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Abstract

Contextual dense representation models for text marked a shift in
text processing, enabling a richer semantic understanding of the
text and more effective Information Retrieval. These models project
pieces of text into a latent space, describing them in terms of shared
latent concepts, which are not explicitly tied to the text’s content.
Previous work has shown that certain dimensions of such dense
text representations can be irrelevant and detrimental to retrieval
effectiveness depending on the information need specified in the
query. Higher effectiveness can be achieved by performing retrieval
within a linear subspace that excludes these dimensions. Dimension
IMportance Estimators (DIMEs) are models designed to identify such
harmful dimensions, refining the representations of queries and doc-
uments to retain only the useful ones. Current DIMEs rely either
on pseudo-relevance feedback, which often delivers inconsistent
effectiveness, or on explicit relevance feedback, which is challeng-
ing to collect. Inspired by counterfactual modelling, we introduce
Counterfactual DIMEs (CoDIMEs), designed to leverage noisy im-
plicit feedback to assess the importance of each dimension. The
CoDIME framework presented here approximates the relationship
between a document’s click frequency and its interaction with a
given query dimension through a linear model. Empirical evalua-
tions demonstrate that CoDIME outperforms traditional pseudo-
relevance feedback-based DIMEs and surpasses other unsupervised
counterfactual methods that utilize implicit feedback.
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1 Introduction

Dense text representations have demonstrated remarkable capability
in capturing semantic meaning, emerging as the dominant technol-
ogy across numerous text-related tasks in Information Retrieval (IR)
and Natural Language Processing (NLP). Early approaches to digital
term representation for IR tasks primarily relied on lexical one-hot
encoding techniques [36] and retrieval heuristics such as BM25 [34]
and TF-IDF [22]. These methods represent a text as a sparse vector
with a dimensionality equal to the size of the entire vocabulary of
terms. Most vector elements are set to zero, with non-zero values
corresponding only to the terms within the text. This type of represen-
tation offers several advantages. Its high sparsity facilitates efficient
storage and computation, and its straightforward structure makes it
highly interpretable. As a downside, it is affected by the semantic gap
problem, i.e., the difference between the digital representation of a
textand its human interpretation. For instance, it struggles to account
for synonyms or polysemous words, leading to challenges in disam-
biguating word meanings or retrieving documents containing query
term synonyms. Dense term representations, like Word2Vec [28] and
GloVe [32], partially address the limitations of traditional methods.
However, the advent of contextual term representations, exemplified
by models such as BERT [9], marked a transformative shift in text
encoding, enabling a richer semantic understanding. These represen-
tation models are based on neural networks that project the text onto
a dense representation space where semantically similar contents
tend to be arranged closely. While these novel representations are
more effective than traditional lexical approaches in handling the
semantic gap, they are far less interpretable, even if the dimensions
of the representations are assumed to be associated with some latent
semantic meaning. Starting from this, Faggioli et al. [13] propose the
so-called Manifold Clustering Hypothesis which states that “High-
dimensional representations of queries and documents relevant to them
tend to lie in a query-dependent lower-dimensional manifold of the
representation space”. This hypothesis combines the well-known
clustering [39] and manifold [1] hypotheses and states that it is pos-
sible to find a query-wise subspace of the dense representation space
where the retrieval is more effective, i.e., where the representations
of the query and its relevant documents are more aligned. While
Faggioli et al. postulate that such a subspace can be an arbitrary
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manifold, to validate their hypothesis empirically, they reduce the
complexity of the problem by focusing only on linear subspaces, i.e.,
spaces obtained by zeroing some of the dimensions from the repre-
sentation. To do so, Faggioli et al. define the concept of Dimension
IMportance Estimator (DIME): a model explicitly meant to estimate
the query-dependent importance of each dimension to preserve
only the most important ones while discarding the others. In par-
ticular, Faggioli et al. propose DIMEs based on Pseudo-Relevance
Feedback (PRF) or relying on explicit feedback. The former is known
to have variable and not always consistent effectiveness, especially
when it comes to dense models [26]. The latter, on the other hand,
can be much more challenging to gather. To overcome this limita-
tion, in this paper, we propose to employ an intermediate relevance
signal, more reliable than PRF and far more available than explicit
feedback: implicit feedback. Implicit feedback leverages the analysis
of user interactions, such as clicks and dwell times, to infer weak
relevance signals for retrieved content. A key source of this data are
query logs, which, however, are generally not publicly accessible due
to their added value for companies and the substantial presence of
personally identifiable information'. The common practice in the
IR community is thus to resort to synthetic query logs simulating
realistic user interactions with an IR system. Also in this study, we
employ a set of simulated click logs to estimate the frequency of
clicks on the links in a Search Engine Result Page (SERP). By relying
on such click frequencies, we devise a counterfactual modelling of
the click probabilities. This model is then used as a source of implicit
feedback information, and we exploit it to determine the importance
of the dimensions in the dense representation space, thus instanti-
ating a set of novel Counterfactual DIMEs (CoDIMEs). In particular,
we design a set of linear CoDIMEs that quantifies the importance
of a dimension by considering the characteristics of a linear model
that regresses the documents’ click frequency on the interaction
between the query and the documents on such a dimension, i.e., the
product of the representations on such dimensions. Empirically, we
show that such models overcome the original DIME approach and
can achieve state-of-the-art effectiveness using multiple backbone
dense models and several commonly used IR test-beds.

Compared to CoRocchio [44], a state-of-the-art counterfactual
approach, the CoDIME framework achieves up to +0.235 nDCG@10
points, moving from 0.404 to 0.639 (+58%) (Dragon and Robust ‘04)
and +0.117 nDCG@100 points, moving from 0.356 to 0.473 (+33%)
(Dragon and Robust ‘04). The remainder of this work is organised as
follows. Section 2 introduces the relevant literature upon which we
construct the CoDIME framework. Section 3 reports the description
of the CoDIME approach and the methodological part of this paper.
Finally, Section 4 details on the experimental evaluation, while in
Section 5, we draw the conclusions.

2 Background and Related Work

In this section, we introduce the related work and the theoretical
background underlying the development of the CoDIME framework.
We start by introducing some notation. Let g be aquery anddeC a
document froma corpus C. A dense encoder ¢ is used to represent the
documents and the queries. The encoder ¢ takes in input a text and
projects it into a h-dimensional real space R". Thus we write ¢ (¢) =q
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and ¢(d) =d, i.e., the latent representations of ¢ and d, respectively.
The retrieval is operated by ranking the documents according to the
dot product between the query and the documents’ representations.
In the following, we illustrate the related works on dense IR and
DIME (Section 2.1), and relevance feedback (Section 2.2), while in
Section 2.3 we provide background and discuss related works on im-
plicit feedback and its biases, concluding with an existing application
of the implicit feedback modeling in dense IR (Section 2.4).

