
A Reproducibility Study for Joint Information
Retrieval and Recommendation in Product

Search

Simone Merlo1[0009−0003−8003−4795], Guglielmo Faggioli1[0000−0002−5070−2049],
and Nicola Ferro1[0000−0001−9219−6239]

University of Padua, Padua, Italy

Abstract. Information Retrieval (IR) systems and Recommender Sys-
tems (RS) are ubiquitous commodities, essential to satisfy users’ infor-
mation needs in digital environments. These two classes of systems are
traditionally treated as two isolated components with limited, if any,
interaction. Recent studies showed that jointly operating retrieval and
recommendation allows for improved performance on both tasks. In this
regard, the state-of-the-art is represented by the Unified Information Ac-
cess (UIA) framework. In this work, we analyse the UIA framework from
the reproducibility, replicability and generalizability sides. To do this, we
first reproduce the original results the UIA framework achieved – high-
lighting a good reproducibility degree. Then we examine the behavior
of UIA when using a public dataset – discovering that UIA is not al-
ways replicable. Moreover, to further investigate the generalizability of
the UIA framework, we introduce some changes in its data processing
and training procedures. Our empirical assessment highlights that the
robustness and effectiveness of the UIA framework depend on several
factors. In particular, some tasks, such as the Keyword Search, appear
to be more robust, while others, such as Complementary Item Retrieval,
are more vulnerable to changes in the underlying training process.

Keywords: Information Retrieval · Recommender Systems · Large Lan-
guage Models.

1 Introduction

From the user’s perspective, it is natural to see Information Retrieval (IR) sys-
tems results and Recommender Systems (RS) results merged, such as the “sug-
gested products” presented by most search engines when interrogated. Presenting
together the results of these two types of systems allows for providing users with
a comprehensive answer to their information needs, by extracting the most sat-
isfactory piece of information from a corpus – or catalogue – of information –
or items. Along this line, Belkin and Croft [3] consider these two tasks as “two
sides of the same coin”. Even though there are some differences between IR and
RS concerning their input (textual queries and historical interactions with the
system, respectively), both techniques aim at satisfying the user’s information
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need [11, 21], by ranking either documents or items. This pattern is particu-
larly evident in scenarios such as e-commerce, where queries usually are short,
keyword-based descriptions of a product the user is looking for, and the difference
between IR and RS is blurred [3, 16, 23, 30]. At the same time, when searching
for information across a search session, it is common for users to seek related
information over multiple queries and the system could benefit from previous
interactions with the user [6, 29].

Despite the relationships between the two tasks, historically, IR systems and
RS have been developed independently, with only recent efforts devoted to in-
vestigating these tasks jointly. In particular, Si et al. [23] and Zamani and Croft
[30, 31] showed that combining IR and RS models allows for improved perfor-
mance by exploiting the knowledge held by a model to enhance the other. Such
efforts focus on either refining a RS model by exploiting the search data [23],
or on gaining additional knowledge to improve on one task using the data held
by the other [31]. However, the joint modelling of both IR and RS tasks is still
underdeveloped. In this regard, the two major efforts are SRJGraph, proposed
by Zhao et al. [33], and the Unified Information Access (UIA) framework, de-
veloped by Zeng et al. [32]. The main advantage of developing joint IR and
RS models is that it is possible to create a shared knowledge base between the
two tasks [30, 33]. This allows for improving the performance of both tasks by
enabling them to support each other [18, 31, 32].

The importance of reproducibility is well-recognized by both IR and RS re-
search communities, but so are the challenges in achieving it [9, 12, 13]. Moti-
vated by this, and given the recent interest in joint IR and RS, in this paper,
we analyse the UIA framework [32] from the reproducibility point of view. UIA
represents the current state-of-the-art in the joint IR and RS field and its archi-
tecture may become a base to develop new systems. UIA was originally trained
and evaluated using both a private (Lowe’s) and a publicly available (Amazon
ESCI) datasets and the bulk of the experiments was conducted on the private
one, which also enabled more functionalities. We consider the ACM “Artifact Re-
view and Badging” guidelines1 and evaluate the approach based on three axes:
reproducibility (i.e., different team, same experimental setup), replicability (i.e.,
different team, different experimental setup), and generalizability (i.e., different
team, different experimental setup, different task).

