
+
l1
, δ−l2 ) = PI(v⃗; l1, δ

+
l1
) ·NI(v⃗; l2, δ

−
l2
) =

∑
i∈δ+l1

abs(vi)∑
i∈δ−l2

abs(vi)
· l2
l1

(7)

Notice that, from a technical point of view, the two hyper-parameters l1 and
l2 can be considered independent. To reduce the number of possible combinations
to be tested, align it with other solutions, and make the approach more stable,
we set l1 = l and l2 = d − l, reducing the hyper-parameters to only l. In other
terms, the first l dimensions are considered useful, while the remaining d − l
dimensions are deemed detrimental. As in the other cases, the three variants of
this approach are called Q-R, D-R, and I-R.

Alignment (A) aggregator. The Alignment aggregator measures the cosine
similarity between the representation fed as input with a second vector con-
structed using the dimensions considered important by the DIME. More in de-
tail, we call δ+l the l most relevant dimensions according to the DIME. We then
construct a masking vector m⃗ s.t. mi = 1 if i ∈ δ+l , 0 otherwise. Then the score
is computed as:

A(v⃗; l, δ+l ) =
⟨abs(v⃗), m⃗⟩
|m⃗|| abs(v⃗)|

(8)

Similarly to the R aggregator, also in this case, we have a contribution both
from negative and positive dimensions. Still, while the contribution of the posi-
tive dimensions is explicit through the dot product, the negative dimensions play
a role in changing the normalisation value |m⃗|. As before, l is a hyperparameter.
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Correlation (C) aggregator. Our final aggregator measures the correlation
between the input vector v⃗ and the importance DIME vector r⃗:

C(v⃗; r⃗) = corr(abs(v⃗), r⃗) (9)

Multiple correlation functions can be used and in our experiments, we con-
sider Kendall’s τ and Pearson’s ρ correlations. More in detail, we do not select
explicitly the correlation function but we treat it as a hyperparameter, choosing
the optimal one according to the validation procedure described in Section 4.

4 Experimental Evaluation

4.1 Experimental Setup

In our experiments, we use our predictors to predict the performance of two IR
models, Contriever [22] and TAS-B [21], on two collections, TREC Deep Learn-
ing 2019 (DL’ 19) [5] and TREC Deep Learning 2020 (DL’ 20) [4], and with
respect to two evaluation measures P@10 and nDCG@10. We consider 5 state-
of-the-art baselines, Clarity [6], n(σ%) [7],WIG [41], NQC [30], and SMV [32]
as well as their Utility Estimation Framework (UEF) [29] enhanced counter-
parts. We consider a state-of-the-art QPP for dense models (DCWIG [14]) and
BERTQPP [1]. To optimize the QPP hyperparameters, we adopt the well-known
two-fold cross-validation procedure in which queries are disjointly divided into
two folds and, in turn, a fold is used to choose the hyperparameters and the other
as a test set. The final performance is averaged across 30 repetitions, as com-
monly done in this setting [12, 30, 36, 37]. In terms of QPP evaluation measures,
we report Pearson’s ρ and Kendall’s τ between the actual and predicted perfor-
mance. Additionally, instead of sMARE, we report 1-sMARE [16, 17], so that, in
line with Pearson’s ρ and Kendall’s τ , bigger values indicate more favourable re-
sults. All the results have been validated statistically using ANOVA [27] and
Tukey’s honestly significant difference post-hoc comparison [33] with signifi-
cance at 0.05 to correct for multiple comparisons. For all predictors, we vali-
date the number of documents considered k ∈ {5, 10, 25, 50, 100, 250, 500}. For
the number of important dimensions l, we validate its value by considering
l ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

4.2 Determining the Optimal QPP input and aggregator Function

We start our analysis by considering the aggregated performance based on dif-
ferent input and aggregator components proposed in this paper.

