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Abstract
Query Performance Prediction (QPP) estimates Information Retrieval
(IR) systems‘ effectiveness without relying on manual relevance
judgments. A central challenge in QPP lies in its unstable perfor-
mance, which may vary significantly across queries. In parallel, the
concept of risk-sensitive evaluation in IR seeks to enhance robustness
by minimizing performance variance and mitigating poor retrieval
outcomes. Despite commonalities and complementarities, existing
research has failed to integrate these two perspectives, specifically
by attempting to apply risk-sensitivemetrics to enhanceQPP evalua-
tion robustness. Indeed, currentQPP assessments, typically based on
correlation measures and the sMARE framework, insufficiently ad-
dress robustness, potentially incurring into misleading conclusions.
This paper proposes a novel risk-sensitive evaluation methodol-
ogy to assess QPP robustness. Through empirical analysis on the
Deep Learning’19, Deep Learning’20, and Robust’04 datasets, we
demonstrate that high correlation does not necessarily imply robust-
ness. Risk-awaremetrics such as𝑈𝑅𝐼𝑆𝐾 ,𝑇𝑅𝐼𝑆𝐾 , and𝐺𝑒𝑜𝑅𝑖𝑠𝑘 uncover
critical variations in QPP performance, offering statistically sound
insights with reduced variability. Our findings underscore the value
of incorporating risk-sensitive evaluation into QPP, ultimately con-
tributing to the development of more reliable and robust IR systems.

Code: https://github.com/RicardoMarcal/qpp-risk-evaluator
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1 Introduction
Robustness is a key property of Information Retrieval (IR) models,
referring to their ability to mitigate performance variability across
different user queries. Its primary objective is to reduce the likelihood
of poor performance on individual queries—thus improving user ex-
perience—while maintaining strong overall retrieval effectiveness [44].
Query failures and inconsistent response quality have been shown
to significantly impact user satisfaction with IR systems [23].

Although supervised ranking models are often highly effective,
they frequently overlook the critical aspect of robustness. Beyond
achieving strong average performance, a robust model should also
minimize the risk of poor outcomes on individual queries. However,
effectiveness and robustness are often competingobjectives—models
optimized solely for (average) effectiveness may fail to ensure con-
sistent performance across diverse queries. In this context, Risk-
sensitiveness evaluates retrieval models based on their performance
variability, where higher variability signals lower robustness [14, 27,
37, 44]. Risk-sensitive metrics—such as𝑈𝑅𝐼𝑆𝐾 [44],𝑇𝑅𝐼𝑆𝐾 [13], and
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 [14]—favor IRmethods that are less prone to failure relative
to (multiple) baseline approaches.

In a related line of research, Query Performance Prediction (QPP)
methods aim to predict the performance of an IR system without re-
lying onmanual relevance judgments [4]. Amajor limitation of these
methods is their high variability, influenced by factors such as the IR
system, the corpus, and the query topics. As a result, a QPP method
may perform well on certain queries while failing—sometimes se-
verely—on others. Although this issue is well-documented, robust
evaluationmethodologies on existing QPPmethods remain
lacking. Existingapproaches, suchas scaledMeanAbsoluteRankEr-
ror (sMARE) [19], typically rely on correlation metrics or topic-wise
effectiveness, without directly accounting for prediction robustness.
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We tackle these issues in this paper. In particular, we argue that
correlations and sMAREmetrics fall short of delivering a comprehen-
sive QPP robustness evaluation. Thesemetrics may yieldmisleading
evaluations, as high correlation or sMARE values for specific queries
do not guarantee strong prediction performance across all queries.
Specifically, we defend that a detailed evaluation considering the
distribution of correlations and their variances relative to other QPP
methods is essential to avoid incomplete conclusions.

Figure 1: Real-world use case comparing qppBERT-PL(sMARE) and
NQC(GeoRisk) on Robust’04 Dataset using BM25 as retrieval system.

Thus, as amain contribution of this paper, we demonstrate how
Risk-Sensitive metrics (RSMs) may help to deal with current QPP
evaluation limitations. We advocate that, as done for RSMs that
consider multiple baselines, QPP methods should also be evaluated
by considering the variance among one or several (other) methods.
Accordingly, we propose a new evaluation measure— not a new
QPP— aimed at assessing the robustness of predictors relative to
one another. Our goal is not to replace existing evaluation measures
with robustness-based ones, but to complement them. Just as IR
models are evaluated across multiple dimensions (e.g., precision,
efficiency), we argue that QPPs should also be assessed on multiple
fronts, including risk-sensitiveness.

To clarify this issue, Figure 1 illustrates a real-world downstream
scenariocomparing twoQPPmethods,qppBERT-PL[11]andNQC[36],
on the Robust’04 dataset1. According to sMARE [19], qppBERT-PL
outperforms NQC overall, achieving a higher average sARE (0.799
vs. 0.787). However, qppBERT-PL fails on queries Q1 and Q2, where
NQC shows superior performance, indicating greater robustness.
Traditional QPP metrics, which weigh deviations uniformly across
queries, may favor methods that performwell on average but over-
look critical failures. In contrast, GeoRisk highlights overall preci-
sion while penalizing poor individual outcomes, providing a more
balanced and robust evaluation.looseness=-1

More specifically, our main hypotheses are that: (i) current QPP
evaluation strategies, e.g., correlations and sMARE, lack robustness
(risk-sensitive) objective criteria, usher to misleading conclusions when
considering robustness as a critical requirement; and (ii) while risk-
sensitive metrics are capable of evaluating specific robustness prop-
erties that current QPP evaluation cannot, they can also capture

1Both, methods and datasets are described in Section 4.

properties that these evaluation strategies can, such as the positive cor-
relations between QPP method’s scores and effectiveness, e.g. Average
Precision (AP). To provide evidence for these hypotheses, we break
them into the following research questions, empirically answered:
• RQ1: Considering a straightforward application of correlation
and sMARE evaluations, are the most effective QPP methods also
the most robust (less risky) ones?
To answer this question, we apply well-known RSMs (𝑈𝑅𝐼𝑆𝐾 ,

𝑇𝑅𝐼𝑆𝐾 , and𝐺𝑒𝑜𝑅𝑖𝑠𝑘) to evaluate several QPP methods. We compare
these QPPmethods using a range of evaluation metrics, including
correlation (Kendall’s 𝜏 , Pearson’s 𝑟 , and Spearman’s 𝜌), sMARE and
risk-sensitiveness. Our experimental results are based on the pub-
licly available and well-known Deep Learning’19, Deep Learning’20
and Robust’04 datasets, revealing that the answer to RQ1 is NO.
Specifically, some QPP methods that achieve higher effectiveness
correlations do not necessarily demonstrate high robustness. Con-
versely, methods with slightly lower correlation scores may exhibit
superior risk-sensitive performance.
• RQ2:Whatother relationshipsdoexist betweenrisk-sensitiveness
and current QPP evaluation strategies (correlations and sMARE),
especially regarding query difficulty and variability?
Thisquestion investigatesadditional relationshipsbetweenQuery

PerformancePrediction (QPP) and risk-sensitive evaluation.Notably,
our experiments indicate that RSMs aremore responsive to instances
where a QPPmethod underperforms relative to the baselines. In con-
trast, traditional metrics such as correlation and sMARE tend to
favour overall effectiveness, often overlooking sensitivity to poor
predictions. Among the evaluated RSMs,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 demonstrates the
most consistent performance across the three datasets, likely due
to its incorporation of multiple baselines. Moreover, our empirical
findings reveal that RSMs offer statistically more robust evaluations,
characterized by narrower confidence intervals compared to con-
ventional QPP evaluation methodologies.

In summary, this paper´s main contributions are: (i) a novel risk-
sensitive evaluation methodology for QPPmethods leveraging the
complementarity between risk-sensitiveness and QPP and offering
new insights into their robustness and (ii) a thorough evaluation of
such methodology using three datasets, 21 QPP methods, three risk-
sensitive metrics (𝑈𝑅𝐼𝑆𝐾 ,𝑇𝑅𝐼𝑆𝐾 , and𝐺𝑒𝑜𝑅𝑖𝑠𝑘), and 4 QPP evaluation
approaches (Kendall’s 𝜏 , Pearson’s 𝑟 , Spearman’s 𝜌 and sMARE),
totalizing more than 750 analysed results.

2 RelatedWork
As mentioned, robustness in Information Retrieval (IR) has been
previously analyzed from two distinct perspectives, which exploit
different but potentially complementary strategies: (i) one focusing
on predicting query difficulty [48] and (ii) the second aimed at an-
alyzing the risk of retrieval methods to produce poor query results
[37].Methods that predict query difficulty analyze factors such as un-
expected vocabulary, ambiguous content, or missing information to
suggest that some queriesmay have a high potential to produce poor
results [43]. This set of techniques is known asQuery Performance
Prediction (QPP in short) and is employed to enable alternative meth-
ods to handlemore challenging queries [12, 20, 28, 32, 40]. By design,
QPP aims to estimate the retrieval quality of a query’s results in the
absence of true relevance judgments for each (query, document) pair.
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In this second perspective, IR methods are assessed by their per-
formance variability, considering strong results for some queries
and poor results for others. High variability indicates low robustness.
The IR subfield addressing robustness throughperformancevariance
is known as Risk-Sensitiveness, a established area in IR [44]. RSMs
seek to favor methods less prone to failure compared to baselines.

Key RSMs such as𝑈𝑅𝐼𝑆𝐾 [44], 𝑇𝑅𝐼𝑆𝐾 [13], and𝐺𝑒𝑜𝑅𝑖𝑠𝑘 [14] are
not only applied to evaluate robustness but are also exploited as
objective functions in learning-to-rank methods to improve model
effectiveness [37]. According to these metrics, models that achieve
strong average effectiveness while minimizing negative deviations
compared to other ranking models (baseline performance) are more
risk-sensitive (less risky) or robust.