Our main goal is to reproduce the performance results obtained by Zeng
et al. [32] for UIA (reproducibility), to understand if the observations made
in the ablation study by Zeng et al. [32], using the private dataset hold when
using the publicly available dataset (replicability) and to analyse the behaviour
of UIA when the training procedure/data is modified (generalizability). In this
perspective, we articulate our work on three research questions:

– RQ1 - Reproducibility: is the performance achieved by UIA, and reported
in [32], reproducible?

– RQ2 - Replicability: is the performance of UIA replicable on a publicly
available dataset?

1 https://www.acm.org/publications/policies/artifact-review-and-badging-current

https://www.acm.org/publications/policies/artifact-review-and-badging-current
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– RQ3 - Generalizability: how does the performance UIA change when us-
ing alternative approaches which are less computationally demanding and/or
involve different data processing methods?

Our empirical evaluation shows that UIA can be reproduced and that the ro-
bustness and effectiveness of UIA depends on different factors. Specifically, we
discovered that the Amazon ESCI dataset may not be the best to be used in
conjunction with UIA and that due to the nature of this dataset and the way
in which it is processed, the Keyword Search (KS) task appears to be more ro-
bust to changes in the training process while the Query By Example (QBE) and
Complementary Item Recommendation (CIR) tasks are more vulnerable.

The code we used to answer our research questions is publicly available2.
The remainder of this work is organized as follows: in Section 2 we provide

an overview of UIA; in Section 3 we how we reproduced, replicated and gen-
eralized the framework; in Section 4 we reports the results obtained and some
considerations.

2 Highlights of the Reproduced Approach

In this section, we introduce the UIA framework and the Amazon ESCI dataset
that we used to reproduce, replicate and generalize it.

2.1 The UIA Framework

According to Zeng et al. [32], an interaction between the user and the UIA frame-
work (Figure 1), is defined by three elements: an information access request R,
a task label (access functionality in [32]) F , and a candidate information item
I. UIA supports three main hybrid RS-IR tasks (functionalities in [32]) F : i)
Keyword Search (KS) where a short textual query is used to retrieve the most
relevant items; ii) Query By Example (QBE) where an item is used as input to re-
trieve other similar items; and iii) Complementary Item Recommendation (CIR)
that consists of retrieving items that “can be used together” (i.e., complemen-
tary) with the item given as input. Depending on the scenario, the information
access request R is a keyword query (in case of KS) or an item (in case of
QBE or CIR). Finally, the candidate information item I, is a textual represen-
tation of the candidate item (e.g., its title, in the Amazon ESCI dataset) for
which the system must estimate its relevance to R. Thus, given a task F and
a request input R, the objective of the UIA model, parametrized by θ, is to
sort all the items I in the catalogue based on a relevance score s, computed as
s = f(R,F , I; θ). To do so, the UIA framework relies on a bi-encoder architec-
ture. In particular, it employs a request encoder ER and an item encoder EI .
These two components embed a request R (jointly with the task label F) and
an item I within a latent space, respectively. More in detail, R is encoded as
R = ER([CLS] R [SEP] F [SEP]), where F is the label corresponding to the
2 https://anonymous.4open.science/r/UIAReproRepliGen-5CEE

https://anonymous.4open.science/r/UIAReproRepliGen-5CEE
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Fig. 1: UIA framework architecture. Grayed-out areas are those concerning per-
sonalization, that we did not experiment with. Figure taken from [32].

task associated to the request, while [CLS] and [SEP] are the “class” and “sep-
arator” tokens respectively. Similarly I is encoded as I = EI([CLS] I [SEP]).
As commonly done in this setting [7, 15, 26], the final representation is the em-
bedding of the [CLS] token. Both ER and EI employ the BERT [10] model to
encode their input. Finally, the score of the item I in response to the request R
is computed as s = R · I.

To determine the (optimal) parameters θ, the UIA framework minimizes a
cross-entropy loss function. Thus, each training instance is a tuple (R,F , I+, I−),
where I+ and I− represent a positive and a negative example respectively. To
obtain the negative examples, not available in the original dataset, Zeng et al.
[32] define a two-phase negative sampling. The first phase (Phase 1 ) samples
a set of negatives among the items retrieved by BM25 [20] in response to each
request. The second phase (Phase 2 ) employs the model trained using the data
of Phase 1 to embed the items in the space and samples the negatives among the
nearest neighbours of each item. Importantly, the model trained during Phase
2, is initialized with the weights learned during Phase 1. The training procedure
involves also the usage of in-batch negatives and mini-batches.