2.1 DenselR

Traditionally, dense IR systems are divided into three main cate-
gories: bi-encoders, cross-encoders, and late interaction models [43].
Regardless of the category, the most recent and effective solutions
are based on the transformers [40] architecture and BERT [9]. Cross-
encoders, such as Electra [5] jointly project documents and queries
within the same latent space, thus preventing the pre-computation
of an index data structure. On the other hand, late interaction models,
suchas ColBERT [23], are based on matching the contextual represen-
tation of the single terms in the documents and queries and tend to be
less efficient from the space perspective. Finally, bi-encoder models,
or dual encoders, use two separate neural networks to encode doc-
uments and queries. These networks can be identical (symmetric bi-
encoders) or distinct (asymmetric bi-encoders). This architecture en-
ables the precomputation of document representations, which can be
stored in specialised index structures such as FAISS [10] for efficient
retrieval. While bi-encoders might be slightly less effective than some
alternative approaches, they balance efficiency and effectiveness.

Dimension IMportance Estimators. When using bi-encoders for re-
trieval, Faggioli et al. [13] proposed the manifold clustering hypothe-
sis, which posits the existence of a query-dependent subspace within
the dense embedding space where encoding is more effective. While
Faggioli et al. conjecture that the optimal subspace could be an ar-
bitrary manifold, they also observe that the hypothesis holds even
when a linear subspace—i.e., a subspace of the original space with
certain dimensions removed—is employed. Building on this hypoth-
esis, Faggioli et al. define the concept of DIMEs. A DIME u(q|6) eR"
is a model that takes in input the representation of a query q, pos-
sibly some additional information 6, and outputs an h-dimensional
real-valued vector where the i-th element describes the “importance”
of the i-th dimension. Empirical observations by Faggioli et al. reveal
that truncating the query and document representations to retain
only the top «-h most important dimensions, where « € (0,1) is a
parameter, leads to improved retrieval performance compared to us-
ing the full representation. Most of the DIMEs proposed by Faggioli
et al. were based on either PRF signal or shallow active feedback. In
this paper, we investigate how to build a set of DIMEs that rely on
implicit feedback and counterfactual modelling.

2.2 Relevance Feedback

In the most classical definition, relevance feedback approaches em-
ploy some form of feedback to direct the retrieval towards rele-
vant documents, for example, by expanding a query with terms
that appear in relevant documents. Relevance feedback approaches
are based on real user feedback or Pseudo-Relevance Feedback
(PRF). Approaches based on users’ feedback are further divided
into approaches that use explicit feedback, where the user explicitly
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identifies relevant and non-relevant documents, e.g., Rocchio algo-
rithm [35], and implicit feedback, where implicit signals, such as the
users’ clicks or dwell time, are used as feedback. In the case of PRF,
the information on which documents are thought to be relevant,
also known as pseudo-relevant signal, is either generated by the
model itself, e.g., RM3 [24], or might be generated through external
tools, such as Large Language Models (LLMs) [27]. While approaches
based on explicit feedback rely on exact signals, their main limitation
is data scarcity. On the contrary, approaches based on PRF rely on
the most available data but often have unstable performance, heavily
dependent on the quality model that generated the pseudo-relevant
signal. A mid-ground is represented by implicit feedback. In this
case, the feedback is collected passively, without explicit user input,
and thus can be acquired in large amounts. Nevertheless, it is more
reliable than the PRF because it is provided directly by a human. Im-
plicit feedback comes with its challenges, such as noise and the bias
that the user might introduce when interacting with the documents.

2.3 Implicit Feedback & Biases

Users continuously generate data as implicit feedback when inter-
acting with an IR system by issuing queries, examining SERPs, and
interacting with documents they perceive as relevant.

Implicit feedback is far more abundant than other types of feed-
back, such as editorial or crowd-sourced feedback, because it is easier
and less expensive to collect. Additionally, implicit feedback reflects
users’ genuine preferences, free from the influence of crowd-workers
or editorial assessors. However, implicit feedback is subject to signifi-
cant biases that must be addressed before using it. For example, a user
might accidentally interact with a document and later determine it to
be irrelevant or not recognize a relevant document and ignore it. Sim-
ilarly, the order in which documents are presented to the user affects
the chance that the user will interact with them. Finally, only a small
subset of documents can be reasonably shown to the user in response
to a query: we cannot collect any feedback on documents not shown.
To leverage implicit feedback effectively, an IR system must account
for these biases and implement strategies to mitigate their impact.

A large body of literature [19, 21, 29-31, 42, 44-46] agrees on
three sources of bias affecting the interactions between the user and
the SERP: the position bias, the selection bias, and the relevance bias.

To formalize the implicit feedback from a user searching for a
given query g, we consider three events for any given document d:
E is the ‘examination’ of the document d, R is the ‘relevance’ of d
in response to ¢, and C corresponds to the ‘click’ of the user on d.
While E and C are two binary events (either the user examines or
clicks on the document, or not), the relevance R is typically modelled
as a categorical event, e.g., not relevant, partially relevant, relevant,
and highly relevant. Finally, K corresponds to the rank at which a
document d is ranked in response to the query g by the IR system.

The position bias describes the tendency of the users to examine
the ranked documents based on their position. For example, fol-
lowing previous studies on eye-tracking [20], it is more likely that
a user will inspect documents ranked higher. Thus, the probabil-
ity that a user will examine a document depends on the position at
which the document is presented, i.e., P(E =1|K). Following previous
studies [19, 21], it is common to model this probability as inversely
proportional to the position, i.e., P(E = 1|K) = (1/K)", where the
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parameter 17 describes the ‘patience’ of the user. A patient user that
will look at many documents before stopping can be represented
using a small 5. Vice-versa, an impatient user can be modeled with a
large . One of the most common de-biasing approaches, the Inverse
Propensity Score (IPS) weighting, consists of dividing the observed
probability by the estimated propensity score [16, 21].

The selection bias corresponds to the fact that only some docu-
ments will be selected by the IR system to be shown to the user. This
bias can be modelled by saying that P(E=1|K’) =0 for all K’ > K.

The final bias to account for is the relevance bias. This bias models
the fact that relevant documents are more likely to be clicked. In
particular, the probability of a click on a document in response to
a query is conditioned on the document being examined and its
relevance in response to the query, i.e., P(C|E=1,R). How this proba-
bility is estimated corresponds to defining multiple user models. For
example, we can imagine the perfect user for which P(C|E=1,R) xR.
The perfect user clicks on a document proportionally to its relevance:
they will never click on a non-relevant document and always click
on arelevant one. Similarly, we can define a “noisy” user who might
click on non-relevant documents or miss relevant ones.