QPPmethods are often evaluated by analyzing the relationship
between a query-assigned score of difficulty and the actual systemef-
fectiveness measured by standard IR metrics, typically AP or NDCG.
In QPP studies, this relationship is usually assessed using a corre-
lation coefficient, such as Kendall’s 𝜏 , Pearson’s 𝑟 , and Spearman’s
𝜌 correlation metrics[4, 17]. A QPPmethod that achieves a higher
correlation value is generally considered a superior approach. This
comparison summarizes the evaluation between methods consid-
ering only a single (value), with a limited (per-query) perspective
and lack of statistical analyses.

With these limitations in mind, the authors of [19] introduced
a framework called sMARE, which estimates QPP performance for
each query based on the distance between the QPP-predicted rank
and the expected effectiveness rank. sMARE [19] provides a distri-
butional evaluation of QPP performance across multiple queries,
enabling more comprehensive statistical assessments.

To the best of our knowledge, this is the first work to evaluate
RSMs in the context of QPP, based on the hypothesis that existing
QPP evaluation methods inadequately address robustness. We ana-
lyze robustness by comparing QPPmethods and RSMs, highlighting
theirdifferencesandsimilarities inhandlingstrongandweakresults.

3 Background and QPP EvaluationMethodology
Risk-sensitive metrics have been increasingly utilized to evaluate
various IR-related tasks, including Learning to Rank[14, 37] and Rec-
ommender Systems [23]. These evaluations generally focus on two
key perspectives: (i) the variance in predictive performance across
different retrieval models for a single query and (ii) the variance
across multiple queries for a specific retrieval model. Risk-sensitive
methods often calculate the performance difference between a given
model𝑀 andbaselinemodels𝐵, alongwith theassociatedvariance in
several queries. RSMs place particular emphasis on scenarios where
the difference is negative, highlighting instances where model𝑀
underperforms compared to 𝐵.

We argue that traditional QPP evaluation methods fail to account
for these two perspectives (i and ii). As such, these evaluation meth-
ods lack a rigorous risk-sensitive assessment. They neither measure
the magnitude of errors relative to baselines nor consider variances
across queries and baselines, limiting their ability to provide a com-
prehensive robustness evaluation. This shortcoming in existing lit-
erature motivates the evaluation framework proposed in this work.

To address this gap, we propose leveraging the variance in per-
formance among queries and QPP methods, as well as the error
differences relative to QPP baselines, to enable a more robust QPP

evaluation. Specifically, we assess the magnitude of improvement
or degradation of a QPP method𝑀 relative to one (or many) QPP
baseline 𝐵. For this, we adopt the sMARE metric as an evaluation
strategy (described in 3.2), incorporating into it both, (i) a distribu-
tional assessment and (ii) risk-sensitive metrics. These metrics are
applied to scenarios involving a single baseline (detailed in Section
3.3) and multiple baselines (explored in Section 3.4).

Before introducing our methodology, we describe the correlation
metrics used in QPP and their limitations to assess robustness.

3.1 Correlation-based QPP evaluation
Correlations metrics have been employed in numerous QPP studies
to evaluate the relationship between a difficulty ranking score of a
query 𝑞 and the effective ranking produced for 𝑞, measured by AP
or NDCG[4]. Following [18, 19], the correlation metrics more com-
monly used in QPP are: Spearman’s 𝜌 , Pearson’s 𝑟 , and Kendall’s 𝜏 .

Spearman’s 𝜌 evaluates the monotonic ranking values relation-
ship, emphasizing overall ranking consistency and robustness to
outliers. Pearson’s 𝑟 measures the linear correlation between pre-
dicted and actual query performance, reflecting the strength and di-
rection of their relationship without relying on ranks. And Kendall’s
𝜏 focuses on ranking concordance, quantifying the swaps needed
for alignment, and offering an intuitive metric of rank agreement.
We suggest referring to [4] for a more detailed review.

One limitation of these metrics for the sake of QPP evaluation
is their inability to capture the magnitude of errors for individual
queries. Additionally, because these metrics produce a single corre-
lation value for the entire set of queries, resulting in one single-point
evaluation for QPPmethods, they may overlook finer-grained eval-
uation aspects. To address these shortcomings, [19] introduced the
sMARE function, incorporating additional error information.

3.2 Scaled Absolute Rank
Error and ScaledMean Absolute Rank Error

Motivated by the need to evaluate QPPmethods using a more fine-
grained approach, Faggioli et al. [19] proposed a new function –
scaled Absolute Rank Error (sARE) – to move from point-wise QPP
metrics to a distributional performance. sARE is a function designed
to assess each (QPPmethod, query) combination individually and
summarize the overall performance.

sARE computes the difference in rank positions for each query
as assigned by a QPP method versus the ground truth rank position
determined by an effectiveness metric (such as AP or NDCG) as-
signed by a retrieval method. Ties in rankings are resolved using the
average of the ranks spanned, following the approach described in
[21]. More in detail, sARE is computed as:

sARE(q)=
|Q |− |r iq−req |

|Q | (1)

Here, 𝑟 𝑖𝑞 and 𝑟𝑒𝑞 denote the ranks assigned by the QPP method
𝑖 and the effectiveness evaluation for query 𝑞, respectively, and𝑄
represents the set of queries. In the original paper [19], the sARE
follows a "lower-is-better" approach, where smaller values of 𝑟 𝑖𝑞−𝑟𝑒𝑞
indicate smaller difference (error) between the QPP score and the
effectiveness evaluation. To adapt this for RSMs, Eq. 1 presents an
inverted version of sARE.
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To summarize the sARE values across all queries, the sMARE is
defined in [19] as:

sMARE(Q)= 1
|Q |

∑︁
q∈Q

sARE(q) (2)

The primary contribution of Eq. 2 lies in its ability to focus on
the distribution of rank differences for each query. However, it does
not account for the variance across different baselines or among
multiple queries. To address this limitation, our work leverages the
query-error feature of sARE to introduce the first QPP evaluation
with risk-sensitive capabilities. Specifically, we utilize Equation 1 to
assess the performance of each (QPP method, query) combination.

As detailed next, we integrate sARE as a core component of our
risk-sensitive evaluation framework, utilizing it for conducting a
comprehensive comparative analysis across multiple QPPmethods.

3.3 Risk-Sensitiveness - One Baseline
In the context of this work, a QPPmethod is deemed risk-sensitive if
it effectively predicts most queries without producing significantly
worse predictions for others, when compared to a QPP baseline. Ac-
cordingly, we perform amulti-objective evaluation of QPP, consider-
ing the quality of the predictions and the QPP’s ability to minimize
the risk of poor predictions. To assess the robustness of a system, it
is common to employ a Risk-Sensitive metric.

A seminal work in Risk-Sensitive is [44]. It divides robustness
into two components: degradation and reward. Degradation (reward)
of a model𝑀 represents the negative (positive) change in query per-
formance relative to a specific baseline IR system 𝐵. More formally,
considering a set of training queries𝑄 and two ranking models (or
QPPmethods in case of our evaluation): a baseline 𝐵 and a proposed
model𝑀 . Thedegradationofmodel𝑀 is definedas the averagediffer-
ence (or gain) in effectiveness between the baseline 𝐵 and𝑀 across
all queries in𝑄 . Wang et al. [44] define the concept of degradation
using the 𝐹𝑅𝐼𝑆𝐾 function, as outlined in Eq. 3.

FRISK (𝑄,𝑀)= 1
|𝑄 |

∑︁
𝑞∈𝑄

𝑚𝑎𝑥 [0,𝐵(𝑞)−𝑀 (𝑞)] (3)

In this context, 𝐵(𝑞) and𝑀 (𝑞) represent the effectiveness values
of the baseline and the proposed model for a given query 𝑞, respec-
tively. The 𝐹𝑅𝐼𝑆𝐾 function utilizes the effectiveness scores of each
query in𝑄 . Here we use the sAREmetric as defined in Eq. 1, which
follows a higher-is-better approach, as normally occurs in IR met-
rics. Thus, the primary purpose of 𝐹𝑅𝐼𝑆𝐾 function is to compare the
performance of two models (or QPP methods) based on the sARE
metrics. A lower value of the 𝐹𝑅𝐼𝑆𝐾 function indicates a more robust
model, as it reflects a smaller degree of degradation for model 𝑀
compared to baseline 𝐵.

In contrast to degradation, reward of a proposed method𝑀 rel-
ative to a baseline model 𝐵 is defined as the average improvement in
effectiveness of𝑀 over 𝐵 across all queries in𝑄 . In [44], the reward
is formally defined as in Eq.4:

FREWARD (𝑄,𝑀)= 1
|𝑄 |

∑︁
𝑞∈𝑄

𝑚𝑎𝑥 [0,𝑀 (𝑞)−𝐵(𝑞)] (4)

Reward and degradation can be combined in various ways to as-
sess the extent to which a method𝑀 is sensitive to risk. In [44], both

functions FRISK and FREWARD are combined, introducing the𝑈𝑅𝐼𝑆𝐾
function. This function is defined as:

URISK (𝑄,𝑀)=FREWARD (𝑄,𝑀)−(1+𝛼)FRISK (𝑄,𝑀) (5)
The parameter 𝛼 is the weight given to the degradation. Different

values of 𝛼 can significantly impact the risk-sensitive evaluation
of the method [13, 44]. In our case, 𝛼 =0 provided results that are
more similar to existentQPPmetrics,without considering the higher
weight to the degradation.

Another risk-sensitivemetricwas introduced in [13]. In thatwork,
the authors extend [44] by proposing a generalization of the𝑈𝑅𝐼𝑆𝐾
function, which is referred to as𝑇𝑅𝐼𝑆𝐾 .