Notice that, Zeng et al. [32] propose a second training pipeline to handle
users’ data and personalize the output. Notice that, such a pipeline requires
accessing user’s personal data (i.e., previous interactions with the system and
preferences). In this paper, we focus exclusively on non-personalized data (i.e.,
the Amazon ESCI Dataset), thus we describe only the non-personalized part of
the pipeline.

2.2 The Amazon ESCI Dataset

In [32], UIA was trained and evaluated on two datasets: the Lowe’s dataset and
the Amazon ESCI dataset [19]. The former is private and contains user data
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to enable personalization, the latter is public but does not contain users’ data
and thus does not allow training/testing the personalization module. Due to its
public availability and to the lack of public, joint IR and RS datasets, we focus
exclusively on the Amazon ESCI dataset.

The Amazon ESCI dataset [19] was released in the context of the KDD
Cup 20223 Amazon ESCI challenge and it is a large, multilingual dataset of
difficult Amazon search queries and results. In line with [32], we consider the
product catalogue and the training data used for Task 2 [19] of the Amazon ESCI
challenge. In detail, the training data contains triplets (query, item, label) where
the label is one among: “Exact”, i.e., the item is an exact match for the query;
“Substitute”, i.e., the item is related to the query but not a match; “Complement”,
i.e., the item is not relevant to the query but can complement a relevant item; and
“Irrelevant”. Notice that, the ESCI dataset contains only textual queries, thus is
unsuitable for QBE and CIR tasks. To address this, in line with [32], we split the
full dataset into three separate datasets, one for each task (KS, QBE and CIR).
More in detail, we call Q the set of all the requests (queries), and IE(q), IS(q),
and IC(q) the sets of items labelled “Exact”, “Substitute”, and “Complementary”
for query q, respectively. The three task-specific datasets are defined as follows:
(1) KS: {(q, i) : ∀q ∈ Q∧i ∈ IE(q)}, (2) QBE: {(i1, i2) : ∀q ∈ Q∧i1 ∈ IE(q)∧i2 ∈
IS(q)}, and (3) CIR: {(i1, i2) : ∀q ∈ Q∧ i1 ∈ IE(q)∧ i2 ∈ IC(q)}. Following [32],
we further split each dataset into training (80%), validation (10%), and test
(10%) sets. The three datasets are used jointly during the training phase while,
for evaluation, the performance is measured separately on each test set.

3 Reproduction and Experimental Methodologies

In this section, we detail the experiment to assess the reproducibility of UIA
(RQ1), we then introduce the analyses done to determine its replicability (RQ2)
and conclude with the tests carried out to gauge UIA generalizability (RQ3).

3.1 RQ1: Reproducibility

To reproduce UIA, we used the code available at: https://github.com/Hansi
Zeng/UIA. Importantly, our experiments are based only on publicly available
datasets and code. We operated independently on whether the original develop-
ers were available to share with us their knowledge, to put ourselves in the most
challenging reproducibility conditions and work in the most aseptic way.

We report here the challenges we identified in reproducing the approach and
the solution we employed to address them.

Second sample of the relevant items. While inspecting the available code base, we
observed that a second sampling is executed after the dataset splitting described
in Section 2.2. In particular, for QBE and CIR, for every unique query item
3 KDD Cup 2022: https://amazonkddcup.github.io/

https://github.com/HansiZeng/UIA
https://github.com/HansiZeng/UIA
https://amazonkddcup.github.io/
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(i.e., i1 in Section 2.2), 5 random relevant items are sampled (i.e., 5 instances
are added to the dataset). Similarly, for KS, in response to each query, only
10 relevant items are used to construct instances in the dataset. We ascribe
this difference between the original paper and the code to efficiency reasons and
avoid excessively large datasets. At the same time, this second sampling prevents
weighting too much queries which are too popular or generic items; thus, it limits
the contribution of each entity in the original dataset.

To ensure reproducibility, we maintain this implementation choice, reducing
the size of the constructed datasets.

Negative sampling procedure. In the available code base to construct the QBE
dataset, differently from KS and CIR, the Phase 1 negative sampling only par-
tially follows the procedure described in Section 2.1. More in detail, the negative
samples used during the first training phase are randomly sampled among all the
items. In line with the paper [32], we modified the provided code and sampled
the negatives from the items retrieved by BM25, also for QBE.