Figure 1 reports the performance of the different DIME-based input ag-
gregated across datasets, IR models, aggregator functions, and IR measures.
The first pattern that we observe is that the average performance for the query
(Q-) input is always worse than both documents (D-) and interactions (I-)
input components. This is somewhat expected from the QPP perspective: the
Q- approaches are pre-retrieval: i.e., they consider only the query. Pre-retrieval
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Fig. 1: Performance of the three input. These results are aggregated across eval-
uation measures, datasets, aggregator functions, and IR models. While Q is
always the worst input, the relationship between D and I depends on the dime
considered.
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Fig. 2: Performance of the five aggregator components. These results are aggre-
gated across evaluation measures, datasets, input components, and IR models.
While NI and PI tend to be the worst performing. R and A behave similarly,
while C is the optimal approach in all scenarios.

approaches are known to be typically less performing than their post-retrieval
counterparts [3, 16, 19]: by using less information, they lack sufficient capac-
ity to perform effectively. Furthermore, this sheds some light on the DIMEs
themselves: since the representation of the query alone is less indicative of the
performance, we can expect it to have a lesser impact on the performance itself.
Conversely, documents play a much more prominent role. Concerning I- and D-
behaviour, we highlight how typically D- has a narrower distribution, producing
more stable predictions. Another interesting pattern is that with the LLM-based
DIME (left) the D- input component is typically less effective than the I- input
component. Conversely, for the Active Feedback DIME (right), D- and I- behave
similarly (except for the variance of the performance). An explanation might
be that, by taking a real relevant, the vocabulary/structure is similar to other
relevant documents, making predictors based on the document representations
more effective. Vice-versa, by generating the (pseudo-)relevant document with a
language model, its structure and term distribution will likely differ from those
of relevant documents, impairing the possibility of relying only on the alignment
between their representations.

Figure 2 reports the boxplot across different aggregator approaches. As for
the input boxplots, the boxplots report the distribution across IR systems, IR
measures, collections and input. Figure 2 highlights how both the NI and PI
aggregator tend to be the least effective: they do not have enough information
to work properly. Indeed, predictors based on R, A and C perform better as they
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Fig. 3: Average rank across different experimental settings, excluding predictors
based on Active Feedback DIME. In green and blue, predictors proposed here
and baselines, respectively. Horizontal bars indicate statistically equivalent ap-
proaches according to a Wilcoxon signed-rank test.

combine both NI and PI information. the A aggregator behaves in line with
the R aggregator. This pattern is explainable thanks to the fact that similarly
to R aggregator, A aggregator considers both the NI and PI information.
Overall, the best performing is the C aggregator: the additional information
provided by the ordering/magnitude of the dimensions is effective in achieving
better predictions.

4.3 Comparison With the State-of-the-Art

The previous section highlighted how the best input components are either
D- or I-, while the best aggregator appear to be A, R and C. Therefore, in
the remainder of this paper, we focus on the combinations of such approaches.
Table 1 reports the performance of the current state-of-the-art approaches (top)
compared to the proposed predictors based on either the LLM DIME (centre)
or the Active Feedback DIME (bottom). Across all scenarios, predictors based
on DIMEs are the most effective solutions. In general, the approaches based
on the Active Feedback DIME (indicated with -REL) that employ a relevant
document are more effective, regardless of the input and aggregator used.
This makes sense considering that this DIME effectively employs a stronger
relevance signal, compared to the LLM-based DIME, which uses only pseudo-
relevance information. Nevertheless, with a few exceptions (e.g., WIG on DL’ 19
or NQC on DL’ 20 when predicting P@10 and evaluating with Pearson’s ρ), the
predictors employing the LLM-based DIME are capable of overcoming all the
state of the art approaches. To predict Precision, the most effective solutions are
those employing the Active Feedback DIME, using the set of retrieved documents
as input and the Ratio aggregator. When it comes to predicting nDCG@10,
the most effective solutions are either the one based on the Interaction input,
Correlation aggregator, and the LLM-based DIME for DL’ 19 and the approach
based on the Document input, Correlation aggregator, and Active feedback
DIME for DL’ 20.
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Table 1: Comparison of the predictors with state-of-the-art approaches. In bold
and underlined, are the best and second-best approaches respectively. ∗ indicates
the set of statistically best systems using ANOVA and Tukey’s post-hoc test.