TRISK (𝑄,𝑀)= URISK (𝑄,𝑀)
𝑆𝐸 (URISK (𝑄,𝑀)) (6)

where 𝑆𝐸 is the estimation of the𝑈𝑅𝐼𝑆𝐾 standard error. The orig-
inal papers suggest using the regular standard error of the mean to
𝑈𝑅𝐼𝑆𝐾 , that it is, 𝜎 (𝑈𝑅𝐼𝑆𝐾 )/

√︁
|𝑄 |, where |𝑄 | means the cardinality of

𝑄𝑇 and 𝜎 the variance of values in𝑈𝑅𝐼𝑆𝐾 .
𝑇𝑅𝐼𝑆𝐾 leverages inferential hypothesis testing to provide a risk-

sensitive metric. Considering our application in QPPmethods, we
use the same inferentialmethods in [13] to assess if theobserved level
of risk for a QPP method is statistically significant and identify spe-
cific queries that contribute to a substantial level of risk individually.

One important issue of functions 𝑇𝑅𝐼𝑆𝐾 and 𝑈𝑅𝐼𝑆𝐾 is that both
use only one baseline to evaluate the variance of a specific query.
Considering this, [15] examines how the selection of the baseline
impacts the risk-sensitive evaluation. The authors demonstrate that
choosing an appropriate baseline is crucial for achieving an unbiased
assessment of the risk-sensitive performance of individual systems.
Specifically, they find that the higher the correlation between a given
system𝑀 and the baseline across queries, the greater the average
risk-sensitive scores of𝑀 . This indicates a bias in the estimation of
risks. To address this, the paper proposes unbiased baselines that use
the mean ranking performance across multiple ranking methods.
Alternatively, the authors of [14] suggest that not only one method
should be used as a baseline but several.

3.4 Risk-Sensitiveness - Many Baselines
Dinçer et al. [14] suggest using multiple baselines systems for risk-
sensitive evaluation. They consider not only the mean and variance
of observed losses and gains against a baseline method but also the
shape of the score distribution when employing a set of different
methods as risk baselines. Dinçer et al. argue that utilizing a group
of systems as baselines provides a more accurate understanding of
query difficulty, mitigating the influence of queries poorly handled
by a system but not by others. To achieve this, Dinçer et al. employ
𝜒2 test statistics to estimate the expected ranking effectiveness for
each query based on the combined performance of the evaluated
and the baseline systems. Dinçer et al. [14] define𝑍𝑅𝐼𝑆𝐾 as:

ZRISK (i)=
[ ∑︁
q∈Q+

ziq+(1+𝛼)
∑︁
q∈Q−

ziq

]
(7)

where

ziq=
xiq−eiq
√eiq

,eiq=Si×
Tq
N
, (8)
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For sake of QPP evaluation, we propose 𝑥𝑖𝑞 be the sARE metric
(defined in Eq. 1) performed for a query 𝑞 corresponding to a QPP
method 𝑖 . Element 𝑖 is defined as 𝑖 ∈ {1,2,...,𝑟 } for each QPPmethod,
where 𝑟 is the number of methods, and |𝑄 | is the max size of queries.
𝑄+ (𝑄−) stands for the sum of positive (negative) values of 𝑧𝑖𝑞 . Let
𝑆𝑖 be the performance (sARE) sum for all queries in QPPmethod 𝑖 ,
𝑇𝑞 the performance (sARE) sum for all QPP methods for a specific

query 𝑞, and 𝑁 =
𝑟∑
𝑖=1

𝑄∑
𝑞=1

𝑥𝑖𝑞 the sum of all elements.

Accordingly to [14],𝑍𝑅𝐼𝑆𝐾 assesses the risk sensitiveness regard-
ing the variance of the model 𝑖 , therefore it does not provide a com-
parative risk-sensitive evaluation between QPPmethods. Thus, fol-
lowing [14],we also use theGeometricMean in the𝐺𝑒𝑜𝑅𝑖𝑠𝑘 formula:

𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝑆𝑖 )=
√︁
𝑆𝑖/|𝑄 |×Φ(𝑍𝑅𝑖𝑠𝑘 (𝑖)/|𝑄 |) (9)

where Φ() represents the cumulative distribution function of the
Standard Normal Distribution. Essentially in our work,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 of-
fers a comparison of QPP methods from a robustness standpoint,
assessing each query based on its sARE performance expectation.
This expectation is derived from the distribution of observed query
difficulty across QPPmethods for a specific query.

We claim that sARE can be an appropriate function for evaluating
individual query-level performance in QPP outcomes. As described
in [19], sARE and sMARE show strong correlation with other tradi-
tional QPP evaluation metrics. In extensive evaluations reported in
[2, 24, 25], sARE emerges as the most well-grounded choice.

In sum, as a major contribution of this paper, and unlike other
risk-sensitive studies in the literature, in here we present a novel
adaptation of risk-sensitiveness for evaluating QPP methods from a
robustness perspective. This involves incorporating the concepts of
sARE into𝑍𝑅𝐼𝑆𝐾 , enabling a thorough and robust QPP evaluation.

4 Experimental Results and Discussion
This section presents the experimental results and evaluation when
robustness is incorporated into QPPs. The primary objective is to
analyze and compare the results of applying the risk-sensitiveness
metrics𝑈𝑅𝐼𝑆𝐾 ,𝑇𝑅𝐼𝑆𝐾 , and𝐺𝑒𝑜𝑅𝑖𝑠𝑘 to QPPmethods with those pro-
duced by conventional QPP evaluation strategies, such as Pearson’s
𝑟 , Spearman’s 𝜌 , Kendall’s 𝜏 , and sMARE2.

4.1 Experimental Setup
Experiments are conducted on three well-known benchmark col-
lections: Robust’04 [42], Deep Learning’19 passages [5] and Deep
Learning’20 [6]. These collections differ in terms of the number of
topics, the underlying corpus, and the availability of training queries.
Robust’04 comprises 249 topics and is commonly used for ad-hoc
document Text Information Retrieval. Deep Learning’19 includes
43 annotated topics from the MS-MARCO collection, making it par-
ticularly relevant for neural retrieval scenarios. Deep Learning’20
uses the same passages of DL 2019, providing 54 queries. Using these
datasets ensures diversity, supporting a robust evaluation of the
proposed framework across different retrieval paradigms.

2All correlation metrics formulas are defined in [4].

To comprehensively evaluate our robustness experiments, we
analyze the results of the main categories of QPP methods: (i) pre-
retrieval, (ii) post-retrieval, and (iii) deep learning [29, 35, 36]. For
pre-retrieval, we consider SCSsum, SCQavg, SCQmax, ICTFavg,
ICTFmax, IDFavg, IDFmax, VARavg, and VARmax [4]. As post-
retrieval methods, we include: Clarity [7], Weighted Information
Gain (WIG) [48], Normalized Query Commitment (NQC) [36], Score
Magnitude and Variance (SMV) [39], and their Utility Estimation
Framework (UEF) versions [34]. Lastly, we consider the following
supervised QPPs: neural-QPP [45], BERT-QPP [1], qppBERT-PL[11],
deepQPP [9]. In the Appendix, the reader can find a brief description
of these methods.

As the target IR system, we use BM25 considering Average Pre-
cision (AP) as the main metric, following a large part of the previous
literature in the QPP domain[26].

We fine-tuned post-retrieval unsupervised methods by consider-
ing different cutoffs of the ranked list: 5, 10, 50, 100, and 500. This
fine-tuning was conducted using a two-fold partitioning procedure,
as detailed in [10, 34, 45, 46]. To enhance reliability, this approach
was repeated 30 times. Concerning supervised QPPs we employ the
scores precomputed by Saha et al. [31] and publicly available3.

Statistical significance is tested using one-way ANOVA [30] with
Tukey’s Honestly Significant Differences (HSD) post-hoc compar-
ison [41] to correct for multiple comparisons.

To evaluate the RSMs, we consider specific baseline values. For
𝑈𝑅𝐼𝑆𝐾 and𝑇𝑅𝐼𝑆𝐾 , we use the average of sARE scores for all evaluated
QPPs, as the average is regarded as an unbiased strategy [15]. For
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 evaluation, we consider sARE for all QPP methods except
the one under evaluation, following the approach outlined in [38].
For the 𝛼 parameter, we adhere to the guidelines in [38], evaluating
the outcomes for 𝛼 =1,5,10,20. For clarity, we present the results for
𝛼 =5 and 𝛼 =10, as the other values have similar interpretations.

4.2 Results for RQ1
To answer RQ1, we propose two experiments. In section 4.2.1, we
analyze traditional QPP evaluations (i.e., Spearman’s 𝜌 , Pearson’s 𝑟 ,
Kendall’s 𝜏 and sMARE) and the proposed evaluation framework us-
ing RSMs across variousQPPmethods. In Section 4.2.2, we assess the
win-loss performance of the best QPPmethods selected by the tradi-
tional QPP evaluation metrics, distilling the robustness differences.