Another difference we observed concerns the KS dataset. In detail, when
sampling the negative examples for the KS task during Phase 1, for each pair
request-item in the dataset the negative is randomly sampled from the items
similar (i.e., labelled “Substitute”) to the one considered as positive, if present,
else the negative is randomly sampled from the items complementary to the one
considered as positive, if present, else the negative is sampled using the request
and BM25. We preserved this aspect of the code provided by Zeng et al. [32].

Computational Resources. As an additional caveat, we point out that, due to
limited computational resources — especially concerning GPU memory — we
reduced the batch size from 384 (used in [32]) to 48 (-86%). For the same reason,
we set the number of epochs to 24 while, according to [32], the optimal epochs
are 48. Other hyperparameters, such as learning rate and the number of warmup
iterations, were left unchanged compared to the original paper, e.g., the learning
rate used is set to 7e−6 and the number of warmup iterations is 4,000.

Phase 1 Only The double-phase training is computationally expensive, dou-
bling the training time and cost (including the carbon footprint and environ-
mental impact). Therefore, we assess the performance of the UIA framework
after a single training phase. While we reasonably expect a decrease in terms of
performance, we are interested in assessing whether this represents an accept-
able trade-off between effectiveness and efficiency. If this is the case, the UIA
framework could also be used in a resource-constrained environment, e.g., by
small companies, with a reduced cost and environmental impact.

3.2 RQ2: Replicability

The experiments in [32] focus mostly on the Lowe’s dataset, which is private,
and only some of the analyses are carried out on the Amazon ESCI dataset.
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(a) Removing task label from UIA ar-
chitecture.

(b) UIA architecture without task la-
bel.

Fig. 2: UIA without the task label F .

Therefore, concerning replicability, we are interested in extending the analysis
of the UIA for the Amazon ESCI dataset. More in detail, we replicate on the
Amazon ESCI dataset the experiments done by Zeng et al. [32] only on the
Lowe’s dataset.

No Task Label (w/o F) An aspect of the UIA framework we are interested
in investigating is the role that the task label F plays in it. Specifically we want
to understand if the framework is able to recognize that there are three different
tasks or if it only learns from the huge amount of training data. To do this
we modify UIA by removing the task label F (we will refer to the version of
the framework without the functionality as “w/o F”). This allows to consider
the training data related to the different tasks as data belonging to a unique
training set.

More in detail, given its relatively large training data, the interchangeable
nature of its input and output (i.e., both items for QBE and CIR), and the
similar nature of the tasks, we are interested in determining how important the
task labels are in correctly matching items to items. Furthermore, while KS uses
queries as requests, QBE and CIR use items, we are thus interested in verifying
if this aspect is already sufficient to diversify the two classes of tasks.

Removing the task label F , in practical terms, corresponds to modifying ER
into E′

R s.t. R′ = E′
R([CLS] R [SEP]). The new score s′i for the candidate item

Ii is computed as s′i = R′ · Ii. In Figure 2 we show the original structure of the
framework highlighting the portions that are removed (Figure 2a) and the new
architecture without the task label (Figure 2b).

Isolated Tasks Training and evaluating the UIA framework on the tasks in
isolation corresponds to optimizing and evaluating three separate instances of
UIA, each one for each task. The authors of the paper [32] showed that when the
Lowe’s dataset is used, UIA benefits from the joint training. The employment
of the Amazon ESCI dataset, though, implies deep changes in the architecture
of the framework (i.e., the personalization part is removed). For this reason, we
want to understand if UIA still benefits from joint training when the Amazon
ESCI dataset is used and, therefore, when the personalization components are
removed. To do this we train the framework on the tasks in isolation.
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For efficiency reasons and in light of the results achieved by the Phase 1
Only experiment (described in Section 3.1), for this experiment, we consider a
single-phase training instead of the original two phases. Therefore, the results
should be compared with those obtained for the experiment Phase 1 Only.

3.3 RQ3: Generalizability

We describe here the experimental methodology we adopt to test the generaliz-
ability of the UIA framework, i.e., its resilience to major changes to its training
procedure and, especially, to the training data.

Half QBE An aspect that can be observed by inspecting the generated datasets
is that (after the sampling, Section 3.1) the training set for QBE (composed of
1.07M tuples) is more than twice the KS one (452k tuples) and six times larger
than the CIR one (184k tuples). While not explicitly mentioned in [32], this
characteristic was also observed by Zeng et al.. In fact, in the provided repository,
some portions of code use only half of the QBE dataset. These results were not
reported or explicitly mentioned in [32]. To assess the generalizability of the
approach, we test the hypothesis that reducing the amount (i.e., halving) of
data used for the QBE task does not impact severely on the final performance.