To combine all the different biases, following previous litera-
ture [21, 33], we model the probability P(C) that a click will occur
as: P(C)=P(E=1|K)xP(C|E=1,R). In other words, the probability
of the click corresponds to the probability of the document being
examined and that the document is clicked, given that it is examined
and has a certain relevance. The advantage of being able to define
such a model and define mathematically the bias underlying the
clicks of the user is that it allows us to define a counterfactual frame-
work [17], where we can account for the bias and remove it from
the observational data that can be collected through a real click-log,
without the need for interventions, such as modifying the SERP for
different users. To estimate such probabilities in a practical scenario,
several approaches can be adopted, such as the use of a supervised
click model [2-4, 12, 14].

2.4 PRF viaImplicit Feedback for Dense IR

An interesting application of the counterfactual framework aims to
combine the information gained by considering the clicked docu-
ments with dense IR. The most prominent example is the Counterfac-
tual Rocchio (CoRocchio) approach [44]. The CoRocchio approach
extends Rocchio’s algorithm [35] applied to dense IR system pro-
posed by Li et al. [25] to take into account implicit feedback instead
of explicit relevance feedback.

Let R = {d1,....dy.} denote the SERP of length k returned in re-
sponse to the query g. Assume a set of users U has an information
need that can be expressed using the query g. After issuing the query
to the IR system and obtaining the SERP R, each user interacts with
it, producing a click log C, ={cy, 4, »---Cy, 4, }- More in detail, the value
of ¢,, 4 is 1if the user u clicks on the document d € R, and 0 otherwise.

Given the dense representation of the query q and free param-
eters f1, 2 > 0, the CoRocchio approach constructs a new query
representation q* as:

. 1 d
§hheigg 2 2 sy

ueUdeR
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where d is the dense representation of the document d while
p(E=1]i) is the estimated examination propensity at rank i. Follow-
ing previous literature, Zhuang et al. [44] approximate p(E=1|i) as
(1/i)".In other terms, according to the CoRocchio approach, the new
representation of the query q* is a linear combination of the original
representation of the query with the representations of the docu-
ments clicked, weighted by their click frequency debiased through
the IPS. Zhuang et al. prove that if every relevant passage has a
positive examination propensity, CoRocchio provides an unbiased
estimate of the query concerning the propensity.

3 The CoDIME Framework

This section introduces the CoODIME methodology and its theoretical
definition. Following the notation introduced in Section 2, we refer
to the list of the top k documents retrieved in response to a query
qas R={dy,....d; }. All users U who submitted the query q interact
with R, each one generating a click log Cy, such that ¢,, 4 is either 1 or
0, depending on whether the user clicked on document d € R or not.
Based on this historical information, we can compute the observed
frequency of clicks of U for g and d as: fd = ﬁ YuetCud- In other

terms, fd describes the proportion of clicks received by a document
d € R retrieved in response to g. Following the implicit feedback
modelling described in Section 2.3, we can expect this frequency to
be somewhat correlated with the relevance of the top k documents
retrieved in response to g, but also with the position at which the
document is shown in the R. As a consequence, we need to debias it.
Akin to CoRocchio, we debias click frequencies using the IPS [16, 21].
The debiased click frequency is thus defined as: f; = fd -(1/k)71
Where k is the position at which the document d was observed in
R and 7 is the propensity parameter. The debiased click frequencies
describe how likely it is that a document is clicked, regardless of
where it is placed in the SERP. Given a query q and a document d
and their respective dense representations q and d, we can define
the interaction Hy between them as the Hadamard product between
their representations. The interaction is a vector, and Hy ;, the i-th
element of Hy, indicates how much the query and the document in-
teract on the i-th dimension. Assuming each dimension corresponds
to a latent concept, observing strong interaction between the query
and the document on such dimension indicates that the concept is
prime for the query and the document. Conversely, weak interaction
suggests either the document does not concern the concept, or the
concept is irrelevant to the query. By construction, the dot product
between the query and the document corresponds to the sum of the
interaction elements in Hy. Suppose the query and the document
interact strongly on several dimensions: we can assume they are
aligned, and the document is likely ranked highly.

Finally, we define (f,.,..., fdk) as the list of debiased click frequen-
cies of the top k documents for g, included in R.

3.1 Magnitude-based CoDIME Approaches

Based on our definition of the debiased click frequencies f; and the in-
teraction Hy, we can define two CoDIMEs that employ the magnitude
of the interaction as an indicator of the importance of the dimensions.

Weighted Average CoDIME. This CoDIME, dubbed CoDIME 404,
isinspired by CoRocchio [44], and it relies on computing the weighted
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centroid of the interaction matrix to identify the most relevant dimen-
sions. More in detail, the importance of each dimension is computed
as the average of the interactions between the query and the docu-
ments on such dimensions weighted by the debiased click frequency
of the documents. Formally, given a dimension i € {1,...,h} of a rep-
resentation, its importance according to CoDIME wavg 18 defined as:

1
CoDIMEswang (i) = > Haifa
deR

In other terms, the importance of all dimensions can be derived by
considering the centroid of the documents in the click log, weighted
by their debiased click frequency. This mimics the feedback used
by CoRocchio. The major difference between the two approaches
is how the feedback is used. In the case of CoRocchio, this vector
is linearly combined with the query vector. For CODIME 444, the
feedback vector is used to identify the most relevant dimensions of
the query representation and discard all the dimensions that are not
important, leaving the others unaltered.

Weighted Max CoDIME. The Weighted Average CoDIME described
above might fail to treat unclicked documents correctly. Assume
that a single document of those shown to the user is clicked. This
would deflate the Weighted Average CoDIME, as several inputs of
the average sum would be zeros. Similarly, assume a faceted query is
issued to the IR system. In such cases, documents might have orthog-
onal representations, insisting on different dimensions, all equally
important for the query. When using the average, the contribution of
such dimensions might be decreased due to the orthogonality of the
documents. To mitigate these phenomena, we propose to replace the
mean aggregation with the maximum. The Weighted Max CoDIME,
or CODIME 1yax, is formally defined as follows:

CoDIME vymax (i) =max Hy ;- fg
deR 7

3.2 Linear CoDIME Approaches

Linear CoDIME approaches estimate the importance of a dimension
for a query by examining the linear correlation between the dimen-
sion’s interaction and the debiased click frequency on the documents.
In other words, consider a scenario where the query and a document
exhibit strong interaction on a particular dimension. This indicates
that the dimension heavily impacts the document’s position within
the ranking constructed in response to the query. Consider now
the debiased click frequency on such a document. If the document
is clicked often—regardless of its position— the document is more
likely to be relevant and should be ranked high. Vice-versa, if this
document is rarely clicked, excluding it from the top-ranked ones
would be better. Thus, if the interaction on a dimension between a
clicked-often document and the query is big, then such a dimension
is likely to be important. On the contrary, if the document is clicked
often but the interaction is small, or if the document is clicked rarely
and the interaction is large, there is a misalignment that suggests the
dimension is noisy and should be removed from the representation.

