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ABSTRACT
When interacting with an Information Retrieval (IR) system, users
might disclose personal information, such asmedical details, through
their queries. Thus, assessing the level of privacy granted to users
when querying an IR system is essential to determine the confi-
dentiality of submitted sensitive data. Query obfuscation protocols
have traditionally been employed to obscure a user’s real infor-
mation need when retrieving documents. In these protocols, the
query is modified employing 𝜀-Differential Privacy (DP) obfusca-
tion mechanisms, which alter query terms according to a predefined
privacy budget 𝜀. While this budget ensures formal mathematical
guarantees, it provides only limited guarantees of the privacy expe-
rienced by the user and calls for empirical privacy evaluation to be
carried out. Such privacy assessments employ lexical and semantic
similarity measures between the original and obfuscated queries.
In this study, we explore the role of Large Language Models (LLMs)
in privacy evaluation, simulating a scenario where users employ
such models to determine whether their input has been effectively
privatized. Our primary research objective is to determine whether
LLMs provide a novel perspective on privacy estimation and if their
assessments serve as a proxy for traditional similarity metrics, such
as the Jaccard and cosine similarity derived fromTransformer-based
sentence embeddings. Our findings reveal a positive correlation
between LLMs-generated privacy scores and cosine similarity com-
puted using different Transformer architectures. This suggests that
LLM assessments act as a proxy for similarity-based measures.
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1 INTRODUCTION
Users’ sensitive information is constantly shared with search en-
gines, online social networks, and smart devices, often at the ex-
pense of privacy [1, 5, 7, 42]. For example, users often interrogate
search engines with their medical information and symptoms [1].
Thus, ensuring appropriate privacy protections for users interact-
ing with Information Retrieval (IR) systems is paramount. Privacy
measures are a mandatory requirement for complying with privacy
regulations [21], such as the General Data Protection Regulation
(GDPR) [14], while also fostering the development of trustworthy
intelligent systems and algorithms. 𝜀-Differential Privacy (DP) [13]
is deemed to be the gold standard to provide formal privacy guar-
antees during data processing. Broadly speaking, DP operates by
injecting noise, whose strength is regulated by parameter 𝜀, also
known as Privacy Budget. However, assessing the privacy provided
to the user query cannot rely only on the magnitude of 𝜀 as the
effects of a DP mechanism on the final result—hence the actual pri-
vacy it provides—depends on several other aspects, such as the un-
derlying distribution and the type of processing carried out [30, 34].
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Figure 1: Example of employing LLMs to evaluate query ob-
fuscations, justifying to users the assigned score.

In this study, we explore the use of Large Language Models
(LLMs) as pseudo-assessors for evaluating privacy in query obfus-
cation protocols, as illustrated in Figure 1. Specifically, we propose
the adoption of a LLM after the query has been obfuscated using an
obfuscation mechanism to assess if the produced text retains iden-
tifiable traces of the original information need. The contributions
of this work are structured as follows: i) we delineate the formal
methodology of judging if a text has been obfuscated adequately
by an obfuscation mechanism; ii) we propose the use of LLMs for
assessing the privacy of queries obfuscated using different 𝜀-DP
approaches, mirroring a pseudo-relevance assessment of the pri-
vacy, and iii) we show the LLMs scores correlation with traditional
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metrics used to determine the effectiveness of query obfuscations.
Our findings show that, in general, LLM generated labels positively
correlate with the traditional privacy assessment measures, such as
lexical overlap and semantic similarity. In detail, we observe that
the LLM-based labels encompass both semantic and lexical aspects,
providing a different perspective respective to either approach.

Section 2 presents an overview of the query obfuscation proto-
col, explaining the traditional methods used to evaluate privacy.
Section 3 details the methodology used for generating privacy as-
sessments with LLMs to evaluate 𝜀-DP texts. Section 4 explains
the experimental setup, discussing the statistical findings between
LLMs, used as privacy assessors, and standard privacy metrics. Fi-
nally, Section 5 summarizes the findings and outlines future work.