4.2.1 OverallQPPEvaluation. Webegin by confirming inTables
1a and 1b that the rankings of the most effective QPP methods iden-
tified by all correlation metrics and sMARE are not necessarily the
same as the most robust ones, according to the RSMs, mainly consid-
ering the largerRobust’04.Tables1aand1bsummarize theevaluation
of the Robust’04 and Deep Learning’20 datasets, respectively, using
multiple metrics, including Spearman’s 𝜌 , Pearson’s 𝑟 , Kendall’s 𝜏 ,
sMARE,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (with𝛼 =5and𝛼 =10),𝑈𝑅𝐼𝑆𝐾 (with𝛼 =5and𝛼 =10),
and𝑇𝑅𝐼𝑆𝐾 (with 𝛼 =5 and 𝛼 =10). For Deep Learning’19 dataset, the
results are described in the Appendix. To enhance the clarity, the ta-
bles present the rankposition for eachQPPmethodaccording to each
metric— in theAppendix, the reader can find the absolute values cor-
responding to these tables. The rank position is based on the average
of 1,000 bootstrap samples across all queries, alongwith its statistical
significance (using theWilcoxon signed-rank test [22]) against the

3https://github.com/souravsaha/qpp-comb

https://github.com/souravsaha/qpp-comb
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QPP 𝜏 𝜌 𝑟 sMARE 𝐺𝑒𝑜𝑅𝑖𝑠𝑘 𝑈𝑅𝐼𝑆𝐾 𝑇𝑅𝐼𝑆𝐾
𝛼 =5 𝛼 =10 𝛼 =5 𝛼 =10 𝛼 =5 𝛼 =10

SMV 1.5 1 1.5 5.5 3 3 2.5 2.5 4.5 6
UEFSMV 1.5 6 5 5.5 4 4.5 4 4 4.5 5
UEFNQC 3.5 3.5 3 3.5 2 2 2.5 2.5 3 3.5

qppBERT-PL 3.5 3.5 1.5 1 15 17 10.5 13 2 2
NQC 5.5 2 5 7 1 1 1 1 7 8

BERT-QPP 5.5 5 5 2 17 20 14 15 6 3.5
deepQPP 7 7.5 8 3.5 18 21 16 16.5 1 1

(a) Robust’04

QPP 𝜏 𝜌 𝑟 sMARE 𝐺𝑒𝑜𝑅𝑖𝑠𝑘 𝑈𝑅𝐼𝑆𝐾 𝑇𝑅𝐼𝑆𝐾
𝛼 =5 𝛼 =10 𝛼 =5 𝛼 =10 𝛼 =5 𝛼 =10

NQC 1 2.5 1 1 1 1 1 1 1 1
neural-QPP 2 1 3 3 9 12 6 8.5 3.5 3.5
BERT-QPP 3.5 4.5 4 3 13 13 10 10.5 2 2

qppBERT-PL 3.5 2.5 2 3 14 14.5 10 10.5 8.5 12
VARavg 5 10 5 6 3.5 4 3 3 8.5 10.5
IDFavg 6 11 7 5 2 2 2 2 3.5 3.5

ICTFavg 7.5 12 8 7.5 3.5 3 4 4 5 5
(b) Deep Learning’20

Table 1: QPPmethods ranking induced by differentmeasures. In case of statistical ties, we apply the ’average’ tie-break approach.

methods ranked immediately above and below. To avoid discrepan-
cies in theminimumrankamongthemethods,weapplyaverage (frac-
tional) ranking. For reference and comparison, we use the ordering
of theQPPmethods given byKendall’s𝜏 correlations. For clarity, Fig-
ures 1aand1b showthe rankingorderof only themost representative
QPPmethods – for all results, the reader can refer to the Appendix.

From Table 1a and following Kendall’s 𝜏 ranking, SMV and UEF-
SMV (tied up in first place) are the most effective QPP methods in
Robust’04, followed by UEFSMV, and qppBERT-PL. All correlation
metrics suggested SMV as the best method. Spearman’s 𝜌 , Kendall’s
𝜏 and Pearson’s 𝑟 defined a similar third place, UEFNQC. And differ-
ently of Kendall’s 𝜏 which places UEFSMV as first position, Spear-
man’s 𝜌 and Pearson’s 𝑟 place UEFSMV as sixth and fifth position.
Considering sMARE as a criterion, the most effective QPPmethod
is qppBERT-PL, followed by BERT-QPP and UEFNQC.

However,whenusingRSMs, specifically𝐺𝑒𝑜𝑅𝑖𝑠𝑘 and𝑈𝑅𝐼𝑆𝐾 (both
with 𝛼 =5 and 𝛼 =10), NQC emerges as the most robust method. In
fact, there is a convergence across these two RSMs, defining NQC as
the most robust method, followed by UEFNQC, SMV, and UEFSMV.
𝑇𝑅𝐼𝑆𝐾 produces less consistent results with regard to the other RSMs,
with a different method in the second position: qppBERT-PL.

We perform a similar analysis on Deep Learning’20 in Table 1b.
Similarly as before, in Table 1b,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =5 and 𝛼 =10) ranks ID-
Favg and ICTFavg in second and third place, respectively. However,
for correlation-basedmetrics, neural-QPP,BERT-QPP, andqppBERT-
PL aremore frequently ranked in second and third positions. Consid-
ering Deep Learning’19, the results are described in our Appendix.

Considering a macro-view rank analysis of Tables 1a, 1b, and for
Deep Learning’19, we use Table 2 to report a pairwise Kendall’s 𝜏
correlation between the ranks produced by classic QPP evaluation
strategies and RSMs, averaged across the datasets. In general, the
correlation is high, suggesting that the RSMs generally agree with
the QPP evaluation approaches. At the same time, we highlight dif-
ferences between rankings, especially for RSMs 𝛼 =10, confirming
our previous observations that RSMs bring novel perspectives for
QPP evaluation. As a general trend,𝑈𝑅𝐼𝑆𝐾 is the metric that better
aligns with classic QPP evaluation, followed by𝐺𝑒𝑜𝑅𝑖𝑠𝑘 and𝑇𝑅𝐼𝑆𝐾 .
Specially for𝑇𝑅𝐼𝑆𝐾 , there is a strong correlation with sMARE, up to
0.86 when considering 𝛼 =5.

The literature highlights𝐺𝑒𝑜𝑅𝑖𝑠𝑘 as the most consistent and ro-
bust risk-sensitive metric [14, 38], as it evaluates variance across a
set of baselines rather than relying on a single one, as is the casewith
𝑈𝑅𝐼𝑆𝐾 [14] and𝑇𝑅𝐼𝑆𝐾 [15]. In our experiments (Table 2),𝐺𝑒𝑜𝑅𝑖𝑠𝑘 and
𝑈𝑅𝐼𝑆𝐾 exhibit strong correlations, with values ranging from 0.72 to
0.89. In contrast,𝑇𝑅𝐼𝑆𝐾 produces a rankingmore closely alignedwith
sMARE, showing correlation values between 0.82 and 0.86 (Table 2),

while𝐺𝑒𝑜𝑅𝑖𝑠𝑘 presents a weaker alignment, ranging from 0.42 to
0.60. A plausible explanation for the divergence of𝑇𝑅𝐼𝑆𝐾 from𝑈𝑅𝐼𝑆𝐾
and𝐺𝑒𝑜𝑅𝑖𝑠𝑘 is that𝑇𝑅𝐼𝑆𝐾 applies a linear transformation to𝑈𝑅𝐼𝑆𝐾
(Equation 6) [13], which may reduce its robustness to outliers.

We also provide an in-depth evaluation of the alpha parameters
(Eqs. 8 and 5) in the context of QPP evaluation, varying 𝛼 =1,5,10,20.
As shown in both Figure 6 for Robust’04 in the Appendix and Table 2
(for 𝛼 =5,10), we observe that as the alpha values increase, GeoRisk
and URisk become less correlated with traditional correlation-based
metrics and place greater emphasis on robustness. While this behav-
ior helps minimize poor results, excessively high alpha values can
unfairly penalize methods that achieve high average effectiveness,
potentially compromising overall performance. We consider values
around 5 and 10 to be well-suited for QPP evaluation, accepting a
very similar overall average and reducing the risk of bad solutions.

In summary, we find greater divergence between traditional QPP
evaluations and risk-sensitive assessments in the larger datasets
(Robust’04 and Deep Learning’20) than in the smaller dataset (Deep
Learning’19), althoughnotabledifferences remain in the latter.Among
RSMs,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 and𝑈𝑅𝐼𝑆𝐾 offer a more innovative perspective than
𝑇𝑅𝐼𝑆𝐾 . While traditional QPP metrics and RSMs show some correla-
tion, each provides a distinct and complementary evaluative view.

4.2.2 Breaking Down the Robustness Evaluation. Consider-
ing the traditional correlationmetrics and sMARE (Eq. 2), it is evident
that the evaluation for each query is aggregated and summarized
over the total number of queries (or pairs, in the case of certain
correlation metrics). This aggregation can obscure poor individual
performances by averaging themwith stronger results. Therefore,
to ensure a more comprehensive and robust evaluation, it is essen-
tial to examine whether a given method effectively mitigates poor
outcomes and, consequently, minimizes user dissatisfaction.

To this end, we select the most effective QPP methods as de-
termined by Pearson’s 𝑟 , Spearman’s 𝜌 , Kendall’s 𝜏 , sMARE, and
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (Tables1aand1b).Wethenproceed toquantifyboth favourable
and unfavourable outcomes. The evaluation is decomposed along
two complementary dimensions: (i) enumerating the number of con-
cordant and discordant query pairs, and (ii) assessing the magnitude
of the associated errors. The core objective is to demonstrate there
is no significant difference in the frequency of correct versus incor-
rect orderings between query pairs. However, when evaluating the
magnitude (or impact) of the error, the difference between robust
and non-robust results becomes much clearer.

This analysis begins with Figures 2a and 2b, which depict the
number of concordant and discordant query pairs for Robust’04 and
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Table 2: Correlation between different evaluation approaches. The good, but not pathological, correlation between the risk-sensitive evaluation approaches
(𝐺𝑒𝑜𝑅𝑖𝑠𝑘 ,𝑇𝑅𝐼𝑆𝐾 and𝑈𝑅𝐼𝑆𝐾 ) and classical correlationmetrics suggests that themetrics capture similar patterns—each with its peculiarities.