Early Split The UIA task can be considered an example of “Knowledge Graph
Completion”. The idea underlying this task consists of predicting if, given a
relation r and two entities h and t, the head entity h is in relation r with the tail
entity t. For the UIA framework, the head entity R is either a query or an item,
the relation F is one among KS, QBE, or CIR, and the tail entity I is an item
(i.e., the retrieved or recommended item). The procedure to spit the collection
into training, validation, and test set adopted by Zeng et al. [32], consists of
considering all the possible triplets (R,F , I) and randomly partitioning them
into the three sets. While this procedure is commonly adopted in the “Knowledge
Graph Completion” domain [2, 4, 5, 17, 24, 27], it also is criticized by other
authors [1, 14]. In particular, Akrami et al. [1], criticizes the so-called “Cartesian
product relations”. These relations are such that given a set of subjects and
objects, the relation is valid for all the cartesian pairs between subjects and
objects. If part of these pairs ends in the training set and part ends in the test,
this inflates the performance of the knowledge graph completion algorithm.

By construction, this occurs in the dataset used to train UIA. In fact, given
a query q of the Amazon ESCI dataset, its “Exact” items are related to all the
corresponding “Substitute” and “Complementary” items. We propose to modify
this splitting procedure by dividing Q (the set of the queries) into training, val-
idation, and test sets. Once these sets have been defined, we use the procedure
proposed by Zeng et al. [32], and described in Section 2.2, to generate the corre-
sponding triplets. This ensures that all the information regarding a certain query
is contained in the same partition. This also appears natural from a “temporal”
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standpoint: the user will issue a query at a certain moment and it will be possi-
ble to collect the training data, up to that point. The system does not have any
knowledge of the next user’s query (i.e., the test). Using part of the information
derived from such a query to test the model would correspond to predicting the
past. Given this new version of the datasets, we retrain the model and test its
performance.

For efficiency reasons and in light of the results achieved by the Phase 1
Only experiment (described in Section 3.1), for this experiment, we consider a
single-phase training instead of the original two phases. Therefore, the results
should be compared with those obtained for the experiment Phase 1 Only.

4 Experimental Results

In this section we discuss the results that we obtained while reproducing the work
of the paper and performing the experiments described in Section 3. In table 1
we report the original performance of UIA (first row) and the performance of
its reproduced version and its variations. Following [32], we evaluate our results
according to MRR@10, nDCG@10 and Recall@50.

Table 1: Reproducibility, replicability and generalizability results for the Key-
word Search (KS), Query By Example (QBE) and Complementary Item Rec-
ommendation (CIR) tasks.

KS QBE CIR
Model MRR nDCG Recall MRR nDCG Recall MRR nDCG Recall

original UIA 0.532 0.360 0.533 0.251 0.199 0.543 0.490 0.493 0.868

RQ1 (repr.) UIA 0.491 0.327 0.484 0.442 0.374 0.673 0.463 0.459 0.833
Phase1Only 0.477 0.313 0.461 0.294 0.227 0.531 0.361 0.353 0.760

RQ2 (repl.)
w/o F 0.480 0.311 0.490 0.338 0.287 0.637 0.283 0.292 0.721
w/o F (Phase1Only) 0.441 0.280 0.419 0.247 0.185 0.472 0.181 0.175 0.524
IsolatedTasks 0.506 0.340 0.493 0.324 0.257 0.561 0.414 0.412 0.779

RQ3 (gene.)
HalfQBE 0.510 0.341 0.504 0.316 0.250 0.561 0.455 0.452 0.838
HalfQBE (Phase1Only) 0.498 0.335 0.491 0.053 0.039 0.232 0.378 0.370 0.775
Early Split 0.467 0.306 0.451 0.053 0.034 0.129 0.041 0.037 0.147