Contriever TAS-B

DL’ 19 DL’ 20 DL’ 19 DL’ 20

K-τ P-ρ sMARE K-τ P-ρ sMARE K-τ P-ρ sMARE K-τ P-ρ sMARE

P@10

n(σ%) 0.182 0.134 0.718 -0.059 0.009 0.645 0.244 0.288 0.741 0.120 0.197 0.698
Clarity 0.178 0.255 0.728 -0.053 -0.065 0.659 0.114 0.153 0.707 -0.043 -0.064 0.651
SMV 0.309 0.413 0.759 0.043 0.071 0.673 0.335 0.435 0.767 0.241 0.312 0.732
NQC 0.327 0.438 0.760 0.044 0.081 0.678 0.344 0.404 0.779 0.311 0.383 0.756
WIG 0.296 0.425 0.757 0.136 0.125 0.699 0.392 0.504 0.786 0.232 0.313 0.721
UEFClarity 0.302 0.413 0.753 0.023 0.029 0.676 0.289 0.398 0.749 0.103 0.064 0.696
UEFNQC 0.305 0.383 0.747 0.052 -0.086 0.683 0.359 0.407 0.777 0.118 0.137 0.697
UEFSMV 0.280 0.345 0.744 0.041 -0.195 0.687 0.346 0.391 0.770 0.095 -0.091 0.702
UEFWIG 0.326 0.448 0.759 0.067 0.077 0.677 0.294 0.415 0.761 0.211 0.239 0.722
BERTQPP -0.005 -0.021 0.659 -0.097 -0.141 0.634 -0.097 -0.206 0.658 -0.124 -0.170 0.633
DCWIG 0.380 0.538 0.779 0.245 0.383∗ 0.720 0.388 0.493 0.776 0.336 0.403 0.768∗

D-R-LLM 0.398 0.612 0.790 0.279∗ 0.342 0.760∗ 0.346 0.527 0.774 0.360 0.487∗ 0.777∗

D-A-LLM 0.358 0.573 0.763 0.165 0.345 0.700 0.266 0.408 0.745 0.259 0.323 0.746
D-C-LLM 0.416 0.620 0.792 0.302∗ 0.416∗ 0.765∗ 0.395 0.505 0.782 0.367 0.440 0.782∗

I-R-LLM 0.384 0.608 0.776 0.284∗ 0.285 0.760∗ 0.367 0.419 0.785 0.328 0.453 0.768∗

I-A-LLM 0.355 0.453 0.771 0.116 0.232 0.685 0.383 0.493 0.775 0.354 0.459 0.773∗

I-C-LLM 0.425 0.621 0.787 0.291∗ 0.316 0.750∗ 0.384 0.510 0.785 0.317 0.373 0.759

D-R-REL 0.484∗ 0.706∗ 0.817∗ 0.300∗ 0.378 0.748 0.506∗ 0.671∗ 0.814∗ 0.435∗ 0.551∗ 0.783∗

D-A-REL 0.442∗ 0.663∗ 0.787 0.202 0.342 0.720 0.370 0.506 0.778 0.230 0.290 0.744
D-C-REL 0.453∗ 0.700∗ 0.807∗ 0.305∗ 0.439∗ 0.750 0.514∗ 0.627∗ 0.815∗ 0.317 0.383 0.756
I-R-REL 0.449∗ 0.633 0.799 0.239 0.298 0.730 0.446 0.594 0.795 0.284 0.332 0.745
I-A-REL 0.373 0.508 0.776 0.146 0.284 0.696 0.478∗ 0.623∗ 0.811∗ 0.397∗ 0.496∗ 0.777∗

I-C-REL 0.434∗ 0.629 0.801∗ 0.279∗ 0.364 0.738 0.429 0.610∗ 0.794 0.292 0.341 0.748

nDCG@10

n(σ%) 0.331 0.429 0.753 0.074 0.114 0.704 0.210 0.291 0.731 0.197 0.303 0.726
Clarity 0.199 0.299 0.722 -0.015 -0.019 0.657 0.159 0.248 0.717 -0.045 -0.014 0.653
SMV 0.230 0.351 0.737 0.108 0.199 0.701 0.175 0.214 0.712 0.196 0.346 0.721
NQC 0.238 0.403 0.742 0.102 0.196 0.701 0.183 0.230 0.714 0.202 0.335 0.718
WIG 0.219 0.379 0.726 0.104 0.239 0.696 0.190 0.365 0.726 0.174 0.279 0.711
UEFClarity 0.254 0.300 0.745 -0.045 -0.098 0.655 0.197 0.261 0.722 -0.032 -0.105 0.669
UEFNQC 0.233 0.230 0.736 -0.023 -0.117 0.669 0.207 0.204 0.730 0.004 -0.072 0.667
UEFSMV 0.204 0.120 0.728 -0.001 -0.226 0.670 0.214 0.209 0.727 -0.009 -0.206 0.667
UEFWIG 0.266 0.316 0.747 -0.015 -0.075 0.668 0.211 0.305 0.725 0.004 0.003 0.676
BERTQPP 0.165 0.156 0.724 0.068 0.137 0.684 0.040 0.012 0.685 0.025 0.087 0.669
DCWIG 0.299 0.499 0.750 0.259 0.415 0.747 0.171 0.169 0.713 0.178 0.253 0.726