Correlation CoDIME. The first linear CoDIME is inspired by the
Oracle DIME as proposed by Faggioli et al. [13]. More in detail, we
define f and H; as the mean debiased click frequency and the interac-
tion on the i-th component for a given query and the corresponding
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retrieved documents, respectively. Called p the Pearson’s correlation,
the Correlation CoDIME, or CoDIME o, is defined as follows:

CoDIMEcorr (i) = p((fay - fi)s(Hay is--Hay. i)
_ Yaer (fa—f)(Ha;—H;)
\/Zdeﬂ(fd_f)z\/Zde‘R(Hd,i_I'_Ii)z

This CoDIME quantifies the linear correlation between the in-
teractions on a given dimension and the debiased click frequencies
as their Pearson’s p correlation. If the interaction on a dimension
between the query and the documents aligns with the debiased click
frequencies on such documents, the importance will be 1, and the
dimension likely belongs to the optimal subspace. If the interaction
and the debiased click probability are uncorrelated, the importance
of the dimension will be zero. Finally, when the interaction and the
debiased click probability have a negative relation, the importance
is negative, and the dimension will likely be discarded.

Slope CoDIME. One of the major limitations of the Correlation
CoDIME is that it cannot consider how fast the interactions and the
click frequencies tend to vary. In fact, the linear model that best fits
the points might be more or less steep. A steeper linear model indi-
cates that the dimension is better at separating the good and the bad
documents. Vice-versa, if the linear model grows slowly, it is harder
to separate documents clicked often from rarely clicked documents.
The value of the Correlation CoODIME does not depend on such steep-
ness, but only on how well a linear model fits the data. Therefore, we
propose a second linear CoDIME that explicitly quantifies the dimen-
sion’s importance based on the slope of the linear model that best
fits the data according to the Ordinary Least Square (OLS) approach.

In more detail, let us call H; € R¥*2 3 matrix such that its first
column contains k 1s and the second column contains the values
Hg, s - » Hg, ;- This is the regressor matrix, while we treat f =
[fd,s---fa, 1T as the response variable. We fit a linear model using
the OLS approach by computing b; e R?: b; = (H;'—H,-) - 1Hl.Tf. Since
we added a column of ones to the regressor matrix, the first element
b; 1 of b; is the intercept of the OLS linear model while the second
element b;  of b; is the slope.? The CoDIME e is defined as:

CODIMESlope(i) =bj,.

Figure 1 reports an illustrative visual comparison between differ-
ent dimensions and how they would be considered based on the Lin-
ear CoDIMEs. Each plot represents a different dimension, and each
dot represents a document. The debiased click frequency is reported
on the y-axis of the figure, while, on the x-axis, we have the interac-
tion between the document and the query (i.e., the values in the in-
teraction H;). Based on our intuition, the scenario depicted in Figure
la describes a harmful dimension. The query and documents interac-
tion and the debiased click frequency are inversely proportional. This
means that the dimension pushes up documents with low debiased
click frequency and ranks low those clicked often. Correlation and
Slope CoDIME would assign a negative score to this dimension and
likely remove it. Subsequently, Figure 1b illustrates what happens
for a non-informative dimension: the debiased click frequency and
the interaction values are completely uncorrelated. This suggests

2We also experimented with a linear model without the intercept, obtaining slightly
inferior empirical results.
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Figure 1: A comparison between dimensions. Each dot represents a
document in R. The y-axis reports the debiased click frequencies (fz, ,....fa; )
and the x-axis reports the interaction values Hy, i, ... ,Hgy ;- The more the
query-documents interaction on a dimension separates often and rarely
clicked documents, the better such dimension is.

that the dimension does not help separate documents that are more
likely to be clicked and documents that would not be clicked. Both
Linear CoDIMEs would assign a score close to zero to this dimension.
Finally, Figures 1c and 1d depict dimensions on which the interaction
between the query and the documents helps separate documents that
are likely to be clicked from those that are not. The major difference
between Figure 1c and 1d lies in the scores that would be assigned by
the CoDIMEs. In both cases, the Correlation CoODIME would assign a
score of 1, as the linear correlation is positive and perfect. Vice versa,
the Slope CoDIME would assign a larger score to the dimension illus-
trated in Figure 1d. This behavior lets us recognize better dimensions
that best separate frequently and rarely clicked documents.

3.3 On the optimal dimension cutoff

AllDIMEs and our CoDIMEs are based on preserving the most impor-
tant dimensions of the query and documents’ representations while
discarding the least important ones by setting them to 0. This ap-
proach requires a cutoff & to decide how many dimensions should be
kept. Faggiolietal. [13] did not investigate how to tune such a: asare-
sult, they reported the performance at various « levels. We propose to
choose the optimal a based on cross-validation. More in detail, we di-
vide the queries in m folds (5 in our experimental section), identify the
best & by averaging the results across m—1folds, use the performance
corresponding to such « on the remaining fold as the test effective-
ness, and repeat the procedure using each fold as the test. In practice,
this can be implemented using a historical set of annotated queries.

4 Experimental Evaluation
4.1 Experimental Setup

to assess the proposed counterfactual strategy we consider three
well-known state-of-the-art dense encoders: Contriever [18], TAS-
B [15], and Dragon [26], fine-tuned on MSMARCO.? While Con-
triever and TAS-B are based on a symmetric query and document

3We use the model weights publicly available on https://huggingface.co/
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encoder, Dragon uses a different encoder for queries and documents.
Experiments are conducted on three well-known TREC collections:
TREC Robust 2004 (Robust ‘04) [41], TREC Deep Learning 2019 (DL
‘19) [8], and TREC Deep Learning 2020 (DL ‘20) [7]. The Robust ‘04
collection contains 249 topics and is based on the Tipster disks 4 and
5 corpus of documents, minus the congressual records. Notice that,
since the dense models have been trained on a different corpus and
with different types of texts — passages instead of documents - this
collection can be considered as an out-of-domain scenario. On the
contrary, DL ‘19 and DL ‘20 contain 43 and 54 topics respectively
and are based on the MSMARCO passages corpus; therefore, they
are in-domain applications of the dense models.