2 QUERY OBFUSCATION PROTOCOL
Query obfuscation protocols [2, 16, 19] are a class of privacy pre-
serving strategies used to protect user confidential information
when interacting with IR systems. These protocols work under the
assumption that the IR system is non-collaborative towards protect-
ing user privacy, i.e., it does not implement any privacy mechanism
to safeguard sensitive information needs. Hence, it represents an
optimal tradeoff when the user desires to protect their privacy and
the IR system does not implement any encrypted access to the in-
formation. The protocol works as follows: on the client side, which
is considered safe, the text of the original query is transformed by
an obfuscation mechanism, i.e., an algorithm that accepts the query
text as input, masks the original information need, and outputs one
or more obfuscated queries. The obfuscated queries are submitted
to the IR system — considered unsafe —, which retrieves and ranks
the documents in response to such queries. User privacy is pro-
tected since the IR system does not know the original query, and the
ranked list corresponds to a modified query. Yet, if the obfuscation
was effective, the ranked list returned to the user is expected to
contain some documents relevant to the original query, possibly
at low ranks. Therefore, the document set returned is re-ranked
on the client’s side using the original user query. This does not
present privacy risks as only the client knows the original query. In
this protocol, the user trades part of the retrieval performance for
enhancing privacy, hiding their actual information need to the IR
system that acts as the adversary during the documents’ retrieval.

The 𝜀-DP framework [13] provides a formal definition of privacy
to the text, ensuring the confidentiality of the information con-
tained in the texts by employing randomization during the query
obfuscation phase. The level of formal privacy is controlled by the
Privacy Budget parameter 𝜀 ∈ [0, +∞), which regulates the amount
of statistical noise added query terms [18, 37, 38] or influences the
sampling probabilities for generating obfuscated terms [3, 4, 6, 39].
Nevertheless, 𝜀 cannot be considered a perfect proxy of the actual
privacy experienced by the user, as its effects depend on several
other aspects, such as the underlying data distribution and the
approach used to represent the text.

2.1 Privacy Measures
Assessing the privacy provided by an 𝜀-DP mechanism remains
a well-established challenge within the research community [30,
34]. Wagner and Eckhoff [34] define a set of aspects to assess the

obfuscation capabilities of a mechanism: lexical similarity, semantic
similarity and failure rates. Lexical similarity quantifies the term
overlap between the original and the obfuscated texts. This metric
is typically assessed using indicators such as the Jaccard Score,
BLEU [24], and ROUGE [23]. On the other hand, the semantic simi-
larity usually employs Transformers [33] or BERT Scores [26, 41].
Specifically, considering a Transformer T , the semantic similar-
ity between the original and obfuscated query text, respectively 𝑞
and 𝑞, is computed as the cosine similarity 𝑐𝑠 between the query
embeddings in the latent space, i.e., 𝑐𝑠 =

T(𝑞) ·T (𝑞̃)
∥ T (𝑞) ∥ ∥ T (𝑞̃) ∥ . Failure

rates [22, 27], i.e., 𝑁𝑤 and 𝑆𝑤 , measure the probability of masking
a word𝑤 with itself (𝑁𝑤 ) and the size of the words that are used
to mask the same term (𝑆𝑤 ). Notice that, these measures are use-
ful only for word-level obfuscation mechanisms and completely
neglect the fact that a word can be obfuscated with a synonym.

3 PRIVACY ASSESSMENTS GENERATION
In this section, we propose an LLM-based methodology to evaluate
the effectiveness of an obfuscation mechanism. When determining
if the query’s text has been obfuscated, multiple aspects should be
considered. For instance, minor modifications–such as altering a
few characters in a term or changing the term order–can signifi-
cantly change the text’s overall meaning. Conversely, two sentences
may differ syntactically while retaining the same semantic meaning.
Traditional privacy evaluation metrics based on lexical similarity
between original and obfuscated queries can be trivially fooled
using synonyms to replace the query terms. Conversely, semantic
similarity measured by transformers can be more robust towards
identifying the similarities between texts. However, employing
Transformers to determine whether a text has been obfuscated
presents limitations when the text is rephrased. For example, en-
coding the sentences “Mr. Doe was born in 1985 and lives in LA.”
and “John D., in his 40s, lives in Los Angeles.” using MiniLM [26] and
computing the cosine similarity between their embeddings is 0.56,
which poorly reflects the absence of privacy if we obfuscate the first
sentence with the second. Despite reducing the cosine between the
two texts, rephrasing a sentence does not ensure adequate privacy.

"Evaluate the information leakage from the original text to the obfuscated
texts, providing a justification for each score given. Consider lexical and
semantic similarities between original and obfuscated texts. The score should

be an integer/float between min and Max, where min indicates no information
leakage, and Max indicates complete information leakage. 
The original text is: original_text. The obfuscated texts are: obfuscated_texts."