Kendall’s 𝜏 Pearson’s 𝑟 Spearman’s 𝜌 sMARE 𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =5) 𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =10) 𝑇𝑅𝐼𝑆𝐾 (𝛼 =5) 𝑇𝑅𝐼𝑆𝐾 (𝛼 =10) 𝑈𝑅𝐼𝑆𝐾 (𝛼 =5) 𝑈𝑅𝐼𝑆𝐾 (𝛼 =10)

Kendall’s 𝜏 1.000 0.761 0.933 0.868 0.653 0.506 0.809 0.755 0.761 0.729
Pearson’s 𝑟 0.761 1.000 0.783 0.708 0.542 0.440 0.672 0.650 0.643 0.612
Spearman’s 𝜌 0.933 0.783 1.000 0.884 0.624 0.478 0.806 0.752 0.733 0.701

sMARE 0.868 0.708 0.884 1.000 0.597 0.450 0.861 0.826 0.718 0.679
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =5) 0.653 0.542 0.624 0.597 1.000 0.853 0.602 0.567 0.860 0.898
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =10) 0.506 0.440 0.478 0.450 0.853 1.000 0.455 0.426 0.720 0.758
𝑇𝑅𝑖𝑠𝑘 (𝛼 =5) 0.809 0.672 0.806 0.861 0.602 0.455 1.000 0.940 0.710 0.672
𝑇𝑅𝑖𝑠𝑘 (𝛼 =10) 0.755 0.650 0.752 0.826 0.567 0.426 0.940 1.000 0.662 0.630
𝑈𝑅𝑖𝑠𝑘 (𝛼 =5) 0.761 0.643 0.733 0.718 0.860 0.720 0.710 0.662 1.000 0.962
𝑈𝑅𝑖𝑠𝑘 (𝛼 =10) 0.729 0.612 0.701 0.679 0.898 0.758 0.672 0.630 0.962 1.000

(a) Robust’04 Dataset - BM25 (b) Deep Learning’20 Dataset - BM25
Figure 2: Concordance between QPP and AP ranking scores

(a) Robust’04 Dataset - BM25 (b) Deep Learning’20 Dataset - BM25
Figure 3: Queries with high sARE degradation

DeepLearning’20, respectively.4 ThesecomparisonsadoptBM25and
AP as the ground truth, following standard practices in QPP evalua-
tions [16]. In thefigures, they-axisdenotes thenumberofquerypairs,
while the x-axis represents theQPPmethods selected by each evalua-
tionmetric. For Robust’04 (as summarized inTable 1a), SMVemerges
as the top method according to Kendall’s 𝜏 , Spearman’s 𝜌 , and Pear-
son’s 𝑟 (indicated in the table as 𝜏 , 𝜌 , and 𝑟 , respectively); qppBERT-
PL is selected by sMARE, and NQC by𝐺𝑒𝑜𝑅𝑖𝑠𝑘 . In the case of Deep
Learning’20 (Figure 2b), due to a convergence in top-performing
models, the third-best methods are considered: BERT-QPP is se-
lected by Kendall’s 𝜏 , Pearson’s 𝑟 and Spearman’s 𝜌 , qppBERT-PL is
selected by sMARE and VARavg selected by𝐺𝑒𝑜𝑅𝑖𝑠𝑘 and Kendall’s
𝜏 , respectively. In Figure 2a, qppBERT-PL is highlighted as having
a greater number of concordant pairs (and fewer discordant ones)

4Due to space constraints, this evaluation is presented for Robust’04 and Deep
Learning’20 only.

than BM25, and therefore the reported percentages correspond to its
performance. The same rationale applies to BERT-QPP in Figure 2b.

As anticipated, Figures 2a and 2b reveal relatively minor differ-
ences in thenumberof concordant anddiscordant querypairs among
the evaluated QPP methods. For instance, in Figure 2a, qppBERT-PL
(selected by sMARE) exhibits only 1.6% and 2.2% more concordant
pairs than SMV (selected by correlation-basedmetrics) and NQC (se-
lected by𝐺𝑒𝑜𝑅𝑖𝑠𝑘), respectively. In contrast, SMV andNQC yield ap-
proximately 3.9% and 5.3% more discordant pairs than qppBERT-PL.
For Deep Learning’20, the disparities in concordant and discordant
pairs are slightly more pronounced, surpassing 4.4% and 10.3%, re-
spectively. Nonetheless, these differences remain relatively modest
across the evaluated methods.

We turn our attention to themagnitude of prediction error, specif-
ically examining poor outcomes or severe degradations relative to
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an expected value for each query. Figures 3a and 3b present the num-
ber of queries for which the degradation—computed using Equa-
tion 3—exceeds thresholds of 20% and 40% when compared to a
baselinemethod 𝐵. In this context, baseline 𝐵 denotes the average ef-
fectiveness (sARE)perquery, calculatedacross all evaluatedmethods
excluding the one under analysis. As seen in Figure 3a, the method
selected by𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (NQC) predicts 125% fewer queries with more
than 20%degradation than themethods identified by sMAREand the
correlation-based metrics—namely, qppBERT-PL and SMV, respec-
tively.When considering the set of queries with degradation exceed-
ing 40%, NQC continues to yield fewer predictions with large errors.
Comparable patterns are observed for Deep Learning’20 ( Figure 3b).

Although the QPPmethods selected by correlation metrics and
sMARE, qppBERT-PL and SMV, may exhibit slightly higher concor-
dance for overall effectiveness, they are also associatedwith a greater
likelihoodofproducingpooroutcomes.Thesepooroutcomes refer to
instances where a query is incorrectly predicted as either more diffi-
cult or easier than it truly is. Specifically, qppBERT-PL and SMVhave
more instances of prediction error — defined as degradation exceed-
ing 20% — compared to NQC, the method selected by𝐺𝑒𝑜𝑅𝑖𝑠𝑘 . Con-
versely, while the methods identified by𝐺𝑒𝑜𝑅𝑖𝑠𝑘 may demonstrate
marginally lower concordance in effectiveness (by approximately
1.6% to 10.3% ), they result inmarkedly fewer severe prediction errors.

4.3 Results for RQ2
To answer RQ2, we focus our analysis on the performance of the
best QPPmethods identified by Kendall’s 𝜏5, sMARE, and RSMs in
the previous section, providing a more sound statistical evaluation.

Evaluating themost difficulty queries. The performance of
QPP methods is influenced by various factors, including data con-
tent, document-query similarity, and vocabulary specificity [4]. As
a result, certain queries may receive suboptimal effectiveness pre-
dictions. Relying predominantly on metrics such as Kendall’s 𝜏 and
sMARE may compromise the evaluation quality, particularly for
more challenging queries. To investigate whether RSMs are more
attentive to such difficult cases, Figure 4a presents a comparison of
the best-performing QPPmethods according to Kendall’s 𝜏 (SMV)
and𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (NQC), based on their Kendall’s 𝜏 correlation scores on
Robust’04. Similarly, Figure 4b examines the sMARE performance
of the topmethods identified by sMARE (qppBERT-PL) and𝐺𝑒𝑜𝑅𝑖𝑠𝑘
(NQC) onDeepLearning’20, focusing on subsets of queries identified
as the most difficult.

To identify the most challenging queries, we grouped all queries
according to their lowestaverageeffectiveness, followingthemethod-
ology established in [4]. The most difficult queries—those exhibiting
the lowest average effectiveness across all QPPmethods—constitute
the first group of columns, with subsequent groups representing pro-
gressively easier queries. In both figures, each group comprises 20%
of the most difficult queries, as correlation measures tend to exhibit
greater stability when calculated over larger query groups [3].

Figures 4a and 4b illustrate that the method selected by𝐺𝑒𝑜𝑅𝑖𝑠𝑘
provides amore effective evaluation for themost challengingqueries.
In Figure 4a, for the top 20%most difficult queries, NQC (identified
by 𝐺𝑒𝑜𝑅𝑖𝑠𝑘) achieves a correlation score that is 92% higher than

5We do not evaluate Spearman’s 𝜌 and Pearson’s 𝑟 in this part because they are
correlated with the selection of Kendall’s 𝜏 .

that of SMV, the method selected by Kendall’s 𝜏 . For the subsequent
group, representing the 20%–40%most difficult queries, NQCdemon-
strates an 11.6% improvement in correlation. Comparable results are
observed when evaluating sMARE on Deep Learning’20.

StatisticalEvaluation. Wenowassess theeffectivenessofRSMs
in identifying Statistically Significantly Different (s.s.d.) QPPs pairs.
Determiningwhether theperformancedifference between twoQPPs
is statistically significant enables the exclusion of ineffective meth-
ods.Theabilityof anevaluationprotocol—comprisingaperformance
metric and a statistical test—to identify s.s.d. pairs is referred to as its
“power” or “test sensitivity.” If the objective is to filter out the least
effective QPPs, prioritizing the most promising ones, an evaluation
procedure with higher statistical power is preferable. This is typi-
cally desirable, especially in late stages of the evaluation, where a
single “system” must be chosen to be put in production.

Correlation-basedmetricsprovidea list-wiseevaluation—yielding
a single value for the entire query set—which precludes the applica-
tion of statistical significance testing6. The same limitation applies to
RSMs. Thus, following [19], we adopt a bootstrap-based procedure
to construct confidence intervals for our evaluation metrics.

For each dataset, we perform 1,000 bootstrap resampling itera-
tions, drawing with replacement subsets of queries equal in size
to the original query set. For each QPP, retrieval method, and sam-
pled subset, we compute the list-wise evaluation metrics, including
correlation and risk-sensitive measures. The 95% confidence inter-
val around the performance estimate is derived by identifying the
0.025 and 0.975 percentiles of the performance distribution across
the resampled subsets. For a given collection and retrieval method,
a QPP is considered statistically superior to another if the lower
bound of its confidence interval exceeds the upper bound of the
other method’s interval. In the case of sMARE, where confidence
intervals can be computed directly, we employ Studentized t-based
confidence intervals at the 0.05 significance level.