The parameter 7, describing the user’s patience in clicking a docu-
ment of the SERP, is set to 1, while the maximum depth of inspection
is set to 20 documents unless specified differently. Furthermore, the
experiments are conducted by repeating 1000 times for each topic the
simulation of the click log. Differently from Faggioli et al. [13], our
CoDIME:s strategies choose the fraction a of representation dimen-
sion retained by applying a 5-fold cross-validation on the validation
set (see Section 3.3). The code and the data are publicly released.

4.2 Click Logs Simulation

The CoDIME approaches are based on historical user feedback needed
to instantiate the counterfactual framework and estimate the click
probabilities. In a real-world deployment with a consistent user base,
click logs are easy to collect and use for our purposes. In our exper-
imental analysis, we use the TREC Deep Learning (DL) collections,
which are based on the MSMARCO dataset. While the MSMARCO
dataset has an associated click log, the ORCAS dataset [6], such a
click log is not suited for our case study. This log reports, in fact,
information about clicked query and document pairs, but this infor-
mation is not aligned with the TREC DL collections. Moreover, the
clicks refer to entire documents and not to passages as the TREC
DL collections, and any detail on the documents’ presentation or-
der is missing, preventing us from estimating the propensity bias.
Other datasets, such as the one used for the Personalized Web Search
Challenge®, do not report the textual content of the documents and
queries, nor the relevance assessments. These two characteristics
make it impossible to compute the dense vectors used as the basis
of the CoDIME framework, and it prevents us from computing the
measures traditionally used in offline evaluation.

Thus, following the previous literature [19, 21, 29-31, 42, 44-46]
on counterfactual implicit feedback and learning to rank, we simu-
late the interaction of the users with the documents to generate a set
of synthetic click logs. More in detail, following previous work, to
generate the synthetic click log, we need to simulate i) the selection
bias, ii) the position bias, and iii) the relevance bias.

The selection bias is implemented by assuming that every user
interacts and inspects the SERP up to the document in position k’. To
simulate the click propensity, akin to the literature on counterfactual
learning-to-rank [19, 21], we model pe ;, the probability of examina-
tion, as inversely proportional to the position, i.e., pe (k) = %)’7 To
simulate the relevance bias, we need to model p, (g,d), the probabil-

ity that the user will click on a document d, given its relevance to q.

*https://github.com/guglielmof/25-SIGIR-FFPT
Shttps://www.kaggle.com/c/yandex-personalized-web-search-challenge
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More in detail, we consider three ideal user models: the perfect user
(P) whose click probability is directly proportional to the relevance of
the document; the binarized user (B) that, clicks on a non-relevant or
partially relevant document with probability 0.1 and clicks on a rele-
vant or highly relevant document with probability 1; the near random
user (R) that clicks on a non-relevant document with probability 0.4
and clicks on a highly relevant document with probability 0.6. Table 1
reports the click probabilities for the user models described above for
a four-grade relevance assessments collection. For the perfect and
near-random users, the probabilities are a linear spacing between the
minimum and maximum probabilities, respectively 0 and 1 and 0.4
and 0.6, with as many steps as the relevance grades. For the binarized
user, the click probability of a document with relevance within the
lowest half of the grades is set to 0.1; otherwise, it is set to 1.

Thus, the simulated click probability is computed as: p.(g,d,k) =
pr(q,d) - pe(k). In other terms, to simulate the click of a user on a
document d retrieved in position k in response to the query g, we
combine, by multiplying, the probability that the user will click on
such document given its relevance to the query (i.e., the relevance
bias) and the probability that the user will click on a document in
position k, regardless of its relevance (i.e., the position bias).

Table 1: Click probabilities for the simulation for a four-grade relevance
labels collection (e.g., DL ‘19 and DL ‘20).

document relevance
user model | non-relevant partially relevant relevant highly relevant

Perfect (P) 0.00 0.33 0.67 1.00
Binarized (B) 0.10 0.10 1.00 1.00
Near Random (R) 0.40 0.47 0.53 0.60

4.3 Considered baselines

Vector PRF (VPRF) [25]. We employ the Rocchio variant of VPRF
described by Li et al. [25] which combines linearly the centroid of
the top-k documents retrieved with the query vector. We use a=0.4
and $=0.6, following Li et al.. Furthermore, we test both with k=20
(VPRF-20) to be comparable with the other approaches, but also with
k=5 (VPRF-5), being the most effective setting according to Li et al..
An important note on VPRF is that it is ineffective by construction
with asymmetric encoders such as Dragon. In fact, for such encoders,
documents’ and queries’ representations lie on two different latent
spaces; thus, their linear combination produces a resulting vector
that is semantically not meaningful. To address this limitation, for
Dragon, during the query expansion phase, we employ the query
encoder for both the query and the feedback documents.

LLMDIME[13]. The LLM DIME employsaLLM generated pseudo-
relevant document as feedback. In particular, according to this DIME,
the importance of the i-th dimension is the interaction between the
query and the document on such dimension, i.e., the product of the
values of the query and document representations on that dimension.
To generate the pseudo-relevant documents, we use LLama 3.1 [11]
with 70B parameters.°

PRF DIME [13]. The PRF DIME estimates the importance of a di-
mension as the magnitude in such dimension of the centroid of the
interaction vectors between the top-k documents and the query.

®https://huggingface.co/meta-llama/Llama-3.1-70B- Instruct
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CoRocchio [44]. The approach is described in Section 2.4. Akin to
VPREF, this approach combines the representation of the query and
the documents and fails with asymmetric encoders. Therefore, for
asymmetric encoders, we use the query encoder for both the query
and the feedback documents.

Since our approach is unsupervised and does not require any train-
ing, we do not compare with supervised Counterfactual Learning-
to-Rank solutions [19, 21, 29-31, 42, 45, 46].

4.4 Performance

Table 2: Performance comparison on DL ‘19. In bold the most effective
approach, underlined the runner-up. The top-tier according to an ANOVA with
Tukey’s HSD post-hoc test at a significance level of 0.05 is marked with *. P,
B, and R are the Perfect, Binarized, and Near Random user models.