Figure 2: Prompt Template format submitted to the LLMs.

On a different research line, when it comes to IR evaluation,
several studies [15, 32, 35, 40] investigated the possibility of using
LLMs to judge relevance. However, to the best of our knowledge,
no prior research has explored the application of LLMs for pri-
vacy assessments of textual data. To address this gap, we propose
leveraging LLMs to assess privacy, providing the first experimental
insights on the LLMs capabilities of understanding privacy, limiting
assessment costs and time. In this task, both lexical and contex-
tual aspects—traditionally considered in privacy relevance assess-
ments [12, 36]—must be jointly analyzed to understand the extent
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of information leakage from obfuscated versions of queries. Conse-
quently, we develop a prompt to ask a LLM to evaluate the privacy
levels attained by an obfuscated query compared to the original one,
extending beyond conventional evaluation metrics. The general
prompt template used in our experimental evaluation is presented
in Figure 2. This template takes the original_text as the reference
and the obfuscated_texts as a set of corresponding obfuscated
versions. Additionally, it specifies the expected output score do-
main (integer or floating values) and the key aspects to consider
when evaluating privacy, i.e., lexical and contextual similarity. The
template also requires justification with each score assigned by the
LLM, ensuring a comprehensive leakage assessment.

4 EXPERIMENTS
4.1 Setup
To empirically test the proposed methodology, we consider two
TREC collections MSMARCO Deep Learning 2019 track (DL’19)[8],
consisting of 43 queries, and the TREC Medline 2004 collection
(Med’04) [28], comprising 50 queries. Adopting the Med‘04 queries
represents a real obfuscation scenario, where the user is interested
in finding information about a disease and, thus, aims to protect the
confidentiality of the queries. We employ the pyPANTERA Python
package[17], consider 𝜀 ∈ {1, 5, 10, 12.5, 15, 17.5, 20, 25, 30, 50} and
generate 10 obfuscated versions per query. We apply four state-
of-the-art DP mechanisms implemented in the package, namely
Cumulative Multivariate Perturbation (CMP) [18], Mahalanobis per-
turbation [37], and their respective Vickrey’s variants [38]. Consid-
ering the benchmarks available on the Artificial Analysis platform1,
we selected the two highest-performing open-source LLMs, i.e.,
one reasoning-oriented model, DeepSeek-R1 [11]-distill-Llama70b
a fine-tuned version of Llama 3.3 70B using samples generated by
DeepSeek-R1, and the standard version of LLama 3.3 70B [31]. The
prompt forces the LLM response to be in JSON format. The code,
the results and the appendix are available in the repository2.

4.2 Key Findings
4.2.1 Changing the prompt: Continuous and Discrete Privacy Scores.
We test two different prompts for obtaining the privacy assessments.
The LLMs are asked to provide: i) an information leakage score
in a continuous interval, i.e., ranging in the [0,1] interval where 0
means no information leakage from the private query, and 1 means
total information leakage; ii) a discrete value using a score in a
Likert scale [9, 29] from a minimum score of 1, indicating that
no information is understandable from the obfuscated query to
a maximum score of 5, suggesting that the obfuscated query is
identical to the original text. The prompts adopted for getting the
scores from the LLMs are available in the paper’s online appendix.

To avoid encumbering, we report only the results on the Med‘04
queries of twomechanisms (Mahalanobis and VickreyMhl) for three
privacy setups, 𝜀 ∈ {1, 15, 50}. The results on DL’19 and other
mechanisms are equivalent and available in the paper repository.

Figure 3 presents the score distributions for the Continuous and
Discrete prompts employed to evaluate different obfuscation mech-
anisms. The results indicate that the distributions of scores exhibit
1https://artificialanalysis.ai/
2https://github.com/Kekkodf/LLM4PrivacyEval
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Figure 3: Changing the Prompts on the Med‘04 queries. The
Continuous score distributions report also the quartiles.