Figure 5 shows the distribution of confidence intervals for the
QPPmethods across different evaluation measures. Smaller inter-
vals indicate more accurate estimates. We report only RSMs
with 𝛼 =5 for clarity. As shown,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 yields consistently small
confidence intervals, indicating higher accuracy compared to other
measures. In contrast, 𝑈𝑅𝐼𝑆𝐾 produces larger intervals than both
sMARE and𝐺𝑒𝑜𝑅𝑖𝑠𝑘 , with its intervals spanning the full range for
Deep Learning’19 and Deep Learning’20.

Wenowinvestigatequantitativelywhichmetricprovides themost
powerful evaluation. Table 3 reports the number of s.s.d. pairs ofQPP
methods identified by the various metrics, divided by collection. No-
tice that, sincewe considered 21 different QPPs, in total there are 210
(21×(21−1)/2) pairs of QPPs to be compared. Besides the average
pairs of s.s.d. systems, we report in Table 3 also the pairs of systems
considered not s.s.d. (s.s.d.), as well as the ratio over the total of pairs.

Regarding Deep Learning’19,𝑈𝑅𝐼𝑆𝐾 is the most powerful metric.
On average, depending on the value of 𝛼 , it recognizes 7 to 10 more
pairs than Kendall’s 𝜏 and 10 to 13 more s.s.d. pairs than sMARE.
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 has a similar power, with more power for 𝛼 =1 and 𝛼 =5.
The same pattern repeats almost unchanged for Deep Learning’20.

6Importantly, we are comparing pairs of QPPs and are interested in determining
whether their performance differs significantly. This is distinct from assessing whether
the correlation of individual QPPs is greater than zero.
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(a) Kendall’s 𝜏 of SMV and NQC - Robust’04 (b) sMAREofqppBERT-PLand IDFavg -DeepLearning’20.
Figure 4: Evaluation of query intervals ordered by difficulty (i.e., ascending by AP) utilizing Kendall’s 𝜏 and sMARE for their respective
top-performing QPPmethods, alongside𝐺𝑒𝑜𝑅𝑖𝑠𝑘 ’s leading QPPmethod.
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Figure 5: Distribution of the confidence interval sizes. GeoRisk show smaller
confidence intervals (purple bars towards the left side), indicating greater
discriminative power. Themore the curves are shifted to the left (indicating
smaller confidence intervals), themore powerful the test is.

In general, the dataset allows us to discriminate less between QPPs,
but𝑈𝑅𝐼𝑆𝐾 and𝐺𝑒𝑜𝑅𝑖𝑠𝑘 remain the most discriminative measures.
For Robust’04, classical approaches tend to bemore powerful. In par-
ticular, Kendall’s𝜏 and sMARE are themost discriminating solutions,
followed by Spearman’s 𝜌 .𝑇𝑅𝐼𝑆𝐾 is always the most conservative
metric. This aligns with the fact that, compared to other solutions,
𝑇𝑅𝐼𝑆𝐾 has much wider confidence intervals.

Based on these findings, we recommend using TRisk in the early
stages of developing a new QPPmethod—when it is desirable to ex-
plore a wide range of hypotheses and retain flexibility in evaluating
various factors beyond effectiveness and robustness (e.g., efficiency,
latency, energy consumption, cost). In contrast, URisk and GeoRisk
are likely more suitable for later stages, when the goal is to make a
definitive selection for deployment. Their higher statistical power
supports making more confident decisions about which predictor
performs best.

Overall, we observe that all RSMs represent promising strategies
for evaluating QPPmethods, as they offer a complementary perspec-
tive—enabling practitioners to assess these techniques not only in
terms of predictive accuracy, but also with respect to their stability
across diverse scenarios.

5 Conclusion
Thiswork presents the first comprehensive analysis of Query Perfor-
mance Prediction (QPP) methods through the lens of Risk-Sensitive
metrics (RSMs). Although QPP and risk-sensitive approaches aim to
enhance robustness, existing evaluations overlook key aspects. We
address this gap by enabling the assessment of: (i) variability in pre-
dictive performance across QPP methods for a single query, and (ii)

Table 3: Number of s.s.d. pairs of QPP methods found by different QPP
evaluation strategies. Proportion (prop.) indicates the number of s.s.d. pairs
found over the total (210 possible pairs with 21 considered QPPs). The larger
number of s.s.d. pairs identified by the Risk-based approaches,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 and
𝑈𝑅𝐼𝑆𝐾 in particular, confirms their stronger statistical power.

collection Deep Learning’19 Deep Learning’20 Robust’04
s.s.d. s.s.d. ratio s.s.d. s.s.d. ratio s.s.d. s.s.d. ratio

Kendall’s 𝜏 71 139 0.34 30 180 0.14 110 100 0.52
Pearson’s 𝑟 75 135 0.36 32 178 0.15 89 121 0.42

Spearman’s 𝜌 76 134 0.36 29 181 0.14 109 101 0.52
sMARE 68 142 0.32 26 184 0.12 110 100 0.52

𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =1) 78 132 0.37 34 176 0.16 103 107 0.49
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =5) 78 132 0.37 36 174 0.17 97 113 0.46
𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (𝛼 =10) 70 140 0.33 39 171 0.19 105 105 0.50

𝑇𝑅𝐼𝑆𝐾 (𝛼 =1) 64 146 0.30 27 183 0.13 103 107 0.49
𝑇𝑅𝐼𝑆𝐾 (𝛼 =5) 60 150 0.29 26 184 0.12 83 127 0.40
𝑇𝑅𝐼𝑆𝐾 (𝛼 =10) 52 158 0.25 22 188 0.10 72 138 0.34
𝑈𝑅𝐼𝑆𝐾 (𝛼 =1) 78 132 0.37 34 176 0.16 101 109 0.48
𝑈𝑅𝐼𝑆𝐾 (𝛼 =5) 81 129 0.39 43 167 0.20 102 108 0.49
𝑈𝑅𝐼𝑆𝐾 (𝛼 =10) 80 130 0.38 43 167 0.20 103 107 0.49

variability across queries for a specific QPPmethod. By integrating
the sARE into RSMs, we overcome limitations inherent in traditional
evaluation strategies, which often yield incomplete or misleading
conclusions regarding robustness.

Our extensive evaluation on Robust’04, Deep Learning’19 and ’20,
encompassing 21 QPPmethods, four traditional metrics (Kendall’s 𝜏 ,
Pearson’s 𝑟 , sMARE, and Spearman’s 𝜌), and three RSMs (𝐺𝑒𝑜𝑅𝑖𝑠𝑘 ,
𝑈𝑅𝐼𝑆𝐾 , and𝑇𝑅𝐼𝑆𝐾 ), demonstrates the advantages of Risk-Sensitive
evaluation. In particular,𝐺𝑒𝑜𝑅𝑖𝑠𝑘 consistently identified methods
with significantly fewer poor predictions—e.g., 40% fewer queries
with degradation exceeding 20%—and proves to be the most effec-
tive metric for capturing robustness across diverse conditions. Our
results emphasize the need to integrate RSMs into QPP evaluations
to better comprehend the trade-offs between effectiveness and ro-
bustness. Future work will extend the proposed framework to other
retrieval tasks and datasets and refine metrics to enhance the reli-
ability of IR systems even further. Finally, we intend to provide a
more in-depth query-feature analysis to explain the reasons why
certain QPPs fare better under GeoRisk.
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A Extended Evaluation and Results
A.1 Extended Evaluation
The tables 4, 5 and 6 present the evaluation for 21 QPP methods,
considering the average of 1,000 bootstrap samples across all queries.
We highlight the rank order of each QPPmethod for the respective
evaluation metric using bold numbers in parentheses. For reference
and comparisons, we use the ordering of the QPPmethods given by
Kendall’s 𝜏 correlations.

Figure 6 presents heatmaps of Kendall’s 𝜏 correlations between
rankings from traditional QPP metrics (Kendall’s 𝜏 , Pearson’s 𝑟 ,
Spearman’s 𝜌 , sMARE) and RSMs across 𝛼 values (0 to 20). Correla-
tions generally decline as 𝛼 increases, indicating greater divergence
between RSMs and classical QPP evaluations. This trend is most
pronounced for 𝐺𝑒𝑜𝑅𝑖𝑠𝑘 (Figure 6a), while 𝑈𝑅𝐼𝑆𝐾 (Figure 6b) and
𝑇𝑅𝐼𝑆𝐾 (Figure 6c) display more stable correlations.