Contriever Dragon TAS-B
P B R P B R P B R
| nDCG@10

retrievalonly | 0.674  0.674  0.674 | 0.740  0.740  0.740 0.717 0717 0.717
VPRF-5 | 0.664 0.664 0.664 0.752 0.752 0.752 0.721 0.721 0.721
VPRF-20 | 0.636 0.636 0.636 0.732 0.732 0.732 0.667 0.667 0.667
DIMEpp | 0.742 0.742  0.742" | 0.767 0.767 0.767 0.749 0.749 0.749
DIMEpgr | 0.668 0.668 0.668 0.740 0.740 0.740 0.717 0.717 0.717
CoRocchio | 0.804*  0.766"  0.632 0.830  0.824*  0.724 | 0.810° 0.780*  0.665

CoDIMEyapg | 0.759 0747  0.752° | 0.764 0780 0762 | 0.749 0749  0.747
CODIME ymax | 0.774  0760* 0730 | 0748 0751 0742 | 0.800° 0.774* 0.774"
CoDIMEorr | 0.851*  0.828° 0.810° | 0.891* 0.854* 0.831* | 0.856* 0.835* 0.804*
CoDIMEop, | 0.855" 0.829" 0.809" | 0.897° 0.854° 0.842" | 0.863" 0.839° 0.821"

nDCG@20

retrieval only | 0.655 0.655 0.655 0.726 0.726 0.726 0.679 0.679 0.679
VPRF-5 | 0.656 0.656 0.656 0.743 0743 0.743* | 0.701 0.701 0.701
VPRF-20 | 0.643 0.643 0.643 0.717 0.717 0.717 0.651 0.651 0.651
DIMEp | 0.710 0.710 0.710 0.746 0.746  0.746™ | 0.724 0.724  0.724"
DIMEpgr | 0.655 0.655 0.655 0.726 0.726 0.726 0.682 0.682 0.682
CoRocchio | 0.761%  0.729*  0.634 | 0.805* 0.796"  0.721 | 0.771" 0.746*  0.642

CODIMEyqpg | 0724 0.719* 0.711* | 0728 0742 0717 | 0700 0715  0.704
CODIME ymax | 0.745* 0740 0710 | 0735 0732 0737 | 0747 0738" 0.734"
CoDIMEo,r | 0.796" 0.786* 0.777* | 0.830* 0.815* 0.792* | 0.807* 0.781* 0.760"
CoDIMEqjop, | 0796°  0.774* 0770 | 0.838" 0.817° 0.793" | 0.821° 0.785" 0.775"

nDCG@50

retrieval only | 0.642 0.642 0.642 0.686 0.686 0.686 0.650 0.650 0.650
VPRF-5 | 0.644 0.644 0.644 0.718 0718  0.718" | 0.677  0.677° 0.677*
VPRF-20 | 0.637 0.637 0.637 0.698 0.698 0.698 0.641 0.641 0.641
DIMErrpm | 0.686"  0.686°  0.686" | 0.709 0.709  0.709* | 0.693*  0.693"  0.693*
DIMEpgr | 0.647 0.647 0.647 0.686 0.686 0.686 0.653 0.653 0.653
CoRocchio | 0.737°  0.708*  0.625 | 0.772" 0.767° 0.698 | 0.741*  0.723"  0.626

CODIME yapg | 0.681%  0.684"  0.665* | 0.696 0704 0681 | 0659 0.671*  0.666
CODIMEqymax | 0.712°  0.706*  0.675* | 0.689  0.693  0.692 | 0.722* 0.708* 0.711*
CoDIMEcor, | 0.743* 0.735* 0.721* | 0.778" 0.764* 0.751* | 0.745% 0725 0.712*
CoDIMEgjepe | 0.741° 0721 0715% | 0.766" 0.763* 0.754" | 0.747" 0.729° 0.733"

nDCG@100

retrieval only | 0.634 0.634 0.634 0.673 0.673 0.673 0.637 0.637 0.637
VPRF-5 | 0.647 0.647 0.647 0.703 0.703  0.703" | 0.667  0.667°  0.667*
VPRF-20 | 0.636 0.636 0.636 0.692 0.692  0.692* | 0.636 0.636 0.636
DIMErrm | 0.676"  0.676*  0.676" | 0.700 0.700  0.700% | 0.684"  0.684"  0.684*
DIMEpgr | 0.643 0.643 0.643 0.673 0.673 0.673 0.647 0.647 0.647
CoRocchio | 0.733*  0.703*  0.628 | 0.757° 0.750° 0.689" | 0.726" 0.710*  0.621

CODIMEqyapg | 0.669  0.675*  0.655 | 0.669  0.683  0.668 | 0.626  0.652  0.644
CODIME yymay | 0.698°  0.692° 0.666* | 0.673 0676  0.669 | 0.702° 0.696*  0.686"
CoDIMEcorr | 0.734*  0716* 0.708* | 0.747" 0741* 0.729* | 0.725* 0.711° 0.703*
CoDIMEjep, | 0.735*  0.723"  0.699* | 0.739"  0.739* 0726* | 0.723° 0.711° 0.712°

As a first experiment, we report the comparison in terms of effec-
tiveness between the different approaches. Tables 2, 3, and 4 report
the effectiveness of our solution and the competitors on DL ‘19, DL
‘20 and Robust ‘04 collections, respectively. In bold, we report the
highest performance achieved, underlined the runner-up. At the
same time, the symbol * denotes the top tier of systems (i.e., the set
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Table 3: Performance comparison on DL ‘20. In bold the most effective
approach, underlined the runner-up. The top-tier according to an ANOVA with
Tukey’s HSD post-hoc test at a significance level of 0.05 is marked with *. P,
B, and R are the Perfect, Binarized, and Near Random user models.

Contriever Dragon TAS-B
P B R P B R P B R
| nDCG@10

retrievalonly | 0.672 0672 0672 | 0718 0718 0718 | 0.684 0.684  0.684
VPRE-5 | 0.693 0693 0693 | 0722 0722 0722 | 0695 0695  0.695
VPRF-20 | 0.647  0.647 0647 | 0707 0707 0707 | 0.649  0.649  0.649
DIMEr;y | 0717 0717 0717 | 0750 0750 0750 | 0712 0712  0.712
DIMEpgr | 0.663 0663 0663 | 0718 0718 0718 | 0.679  0.679  0.679
CoRocchio | 0.793*  0.780*  0.633 | 0.833  0.825* 0703 | 0.807* 0.785*  0.628

CoDIMEyaug | 0.741 0757 0745 | 0738 0731 0740 | 0.713 0719 0718
CODIME yymayx | 0.774* 0752 0.756* | 0732 0731 0732 | 0.794* 0.787°  0.779*
CoDIMEcor | 0.822° 0.822* 0.797* | 0.883* 0.872* 0.838" | 0.849* 0.829* 0.808*
CoDIMEop, | 0.820°  0.824" 0.806" | 0.885° 0.863" 0.839" | 0.861° 0.848" 0.813"

nDCG@20

retrieval only | 0.662 0.662 0.662 0.692 0.692 0.692 0.658 0.658 0.658
VPRF-5 | 0.667 0.667 0.667 0.701 0.701 0.701 0.666 0.666 0.666
VPRF-20 | 0.644 0.644 0.644 0.692 0.692 0.692 0.633 0.633 0.633
DIMEprp | 0.678 0.678 0.678 0.715 0.715 0.715 0.683 0.683 0.683
DIMEpgr | 0.672 0.672 0.672 0.692 0.692 0.692 0.661 0.661 0.661
CoRocchio | 0.746*  0.733*  0.625 | 0.784* 0.774"  0.688 | 0.755" 0.725%  0.608