D-R-LLM 0.281 0.501 0.751 0.286 0.370 0.748 0.218 0.340 0.729 0.326 0.463 0.768
D-A-LLM 0.285 0.557 0.752 0.192 0.320 0.720 0.033 0.171 0.677 0.179 0.230 0.715
D-C-LLM 0.285 0.536 0.753 0.237 0.400 0.743 0.212 0.301 0.722 0.331 0.489 0.775∗

I-R-LLM 0.377 0.575 0.794∗ 0.176 0.266 0.722 0.286∗ 0.353 0.760∗ 0.252 0.386 0.736
I-A-LLM 0.303 0.490 0.753 0.182 0.270 0.715 0.193 0.288 0.717 0.262 0.393 0.746
I-C-LLM 0.425∗ 0.652∗ 0.801∗ 0.208 0.358 0.728 0.306∗ 0.374 0.763∗ 0.242 0.399 0.737

D-R-REL 0.339 0.571 0.772 0.365∗ 0.469∗ 0.783∗ 0.225 0.494∗ 0.743∗ 0.359 0.515 0.777∗

D-A-REL 0.429∗ 0.638∗ 0.793∗ 0.277 0.443 0.744 0.149 0.361 0.715 0.279 0.401 0.752
D-C-REL 0.336 0.588∗ 0.773 0.387∗ 0.520∗ 0.794∗ 0.197 0.445∗ 0.728 0.412∗ 0.596∗ 0.790∗

I-R-REL 0.287 0.507 0.761 0.356∗ 0.400 0.776 0.226 0.360 0.732 0.302 0.486 0.747
I-A-REL 0.398∗ 0.578 0.775 0.266 0.405 0.753 0.229 0.478∗ 0.730 0.340 0.521 0.767
I-C-REL 0.311 0.537 0.765 0.380∗ 0.526∗ 0.792∗ 0.183 0.342 0.711 0.363∗ 0.512 0.766
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Since the Active Feedback-based DIME employ one relevant document, we
also report in Figure 3 the average rank across different experimental settings for
the predictors, excluding the ones based on the Active Feedback DIME. We can
observe how predictors based on the LLM DIME are ranked, on average, above
all the baseline predictors. In particular, the D-C-LLM predictor is on average
ranked the highest (average rank 2.6). Nevertheless, the other predictors based
on Ratio and Correlation aggregator (I-C-LLM, D-R-LLM, and I-R-LLM), are
statistically equivalent (according to the Wilcoxon signed rank test) to the best,
followed by the predictors based on the Alignment aggregator and DCWIG.
The first four approaches have statistically significantly higher ranks than any
baseline.

Researchers and practitioners interested in using the DIME-base predictors
should consider the following:

– While using only the query representation as input (Q-) is suboptimal, the
document (D-) and interaction (I-) inputs exhibit comparable results: the
practitioner can validate the input depending on their setting.

– Approaches based on the Alignment (-A-), Negative Importance (-NI-), and
Positive importance (-PI-) should be avoided, as their performance is sub-
optimal compared to the approaches based on Ratio (-R-) and Correlation
(-C-). Similarly to the input, the optimal aggregator between Ratio and
Correlation should be validated.

– If the practitioner has access to at least one relevant document for the query,
the approaches based on the Active Feedback should be favoured (-REL).
Nevertheless, predictors relying on the LLM-based DIME (-LLM) still over-
come the current state-of-the-art performance.

5 Conclusion

In this work, we investigated how to employ DIMEs to carry out QPP. In par-
ticular, DIMEs are a class of models meant to determine the (query-specific)
importance of each dimension in a latent embedding space used for dense IR.
The predictors proposed in this work rely on measuring the alignment between
the vectors involved in the retrieval and the importance estimated according
to a DIME. The proposed QPPs can be instantiated with different inputs (the
query, the documents, or their interaction vectors) and rely on different aggrega-
tions of such inputs. The most effective predictors are those based on either the
documents or interaction representations that compute the correlation between
such vectors and the dimension importance. The proposed approaches remark-
ably outperform the current state-of-the-art to predict the performance for two
well-known dense models (Contriever and TAS-B) on two collections, DL’ 19
and DL’ 20. Among future work, we are interested in applying other DIME
to instantiate our predictors as well as to develop QPP models that can serve
as DIME themselves, for example, by providing insight on how each dimension
contributes to the predicted performance of the system.
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