B Brief QPPmethods explanation
The table 7 presents a detailed breakdown of the 18 QPP predictors
that were analyzed, categorized based on their operational stage

(pre-retrieval, post-retrieval, and deep learning-based methods), of-
fering different perspectives on query difficulty and retrieval quality.
It provides a quick reference for their characteristics and opera-
tional context. The summarization of all QPP methods evaluated on
this work is described on table 7. They are organized as Pre-retrieval,
Post-retrieval and Deep Learning.
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QPP’s Kendall’s 𝜏 Pearson’s 𝑟 Spearman’s 𝜌 sMARE 𝐺𝑒𝑜𝑅𝑖𝑠𝑘

(𝛼 =5)
𝐺𝑒𝑜𝑅𝑖𝑠𝑘

(𝛼 =10)
𝑈𝑅𝐼𝑆𝐾
(𝛼 =5)

𝑈𝑅𝐼𝑆𝐾
(𝛼 =10)

𝑇𝑅𝐼𝑆𝐾
(𝛼 =5)

𝑇𝑅𝐼𝑆𝐾
(𝛼 =10)

SMV 0.395 (1.5) 0.577 (1) 0.553 (1.5) 0.793 (5.5) 0.556 (3) 0.477 (3) -0.160 (2.5) -0.343 (2.5) -5.898 (4.5) -7.268 (6)
UEFSMV 0.394 (1.5) 0.528 (6) 0.545 (5) 0.793 (5.5) 0.551 (4) 0.468 (4.5) -0.172 (4) -0.368 (4) -5.863 (4.5) -7.156 (5)
UEFNQC 0.393 (3.5) 0.564 (3.5) 0.547 (3) 0.793 (3.5) 0.557 (2) 0.479 (2) -0.160 (2.5) -0.344 (2.5) -5.802 (3) -7.133 (3.5)
qppbertpl 0.392 (3.5) 0.562 (3.5) 0.554 (1.5) 0.799 (1) 0.526 (15) 0.412 (17) -0.271 (10.5) -0.571 (13) -5.673 (2) -6.785 (2)
NQC 0.387 (5.5) 0.571 (2) 0.545 (5) 0.787 (7) 0.562 (1) 0.492 (1) -0.151 (1) -0.321 (1) -6.530 (7) -7.987 (8)
bertqpp 0.387 (5.5) 0.539 (5) 0.543 (5) 0.796 (2) 0.521 (17) 0.402 (20) -0.292 (14) -0.611 (15) -5.983 (6) -7.095 (3.5)
deepqpp 0.379 (7) 0.513 (7.5) 0.530 (8) 0.794 (3.5) 0.519 (18) 0.399 (21) -0.309 (16) -0.644 (16.5) -5.578 (1) -6.538 (1)
neuralqpp 0.369 (8) 0.322 (17) 0.536 (7) 0.779 (9) 0.543 (7) 0.455 (9) -0.244 (8.5) -0.497 (8.5) -7.286 (10.5) -8.480 (12)
UEFWIG 0.362 (9) 0.513 (7.5) 0.510 (9) 0.781 (8) 0.545 (6) 0.460 (6.5) -0.220 (5) -0.453 (5) -6.754 (8) -7.875 (7)
UEFClarity 0.352 (10) 0.470 (10) 0.497 (10) 0.777 (10) 0.539 (9) 0.449 (10) -0.246 (8.5) -0.499 (8.5) -7.106 (9) -8.189 (10)
Clarity 0.344 (11) 0.446 (11) 0.489 (11) 0.776 (11) 0.542 (8) 0.456 (8) -0.234 (7) -0.476 (7) -7.488 (13) -8.625 (14)
WIG 0.341 (12) 0.482 (9) 0.482 (12) 0.773 (12) 0.547 (5) 0.468 (4.5) -0.229 (6) -0.461 (6) -7.241 (10.5) -8.228 (10)
VARavg 0.320 (13) 0.262 (18) 0.446 (13) 0.770 (13) 0.531 (12) 0.436 (15) -0.277 (12) -0.556 (11.5) -7.775 (14.5) -8.798 (15)
IDFmax 0.290 (14) 0.420 (13) 0.400 (14) 0.765 (14) 0.535 (11) 0.447 (12) -0.266 (10.5) -0.529 (10) -7.345 (12) -8.182 (10)
ICTFmax 0.266 (15) 0.395 (15.5) 0.368 (15.5) 0.756 (15) 0.529 (13.5) 0.440 (13) -0.299 (15) -0.586 (14) -7.817 (14.5) -8.557 (13)
IDFavg 0.258 (16) 0.425 (12) 0.367 (15.5) 0.748 (16) 0.537 (10) 0.460 (6.5) -0.287 (13) -0.553 (11.5) -9.088 (18) -9.788 (18)
ICTFavg 0.232 (17) 0.407 (14) 0.331 (19) 0.738 (19) 0.529 (13.5) 0.448 (11) -0.339 (17) -0.647 (16.5) -10.125 (20) -10.771 (20)
VARmax 0.227 (18.5) 0.246 (19.5) 0.335 (17.5) 0.739 (17.5) 0.513 (19.5) 0.412 (17) -0.405 (19.5) -0.781 (19.5) -8.870 (16.5) -9.539 (16.5)
SCQmax 0.227 (18.5) 0.246 (19.5) 0.335 (17.5) 0.739 (17.5) 0.513 (19.5) 0.412 (17) -0.405 (19.5) -0.781 (19.5) -8.870 (16.5) -9.539 (16.5)
SCSsum 0.220 (20) 0.397 (15.5) 0.317 (20) 0.733 (20) 0.523 (16) 0.438 (14) -0.372 (18) -0.708 (18) -10.231 (21) -10.836 (21)
SCQavg 0.169 (21) 0.222 (21) 0.252 (21) 0.721 (21) 0.505 (21) 0.406 (19) -0.461 (21) -0.874 (21) -9.809 (19) -10.303 (19)

Table 4: Robust’04 Dataset - Evaluation of QPPmethods using correlation and risk-sensitivemetrics. The QPPmethods identified as themost
effective by all correlationmetrics do not align with the results from the risk-sensitive evaluation.

QPP’s Kendall’s 𝜏 Pearson’s 𝑟 Spearman’s 𝜌 sMARE 𝐺𝑒𝑜𝑅𝑖𝑠𝑘

(𝛼 =5)
𝐺𝑒𝑜𝑅𝑖𝑠𝑘

(𝛼 =10)
𝑈𝑅𝐼𝑆𝐾
(𝛼 =5)

𝑈𝑅𝐼𝑆𝐾
(𝛼 =10)

𝑇𝑅𝐼𝑆𝐾
(𝛼 =5)

𝑇𝑅𝐼𝑆𝐾
(𝛼 =10)

NQC 0.455 (1) 0.582 (2.5) 0.594 (1) 0.814 (1) 0.555 (1) 0.466 (1) -0.110 (1) -0.280 (1) -1.489 (1) -2.249 (1)
neuralqpp 0.413 (2) 0.599 (1) 0.561 (3) 0.792 (3) 0.522 (9) 0.405 (12) -0.253 (6) -0.544 (8.5) -2.725 (3.5) -3.374 (3.5)
bertqpp 0.392 (3.5) 0.539 (4.5) 0.525 (4) 0.791 (3) 0.516 (13) 0.395 (13) -0.279 (10) -0.594 (10.5) -2.602 (2) -3.173 (2)
qppbertpl 0.389 (3.5) 0.589 (2.5) 0.569 (2) 0.791 (3) 0.515 (14) 0.392 (14.5) -0.273 (10) -0.583 (10.5) -3.074 (8.5) -3.800 (12)
VARavg 0.357 (5) 0.408 (10) 0.491 (5) 0.777 (6) 0.541 (3.5) 0.453 (4) -0.194 (3) -0.411 (3) -3.064 (8.5) -3.725 (10.5)
IDFavg 0.346 (6) 0.403 (11) 0.469 (7) 0.779 (5) 0.543 (2) 0.456 (2) -0.189 (2) -0.402 (2) -2.740 (3.5) -3.340 (3.5)
ICTFavg 0.337 (7.5) 0.395 (12) 0.458 (8) 0.775 (7.5) 0.541 (3.5) 0.455 (3) -0.199 (4) -0.418 (4) -2.821 (5) -3.389 (5)
deepqpp 0.336 (7.5) 0.533 (4.5) 0.482 (6) 0.769 (9.5) 0.518 (11) 0.410 (11) -0.311 (13) -0.633 (13) -3.135 (10.5) -3.618 (8.5)
SMV 0.332 (9) 0.455 (6) 0.449 (9) 0.775 (7.5) 0.525 (7.5) 0.421 (8.5) -0.254 (6) -0.527 (6) -2.898 (6) -3.427 (6.5)
IDFmax 0.312 (10.5) 0.440 (7.5) 0.429 (10.5) 0.769 (9.5) 0.527 (5.5) 0.429 (5.5) -0.258 (6) -0.529 (6) -2.965 (7) -3.439 (6.5)
VARmax 0.309 (10.5) 0.443 (7.5) 0.431 (10.5) 0.762 (13) 0.520 (11) 0.416 (10) -0.302 (12) -0.610 (12) -3.392 (13) -3.881 (13.5)
SCSsum 0.302 (12.5) 0.366 (14) 0.404 (12.5) 0.765 (11.5) 0.526 (5.5) 0.427 (5.5) -0.261 (8) -0.534 (6) -3.128 (10.5) -3.641 (8.5)
ICTFmax 0.298 (12.5) 0.435 (9) 0.412 (12.5) 0.764 (11.5) 0.524 (7.5) 0.426 (7) -0.276 (10) -0.559 (8.5) -3.232 (12) -3.703 (10.5)
WIG 0.279 (14) 0.386 (13) 0.390 (14) 0.748 (14) 0.518 (11) 0.419 (8.5) -0.334 (14) -0.659 (14) -3.732 (14.5) -4.170 (15.5)
UEFSMV 0.227 (15) 0.332 (15) 0.317 (15) 0.741 (15) 0.502 (15) 0.390 (14.5) -0.394 (15) -0.774 (15) -3.787 (16) -4.181 (15.5)
UEFNQC 0.208 (16) 0.304 (16.5) 0.288 (16) 0.730 (16) 0.496 (16) 0.382 (16) -0.442 (16) -0.860 (16) -4.185 (17) -4.575 (17.5)
UEFClarity 0.179 (17) 0.222 (19) 0.247 (17.5) 0.720 (17.5) 0.480 (18.5) 0.353 (19) -0.522 (19) -1.008 (19) -4.439 (19) -4.806 (19)
UEFWIG 0.171 (18.5) 0.239 (18) 0.229 (19) 0.716 (20) 0.474 (20) 0.344 (20) -0.553 (20) -1.067 (20) -4.592 (20) -4.968 (20)
Clarity 0.170 (18.5) 0.305 (16.5) 0.259 (17.5) 0.722 (17.5) 0.487 (17) 0.370 (17) -0.495 (17.5) -0.953 (17.5) -4.306 (18) -4.625 (17.5)
SCQavg 0.130 (20) 0.164 (20) 0.183 (20) 0.719 (19) 0.481 (18.5) 0.358 (18) -0.493 (17.5) -0.949 (17.5) -3.665 (14.5) -3.922 (13.5)
SCQmax -0.043 (21) -0.091 (21) -0.066 (21) 0.651 (21) 0.441 (21) 0.309 (21) -0.826 (21) -1.543 (21) -5.562 (21) -5.746 (21)