similar patterns across the different prompting strategies used to
obtain the privacy assessments. Under a strong privacy regime, i.e.,
𝜀 = 1, the LLMs consistently evaluate queries as highly obfuscated
for both mechanisms, yielding a low information leakage score
centring the distribution around 0.0 for continuous scores while
frequently assigning a score of 1 for the discrete prompt. DeepSeek-
R1 identifies more information leakage compared to LLama 3.3.
After manual inspection, the cases where DeepSeek-R1 identifies
more leakage appear overestimated, suggesting that DeepSeek-R1
is particularly conservative and should be favoured when the user
wishes to attain strong privacy guarantees. As 𝜀 increases, the de-
gree of obfuscation applied to the textual data decreases, leading
to a shift in privacy assessments toward higher information scores
for DeepSeek-R1, with most privacy scores around 0.3. At 𝜀 = 15, a
distinction emerges in the obfuscation strategies, as the VickreyMhl
mechanism tends to have lower leakage values: this is in line with
previous research [10, 16, 17], indicating that the evaluation ap-
proach is consistent. Finally, at 𝜀 = 50, Mahalanobis often fails in
obfuscating the query, as testified by the large number of obfus-
cation queries labelled with 1 in the continuous case or 5 in the
discrete case. VickreyMhl provides a more satisfactory degree of pri-
vacy, with its score distribution centred around 0.5, demonstrating
the same conclusions found in [17, 38] with standard measures.

4.2.2 LLMs Privacy Scores & Traditional Privacy Analysis. This sec-
tion compares the privacy scores obtained from the LLMs using
the prompt that generated a score in the [0,1] range. As traditional
privacy measures to which we compare the LLMs score, we employ
three Transformers [33] architecture, namely MiniLM [25], Distil-
RoBERTa [26], and MPNET [20], from the Huggingface platform3,
to compute the cosine similarity between query obfuscations, and
lexical metrics using the Jaccard, BLEU, and ROUGE scores, cf. Sec-
tion 2.1. To validate the correctness of the LLMs used to assess
privacy, we compute the correlation between the LLMs scores and
the cosine similarities of the transformers measured as Kendall’s,
Pearson’s and Spearman’s correlations. On the other hand, we mea-
sure the Mean Squared Error between lexical metrics and the LLMs
privacy assessments across different privacy budgets 𝜀.

3https://huggingface.co/
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Table 1: Correlation statistics of LLMs scores and Cosine Similarity obtained considering the aggregation of the 𝜀 parameters
confronting different Transformers and Mechanisms. The results are organized by obfuscation mechanism and collections.

LLM Transformer CMP Mahalanobis VickreyCMP VickreyMhl

Kendall Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman

D
L‘
19

DeepSeek-R1
MiniLM 0.742 0.872 0.889 0.702 0.864 0.854 0.574 0.744 0.743 0.594 0.775 0.762
DistilRoBERTa 0.739 0.876 0.886 0.702 0.868 0.853 0.569 0.740 0.738 0.591 0.776 0.759
MPNET 0.735 0.869 0.884 0.700 0.859 0.853 0.579 0.747 0.750 0.592 0.773 0.761

LLama 3.3
MiniLM 0.802 0.924 0.929 0.765 0.905 0.901 0.644 0.801 0.806 0.645 0.812 0.806
DistilRoBERTa 0.793 0.920 0.924 0.765 0.905 0.901 0.636 0.790 0.798 0.634 0.807 0.793
MPNET 0.792 0.919 0.924 0.761 0.902 0.900 0.650 0.803 0.811 0.641 0.813 0.804

M
ed

‘0
4 DeepSeek-R1

MiniLM 0.721 0.875 0.869 0.691 0.866 0.841 0.576 0.753 0.748 0.563 0.762 0.729
DistilRoBERTa 0.711 0.870 0.862 0.683 0.865 0.835 0.577 0.752 0.747 0.558 0.759 0.723
MPNET 0.717 0.878 0.868 0.687 0.867 0.839 0.562 0.742 0.735 0.552 0.753 0.716

LLama 3.3
MiniLM 0.754 0.883 0.879 0.715 0.853 0.850 0.620 0.778 0.785 0.593 0.767 0.752
DistilRoBERTa 0.747 0.881 0.874 0.711 0.854 0.848 0.609 0.771 0.774 0.581 0.755 0.741
MPNET 0.752 0.886 0.881 0.708 0.854 0.844 0.606 0.769 0.770 0.583 0.759 0.741

Table 2: Mean Squared Errors between traditional privacy evaluation measures, i.e., BLEU, Jaccard, and ROUGE, and the LLM
scores in the [0,1] range across different 𝜀-Privacy Budgets on the obfuscated queries in the DL‘19 and Med‘04 collections.