4.1 RQ1: Reproducibility Results

The second row of Table 1 contains the results we achieved when reproducing
UIA. Concerning KS and CIR, we observe relatively close performance. More
in detail, for KS, we achieve -0.041 (-7.7%) MRR points and similar results
also for nDCG (-0.033) and Recall (-0.049). Similarly, for CIR, we obtain -0.027
(-5.5%) in terms of MRR, -0.034 nDCG, and -0.035 for Recall. These results
appear satisfactory, considering that, as previously mentioned, due to limited
computing capabilities, we were forced to reduce the batch size and epochs. In
this regard, UIA achieves satisfactory performance even under stronger resource
constraints. Interestingly, our results for the QBE task are by far larger than
those reported in the original paper. Indeed, we obtain +0.191 (+76%) in terms
of MRR, with comparable improvements also for nDCG (+0.175) and Recall
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(+0.130). We explain this phenomenon considering that we changed the Phase 1
negative sampling (from random to BM25, as explained in Section 3.1), aligning
it with the one used for the other tasks. We hypothesise that the results reported
in [32] represent a lower bound of the actual performance UIA can achieve on
the QBE task.

Phase 1 Only In this case, we consider the model obtained after a single
training phase (third line of Table 1). As reasonably expected, the performance
drops but the drop magnitude depends on the task. For KS we notice a minor
drop in performance (-0.014 MRR, -0.014 nDCG, 0.023 Recall). This suggests
that the second training phase has a limited impact on this specific task. CIR
is the task with the second-biggest drop (-0.102 MRR, -0.099 nDCG, -0.073
Recall). Finally, QBE is the task where removing the second phase has the
direst consequences (-0.148 MRR, -0.147 nDCG, -0142 Recall). This suggests
the importance of the hard negatives and additional training time for the two
most RS oriented tasks. The drop in performance is not negligible and so are the
computational resources saved: from approximately 240 hours of computation
to 120 with a reduction of 50%.

4.2 RQ2: Replicability Results

No Task Label (w/o F) The “ w/o F ” row of Table 1 reports the result we
achieve when removing the task information. In this case, the behaviour of UIA
on the Amazon ESCI dataset is consistent with the ablation study on the Lowe’s
daset reported in [32]. Interestingly, the KS task is the least vulnerable (-0.011
MRR, -0.016 nDCG, and +0.006 Recall compared to Phase1Only results). On
the contrary, CIR is the most affected task with approximately 37% drop in
performance for both MRR and nDCG (-0.180 MRR, -0.167 nDCG, and -0.112
Recall). This suggests that, if the task label is not expressed, the model is still
able to operate on KS, while being less performing for QBE and CIR – this might
be due to a different term distribution between queries and items, used as input
for KS and QBE and CIR tasks. Furthermore, the difference in performance loss
between QBE and CIR might be explained by the different sizes in training sets.
The QBE dataset is much larger than the CIR (580%). In this sense, during the
training phase, it is “less harmful” for the model to optimize for the QBE task:
this reflects on the test performance, where the QBE task is handled better.

The row “w/o F (Phase1Only)” of Table 1 reports the result we achieve when
removing the task information and training the framework only according to
Phase 1. This performance must be compared with the one of the “Phase1Only”
experiment. By looking at the results we can conclude that, for this experiment,
the framework behaves in the same way also when performing one training phase.

Isolated Tasks The “IsolatedTasks” row of Table 1 reports the results achieved
for the three versions of UIA which are optimized on a single task, grouped
together. The obtained performance highlights that, when the Amazon ESCI
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dataset is exploited, UIA has lower performance when is jointly optimized than
when is trained on a single task. Again, the KS task appears to be the most sta-
ble (+0.029 MRR, +0.027 nDCG, and +0.032 Recall compared to Phase1Only
results). The QBE task has the second-biggest increase (+0.030 MRR, +0.030
nDCG, and +0.030 Recall). Finally, CIR is the task that has the greatest ad-
vantage when considered in isolation (+0.053 MRR, +0.059 nDCG, and +0.019
Recall). This behaviour is not consistent with the previous studies about joint
IR and RS [30, 31, 33] and with the UIA results reported in [32] when the Lowe’s
dataset is used. With respect to using the Lowe’s dataset, exploiting the Ama-
zon ESCI dataset implies to both change the data and the structure of UIA. In
particular the Amazon ESCI dataset does not contain any user data and, thus,
the personalization components are removed from the architecture of the frame-
work. For this reason, the results highlight that the advantages gained from the
joint training may depend on the nature of the datasets used, on the way in
which they are processed and on the architecture of the framework chosen.

4.3 RQ3: Generalizabilty Results

As mentioned before we employ the model trained with a single phase when ex-
perimenting with some generalizability aspects, to adopt a more ethical approach
towards IR reseach [8, 22, 25].