Table 5: Deep Learning’20 Dataset - Evaluation of QPPmethods using correlation and risk-sensitivemetrics. The difference between traditional
QPP evaluation and risk-sensitivemetrics becomesmore evident from the 2nd rank positions.
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QPP’s Kendall’s 𝜏 Pearson’s 𝑟 Spearman’s 𝜌 sMARE 𝐺𝑒𝑜𝑅𝑖𝑠𝑘

(𝛼 =5)
𝐺𝑒𝑜𝑅𝑖𝑠𝑘

(𝛼 =10)
𝑈𝑅𝐼𝑆𝐾
(𝛼 =5)

𝑈𝑅𝐼𝑆𝐾
(𝛼 =10)

𝑇𝑅𝐼𝑆𝐾
(𝛼 =5)

𝑇𝑅𝐼𝑆𝐾
(𝛼 =10)

NQC 0.530 (1) 0.672 (1) 0.715 (1) 0.827 (1) 0.581 (1) 0.515 (1) 0.001 (1) -0.073 (1) 0.151 (1) -1.170 (1)
UEFNQC 0.502 (2) 0.607 (2.5) 0.664 (2) 0.825 (2) 0.570 (2) 0.493 (2) -0.037 (2) -0.149 (2) -0.511 (2) -1.470 (2)
bertqpp 0.435 (3) 0.563 (4.5) 0.609 (3) 0.796 (3.5) 0.546 (3.5) 0.453 (4) -0.158 (3.5) -0.361 (3.5) -1.977 (3.5) -2.664 (3)
UEFSMV 0.413 (4.5) 0.423 (12.5) 0.563 (6) 0.797 (3.5) 0.539 (5) 0.440 (8.5) -0.156 (3.5) -0.361 (3.5) -2.036 (3.5) -2.765 (4)
qppbertpl 0.405 (4.5) 0.614 (2.5) 0.578 (4) 0.791 (5.5) 0.534 (8) 0.432 (11) -0.201 (6.5) -0.441 (7.5) -2.245 (5.5) -2.876 (5.5)
deepqpp 0.400 (6.5) 0.558 (4.5) 0.560 (6) 0.791 (5.5) 0.523 (12.5) 0.407 (17) -0.243 (10) -0.529 (10) -2.290 (5.5) -2.873 (5.5)
neuralqpp 0.397 (6.5) 0.504 (7) 0.561 (6) 0.784 (7) 0.536 (7) 0.439 (8.5) -0.205 (6.5) -0.441 (7.5) -2.486 (7) -3.130 (7.5)
WIG 0.373 (9) 0.459 (8) 0.529 (8) 0.769 (10) 0.544 (3.5) 0.464 (3) -0.205 (6.5) -0.424 (5.5) -2.724 (10) -3.229 (9.5)
UEFWIG 0.369 (9) 0.539 (6) 0.513 (9.5) 0.780 (8) 0.538 (6) 0.445 (7) -0.203 (6.5) -0.434 (5.5) -2.579 (8.5) -3.198 (9.5)
SMV 0.366 (9) 0.434 (10) 0.511 (9.5) 0.777 (9) 0.533 (9) 0.435 (10) -0.220 (9) -0.468 (9) -2.593 (8.5) -3.187 (7.5)
UEFClarity 0.322 (11) 0.432 (10) 0.451 (11) 0.765 (11) 0.522 (12.5) 0.419 (15.5) -0.276 (11) -0.565 (11) -2.925 (11) -3.424 (11)
IDFavg 0.276 (12) 0.372 (15) 0.379 (14.5) 0.738 (16) 0.530 (11) 0.448 (6) -0.300 (12.5) -0.585 (12.5) -4.132 (17) -4.573 (17)
ICTFavg 0.274 (13) 0.381 (14) 0.384 (12.5) 0.738 (14.5) 0.531 (10) 0.450 (5) -0.300 (12.5) -0.586 (12.5) -4.244 (18) -4.704 (18)
IDFmax 0.266 (14.5) 0.429 (12.5) 0.386 (12.5) 0.746 (12) 0.520 (14) 0.424 (13) -0.315 (14) -0.624 (14) -3.323 (12) -3.715 (12)
VARavg 0.262 (14.5) 0.316 (17) 0.360 (16) 0.740 (14.5) 0.518 (15) 0.424 (13) -0.325 (15) -0.639 (15) -3.426 (13) -3.789 (13)
ICTFmax 0.251 (16) 0.430 (10) 0.373 (14.5) 0.743 (13) 0.517 (16.5) 0.419 (15.5) -0.334 (16) -0.658 (16) -3.506 (14) -3.894 (14)
SCSsum 0.236 (17) 0.355 (16) 0.329 (17) 0.732 (17) 0.517 (16.5) 0.423 (13) -0.349 (17) -0.680 (17) -3.790 (15) -4.173 (15)
Clarity 0.171 (18) 0.217 (18) 0.248 (18) 0.717 (18) 0.497 (18) 0.392 (18) -0.446 (18) -0.857 (18) -4.021 (16) -4.322 (16)
SCQavg 0.006 (19) -0.093 (19) 0.007 (19) 0.663 (19) 0.460 (19) 0.342 (19) -0.709 (19) -1.327 (19) -5.126 (19) -5.313 (19)
SCQmax -0.159 (20.5) -0.255 (20.5) -0.234 (20.5) 0.632 (20.5) 0.407 (20.5) 0.254 (20.5) -0.928 (20.5) -1.737 (20.5) -5.222 (20.5) -5.417 (20.5)
VARmax -0.159 (20.5) -0.255 (20.5) -0.234 (20.5) 0.632 (20.5) 0.407 (20.5) 0.254 (20.5) -0.928 (20.5) -1.737 (20.5) -5.222 (20.5) -5.417 (20.5)

Table 6: Deep Learning’19 Dataset - Evaluation of QPPmethods using correlation and risk-sensitivemetrics. The difference between traditional
QPP evaluation and risk-sensitivemetrics becomesmore evident from the 3rd to the 5th rank positions.

QPPModel Description
Pre-retrieval

SCQ [47] Measures similarity based on cf.idf (collection frequency–inverse document frequency) to the corpus,
summed over the query terms.

SCQavg SCQ normalized by query length.
SCQmax The query termwith the maximal SCQ score.

SumVAR Measures the variability of cf.idf values of the query terms in the corpus.
AvgVAR Variability of cf.idf values normalized by query length.
MaxVAR The query termwith the maximal cf.idf variability.
IDFavg [8] Mean Inverse Document Frequency (IDF) of the query terms.
IDFmax [33] The query termwith the maximal IDF value.
ICTFavg Mean Inverse Collection Term Frequency (ICTF) of the query terms.
ICTFmax The query termwith the maximal ICTF value.
WIG [48] Weighted Information Gain: Measures divergence between the query language model and the corpus

language model.
Post-retrieval

Clarity [7] KL-divergence between the language model of the top retrieved documents and the corpus language
model.

NQC [36] Normalized Query Commitment: Standard deviation of the retrieval scores of the top documents.
SMV [39] Score Magnitude and Variance: Combines the mean and variance of the top document scores.
UEF [35] Uncertainty Estimation Framework: Compares the initial result list with a re-ranked list using a

Relevance Model (RM), scaled by an estimator of RM quality.
UEFClarity UEF-scaled Clarity score.
UEFNQC UEF-scaled NQC score.
UEFWIG UEF-scaledWIG score.
UEFSMV UEF-scaled SMV score.

VARavg Average variance of the query terms’ cf.idf values.
VARmax Maximal variance of the query terms’ cf.idf values.
SCSsum [7] Sum of Score Contributions: Sum of the retrieval scores of the top documents.

Deep Learning
neuralqpp [45] Neural network model trained on query-document interaction signals (e.g., term distributions,

embeddings).
bertqpp [1] BERT-based model for semantic alignment between queries and top retrieved documents.
qppbertpl BERT-QPP enhanced with pseudo-labels for robustness in low-resource scenarios.
deepqpp [9] Deep pairwise interaction model capturing query-document relevance patterns.

Table 7: Summary of QPPModels - Comprehensive list of pre-retrieval, post-retrieval, and deep learningmethods with detailed descriptions.
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(a)𝐺𝑒𝑜𝑅𝑖𝑠𝑘 correlations

(b)𝑈𝑅𝐼𝑆𝐾 correlations

(c)𝑇𝑅𝐼𝑆𝐾 correlations
Figure 6: Kendall’s 𝜏 correlation heatmaps for𝐺𝑒𝑜𝑅𝑖𝑠𝑘 ,𝑈𝑅𝐼𝑆𝐾 and𝑇𝑅𝐼𝑆𝐾 with alpha values ranging from 0 to 20, and themetrics Kendall’s 𝜏 ,
Pearson’s𝑟 , Spearman’s𝜌 , andsMARE,usingBM25ontheRobust’04dataset.Asweincreasealpha, thecorrelationwithotherQPPmetricsdecreases.
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