CODIMEWHW 0.698 0.712* 0.699 0.700 0.684 0.692 0.659 0.649 0.648
CoDIME yymax 0.714 0.705 0.706* 0.711 0.705 0.703 0.730*  0.730*  0.724*
CoDIME o, | 0.767* 0.754* 0.750* | 0.806" 0.801" 0.774* | 0.783" 0.746* 0.757*
CoDIME,jop, | 0756" 0.749" 0749° | 0.801° 0795 0767 | 0782 0.776" 0751°

nDCG@50

retrieval only | 0.635 0.635 0.635 0.671 0.671 0.671 0.631 0.631 0.631
VPREF-5 | 0.643 0.643 0.643 0.681 0.681 0.681 0.640 0.640 0.640
VPRF-20 | 0.622 0.622 0.622 0.675 0.675 0.675 0.609 0.609 0.609
DIMErry | 0.657  0.657°  0.657° | 0.686 0.686  0.686* | 0.663 0.663  0.663
DIMEpgr | 0.642 0.642 0.642 0.671 0.671 0.671 0.631 0.631 0.631
CoRocchio | 0.707* 0.691*  0.607 | 0.745° 0.732*  0.663 | 0.718" 0.691*  0.593

CODIMEyaug | 0.651  0.662°  0.647 | 0671 0671 0671 | 0615 0613  0.614
CODIME ymax | 0.673*  0.665*  0.672* | 0.677 0675 0675 | 0.683* 0.688*  0.675"
CoDIMEcorr | 0.698* 0.691* 0.689* | 0.743* 0728* 0.720* | 0.715*  0.696* 0.697*
CoDIMEg o, | 0.693°  0.688°  0.682° | 0.735" 0.731° 0718" | 0.721° 0.714" 0.694

nDCG@100

retrieval only | 0.628 0.628 0.628 0.659 0.659 0.659 0.633 0.633 0.633
VPRF-5 | 0.639 0.639 0.639 0.674 0.674  0.674" | 0.644 0.644  0.644"
VPRF-20 | 0.618 0.618 0.618 0.667 0.667 0.667 0.616 0.616 0.616
DIMEppp | 0.661%  0.661F  0.661% | 0.678 0.678  0.678* | 0.659 0.659  0.659"
DIMEpgr | 0.637 0.637 0.637 0.659 0.659 0.659 0.638 0.638  0.638"
CoRocchio | 0.700*  0.690"  0.605 | 0.738" 0.725°  0.658 | 0.715" 0.692*  0.595

CODIMEyaug | 0.644 0652  0.642 | 0.659 0659  0.659 | 0.622 0622  0.621
CODIME ymax | 0.664*  0.666* 0.658* | 0.661 0658 0662 | 0.672° 0.677° 0.673"
CoDIMEcor | 0.689*  0.687* 0.680° | 0.723* 0.721* 0.705* | 0.707*  0.686*  0.680*
CoDIMEyjop, | 0.683°  0.680° 0.674" | 0.717° 0.714* 0702" | 0.703* 0.699" 0.681"

of systems deemed statistically not distinguishable) according to
an ANalysis Of the VAriance (ANOVA) [37] with Tukey’s Honestly
Significant Differences (HSD) [38] pairwise multiple comparison
test and significance level of 0.05. The columns (P, B, and R) cor-
respond respectively to Perfect, Binarized, and Near Random users.
Within each measure, the first line reports the performance of the
base encoder. Notice that some of the baselines (the encoder itself,
VPRF, DIME; 1 ;s and DIME pgF) are not based on users’ clicks, and
thus, they are not affected by the user model, and their performance
is the same across all user models.

For what concerns the DL ‘19 collection (Table 2), we notice that
the most effective approaches for nDCG@10 and nDCG@20 are
those based on the Linear CoDIMEs (CoDIME_,,» and CoDIME 4 ).
Both approaches have comparable performance, with no clear dom-
inance between the two: in all the cases, the two approaches are
statistically equivalent according to the chosen statistical testing
procedure. In general, the approaches based on the weighted mag-
nitude of the dimensions (CODIME 444 and CoODIME ) tend to
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Table 4: Performance comparison on Robust ‘04. In bold the most effective
approach, underlined the runner-up. The top-tier according to an ANOVA with
Tukey’s HSD post-hoc test at a significance level of 0.05 is marked with *. P,
B, and R are the Perfect, Binarized, and Near Random user models.

Contriever Dragon TAS-B
P B R P B R P B R
| nDCG@10

retrieval only | 0.465 0.465 0.465 0.461 0.461 0.461 0.447 0.447 0.447
VPRF-5 | 0.474 0.474 0.474 0.447 0.447 0.447 0.470 0.470 0.470
VPRF-20 | 0.469 0.469 0.469 0.434 0.434 0.434 0.411 0.411 0.411
DIMEppp | 0.515 0.515 0.515 0.478 0.478 0.478 0.485 0.485 0.485
DIMEpgr | 0.479 0.479 0.479 0.461 0.461 0.461 0.450 0.450 0.450
CoRocchio | 0.687 0.639 0.456 0.649 0.605 0.404 0.648 0.599 0.389

CoDIMEyyqpg | 0.456 0609  0.474 | 0461 0482 0461 | 0447 0589  0.443
CoDIME yymax 0.535 0.620 0.553 0.491 0.489 0.491 0.524 0.578 0.519
CODIMEcory | 0.737" 0723  0.643° | 0725" 0.714° 0625 | 0.685° 0677°  0.604*
CoDIMEgpgp, | 0.734°  0.725" 0.648" | 0.734" 0.726" 0.639" | 0.699" 0.689° 0.618"

nDCG@20

retrieval only | 0.435 0.435 0.435 0.425 0.425 0.425 0.406 0.406 0.406
VPRF-5 | 0.446 0.446 0.446 0.422 0.422 0.422 0.435 0.435 0.435
VPRF-20 | 0.439 0.439 0.439 0.405 0.405 0.405 0.387 0.387 0.387
DIMErp | 0.475 0.475 0.475 0.439 0.439 0.439 0.441 0.441 0.441
DIMEpgr | 0.450 0.450 0.450 0.425 0.425 0.425 0.412 0.412 0.412
CoRocchio | 0.605 0.568 0.425 0.571 0.541 0.385 0.566 0.528 0.364