DL‘19 Med‘04

LLM Mechansim 1.0 5.0 10.0 12.5 15.0 17.5 20.0 25.0 30.0 50.0 1.0 5.0 10.0 12.5 15.0 17.5 20.0 25.0 30.0 50.0

B
LE

U DeepSeek-R1
Mahalanobis 0.008 0.009 0.057 0.074 0.090 0.074 0.088 0.059 0.060 0.072 0.007 0.014 0.070 0.098 0.138 0.122 0.130 0.124 0.102 0.105
VickreyMhl 0.007 0.010 0.037 0.059 0.085 0.110 0.114 0.118 0.134 0.186 0.008 0.010 0.061 0.08 0.103 0.122 0.125 0.156 0.157 0.183

LLama 3.3
Mahalanobis 0.003 0.002 0.061 0.130 0.164 0.161 0.139 0.082 0.050 0.045 0.001 0.009 0.067 0.097 0.121 0.124 0.171 0.155 0.093 0.087
VickreyMhl 0.001 0.005 0.030 0.067 0.105 0.143 0.174 0.207 0.219 0.255 0.001 0.004 0.040 0.085 0.110 0.116 0.124 0.123 0.134 0.172

R
O
U
G
E DeepSeek-R1

Mahalanobis 0.007 0.009 0.030 0.030 0.044 0.055 0.113 0.095 0.097 0.145 0.007 0.013 0.033 0.028 0.043 0.069 0.105 0.084 0.103 0.089
VickreyMhl 0.007 0.009 0.024 0.030 0.041 0.043 0.043 0.049 0.050 0.064 0.008 0.010 0.039 0.038 0.039 0.044 0.039 0.048 0.052 0.065

LLama 3.3
Mahalanobis 0.003 0.002 0.036 0.055 0.043 0.037 0.050 0.052 0.050 0.065 0.001 0.008 0.031 0.035 0.049 0.091 0.129 0.148 0.070 0.066
VickreyMhl 0.001 0.005 0.018 0.034 0.048 0.058 0.064 0.068 0.066 0.072 0.001 0.004 0.023 0.039 0.045 0.040 0.052 0.049 0.052 0.063

Table 1 presents the correlation, organized by obfuscation mech-
anism, between the LLMs privacy assessment scores and the cosine
similarities calculated by the three different transformer models
on the obfuscated queries in the DL‘19 and Med‘04. Our findings
show that for all the mechanisms tested, Kendall’s correlation is
strongly positive and non-pathological, i.e., equal to 1, showing
that while the measures agree on assessing the privacy computed,
they consider different aspects. The correlation decreases when
evaluating Vickrey’s variants of the CMP and Mahalanobis mecha-
nisms, yet strong positive correlations between the measures are
retained. Table 2 reports the Mean Squared Errors between BLEU
and ROUGE scores with the LLMs assessed privacy scores for Ma-
halanobis and its Vicrey variant4. For low 𝜀 values, i.e., 𝜀 ∈ {1, 5},
the errors obtained by confronting all traditional scores against the
LLMs scores are consistently below the 10%, either for DeepSeek-R1
and LLama 3.3. When increasing the privacy budget 𝜀, the BLEU
score is the most differing from the LLMs’s ones, with errors rising
to a maximum of 25.5% for LLama 3.3 and VickreyMhl. Finally, the
results show a strong positive correlation with contextual similarity
and minor errors with lexical metrics. Therefore, LLMs assessments
can capture semantic and lexical facets into a unique privacy score.

4The full table considering also CMP and Vickrey CMP is available in the repository
and shows comparable patterns to the ones reported in Table 2.

5 CONCLUSION
In this study, we considered the problem of measuring privacy when
user queries are obfuscated employing 𝜀-DP mechanisms. Standard
evaluation measures consider the lexical and contextual similarities
between original and obfuscated texts. We test the use of LLMs as
privacy assessors to determine if the obfuscated query leaks infor-
mation from the original query.We empirically show that the scores
generated by the LLMs combine the effectiveness of traditional lex-
ical measures and semantic similarity-based approaches used in
privacy assessments. Our findings indicate that LLMs generates in-
formation leakage scores using continuous and discrete Likert-like
annotations. In addition, by computing the correlation between
traditional and LLMs-based leakage scores, we observed a positive
correlation with traditional semantic measures, suggesting that
the method is consistent with past findings and minor differences
compared to lexical measures. Consequently, LLMs-based leakage
assessment represents a practical tradeoff between lexical and se-
mantic privacy measures currently used to evaluate obfuscation
mechanisms. Future work will combine human evaluation to assess
whether the LLMs scores are accurately given and which activation
patterns are employed by LLMs during privacy assessments.
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