Half QBE This experiment (“HalfQBE” row of Table 1) aims to evaluate UIA
behaviour when halving the QBE training data. In this case, we notice three
interesting patterns: i) Compared to our implementation of the UIA framework
the KS performance increases (+0.019 MRR, +0.014 nDCG, and +0.020 Recall).
This indicates that by reducing the imbalance between the different datasets,
the UIA model was more effective in learning how to deal with KS instances. ii)
The performance on QBE decreases (-0.126 MRR, -0.124 nDCG, -0.112 Recall):
this can be naturally explained considering that the training data on this task
was reduced. iii) On the CIR task, we observe a slight decrease in performance
for MRR (-0.008), and nDCG(-0.007) and an increase in Recall (+0.005). The
negligible change for this task suggests that its training phase is not influenced by
the training data used for the QBE task. This can be explained by the different
semantics of the three tasks. Both KS and QBE require to retrieve an item
“similar” to the input (either a query or an item) and thus their learning is
tightly coupled, with the excessive amount of QBE data overshadowing KS. On
the contrary, when it comes to CIR, the expected output is a related item that is
explicitly not similar, thus its training is likely disentangled from the two other
tasks.

The row “HalfQBE (Phase1Only)” of Table 1 reports the result we achieve
when usign half of the data for QBE and training the framework only ac-
cording to Phase 1. This performance must be compared with the one of the
“Phase1Only” experiment. By looking at the results we can notice that, when
avoiding Phase 2, for KS nothing changes, for QBE the gap in performance is
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bigger, while for CIR instead of having a slight decrease we have a small increase
in performance. Nonetheless, the considerations made for this experiment when
performing both training phases still hold.

Early Split The “Early Split” row of Table 1 reports the results we achieve
when we first split the Amazon ESCI queries into training and test set and then
we construct the datasets used to train and test the framework. Compared to
Phase1Only, we do not notice major differences for KS. This happens because the
Amazon ESCI dataset is an IR dataset based on real human behaviour and the
dataset for KS is obtained from it by selecting the appropriate entries, without
requiring special assumptions/processing (differently to QBE and CIR). There-
fore, regardless of the preprocessing pipeline, the KS dataset results to be more
realistic, leading to a more stable performance. Vice-versa, if the UIA framework
is trained by first splitting the queries into training and test sets, the performance
on QBE and CIR tasks is extremely low. This result suggests that there are some
scenarios in which the model will achieve unsatisfactory performance. For exam-
ple, if a new item is used to query the system and the model does not have prior
knowledge of such an item, it will be doomed to fail. Furthermore, this gives us
important information on handling the testing/training of this class of models.
In general, it would be more informative to report results when the split occurs
at a tuple level (as done in [32]) but also split into training and test sets at
a query level (as proposed here), to obtain the complementary information of
what would happen if the model was not able to learn from highly similar items
– if not the item itself –, or from the item in relation to different ones. This
should also motivate the joint IR and RS research community, inspired by pre-
vious work on “knowledge graph completion” evaluation, to investigate, develop,
codify, and adopt proper evaluation protocols that can address and correctly
represent corner cases and the various sides of the task.

5 Conclusions and Future Works

In this paper we presented the architecture of the UIA framework and how the
publicly available Amazon ESCI dataset has been processed and used to opti-
mize it. Furthermore, with our studies and experiments, we discovered that is
possible to reproduce the results obtained by UIA on the Amazon ESCI dataset.
We highlighted the fact that the behavior of the framework is not completely
replicable and, in particular, that when the Amazon ESCI dataset is exploited
the framework does not benefit from the joint training. We generalized the frame-
work discovering that the dataset used and the way in which it is manipulated
has an impact on the performance of UIA. Eventually, all the experiments carried
out showed that, when the Amazon ESCI dataset is used, the KS task appears
to be more robust while the recommendation tasks are more vulnerable.

We will continue our work towards the analysis and generalization of this
framework. In particular, we will try to find and exploit publicly available datasets
which contain user data and can be processed and adapted to fit in the field of
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“joint retrieval and recommendation”. The Amazon Reviews dataset, which has
been frequently used in the field of recommendation [28], seems to be a good
candidate for this role. Our future studies will focus on enhancing the benefits
deriving from the joint training and on understanding how the concepts and nov-
elties introduced with UIA can be reused to develop innovative joint retrieval
and recommendation systems.
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