CoDIMEyapg | 0435 0536 0435 | 0425 0434 0425 | 0406 0518  0.406
CODIMEymax | 0.475  0.553 0489 | 0443 0444 0440 | 0459 0504 0457
CoDIME oy | 0.650° 0.642°  0.568" | 0.635* 0.631* 0.549* | 0.601* 0.597*  0.520*
CoDIME 0.649°  0.646" 0567° | 0.642* 0.641" 0.554" | 0.614* 0.607* 0.539"

slope

nDCG@50

retrieval only | 0.406 0.406 0.406 0.389 0.389 0.389 0.376 0.376 0.376
VPRF-5 | 0.415 0.415 0.415 0.392 0.392 0.392 0.397 0.397 0.397
VPRF-20 | 0.411 0.411 0.411 0.386 0.386 0.386 0.364 0.364 0.364
DIMErp | 0.440 0.440 0.440 0.403 0.403 0.403 0.409 0.409 0.409
DIMEpgr | 0.427 0.427 0.427 0.389 0.389 0.389 0.388 0.388 0.388
CoRocchio | 0.539 0.505 0.390 0.500 0.471 0.357 0.496 0.462 0.330

CoDIMEyapg | 0406 0467 0406 | 0389 0387 0389 | 0376 0442 0376
CODIME ymax | 0.423 0488  0.434 | 0400 0400 0397 | 0402 0445  0.400
CoDIMEcorr | 0.565° 0.560° 0.498" | 0.536" 0536" 0475° | 0514° 0508" 0.448"
CoDIMEyjgpe | 0.567°  0.560°  0.496™ | 0.553° 0.554" 0.483" | 0.528" 0.523" 0.465"

nDCG@100

retrieval only | 0.412 0.412 0.412 0.392 0.392 0.392 0.381 0.381 0.381
VPRF-5 | 0.420 0.420 0.420 0.393 0.393 0.393 0.400 0.400 0.400
VPRF-20 | 0.414 0.414 0.414 0.388 0.388 0.388 0.369 0.369 0.369
DIME;pp | 0.441 0.441 0.441 0.406 0.406 0.406 0.414 0.414 0.414
DIMEpgr | 0.428 0.428 0.428 0.392 0.392 0.392 0.391 0.391 0.391
CoRocchio | 0.525 0.495 0.390 0.488 0.460 0.356 0.487 0.453 0.333

CODIMEwavg 0.412 0.456 0.412 0.392 0.392 0.392 0.381 0.424 0.381
CoDIME yymax 0.424 0.484 0.435 0.401 0.401 0.401 0.399 0.437 0.401
CODIMEcor | 0.549°  0.543* 0488 | 0520° 0516" 0.464" | 0.496* 0491° 0438*
CODIMEslope 0.550* 0.545* 0.489* | 0.535* 0.535" 0.474* | 0.508* 0.503* 0.448*

be far less effective and are generally surpassed by the CoRocchio
baseline. Comparing the Linear CoDIMEs with the most effective
baseline, CoRocchio, we notice that the CoDIMEs are almost always
more effective than CoRocchio for cutoffs lower than 100 (the only
exception is Dragon with nDCG@50 and the binarized model). If we
considernDCG@100, CoRocchio is more effective than the CoDIMEs
in the case of TAS-B and Dragon with a perfect or binarized user
model but the difference is not statistically significant and small (0.01
or less nDCG@100 points). Compared to CoRocchio, all CoDIMEs
are less vulnerable to changes in the user model considered. In fact,
for CoRocchio, when moving from the perfect to the near-random
user model, we notice a performance drop which is in the range
of 10 to 15 points, depending on the considered measure or cutoff.
Vice versa, the CoDIMEs tends to be stable, with variations between
the perfect and near-random users in the 1-3 points range, up to
5 points in the worst scenarios. This is a desirable property: in a
real-world scenario, where the clicks are far more affected by noise
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than in a simulated environment, a more stable solution as the Linear
CoDIMEs offers better guarantees of a good performance.

In line with the tests on DL ‘19, for DL ‘20 (Table 3), the CoDIME
approaches are particularly effective with the binarized and random
user models and measures at small cutoffs. With cutoffs equal to or
above 50, the CoRocchio approach is more effective in the case of the
perfect user model. Nevertheless, the difference is not statistically
significant and generally small (0.015-0.002 nDCG points).

The effectiveness of the CoDIME approach is even more evident
when we consider Robust ‘04 (Table and 4). In this case, the linear
CoDIMEs, especially CoDIME,,., are always the best. Further-
more, in every case, this difference is statistically significant. This
is in line with what was observed by Faggioli et al. [13], who no-
ticed that, in the out-of-domain scenario, the DIMEs are particularly
effective, as they allow to denoise the representation. Since the rep-
resentation model was trained on a different distribution, it is more
likely that it contains more noise, and thus, it is easier to debias.

In the remainder of this work, we focus on the CoDIME y, . being,
together with the CoDIME_,, the most effective solution. Similar
patterns can be observed with the other approach.

4.5 Effect of the Selection Bias

As a second analysis, we are interested in investigating the impact of
selection bias on the performance of the proposed CoDIME frame-
work. In particular, in the experiment described above, the length
of the click log simulation was set to 20 (i.e., we considered only the
20 top-ranked documents to simulate the clicks). In this case, we
experiment with different sizes of the click logs, considering click
logs of length {2, 5, 10, 20, 50}. Figure 2 illustrates the consequences
of varying the length of the click log when we consider as backbone
model Contriever and TAS-B (blue and orange respectively); we do
not consider Dragon, as CoRocchio achieves performances close to
0 due to its asymmetrical nature. The continuous lines represent the
performance of CoODIME), ¢, while the dashed lines indicate the per-
formance of CoRocchio. Furthermore, we report only nDCG@10 and
nDCG@20 to avoid encumbering — the patterns remain the same (al-
though less marked) also with measures with longer cutoffs. Asafirst
pattern, we notice that if we compare the behaviour with click-logs
generated by a perfect user model (‘P columns, on the left) and by a
near-randomuser model (‘R’, on the right), the difference between the
two counterfactual approaches is larger on the latter. This is in line
with what was observed until now. If the information is precise, both
approaches perform sufficiently well, but as soon as the information
gets more noisy, CODIME;, is superior by far. Interestingly, the
plots show that, for very short click-logs (2 documents), the CoRoc-
chio approach tends to be slightly more effective, especially for TAS-
B (orange dashed line above at the beginning). Nevertheless, as soon
as the click log is 5-10 documents long, the CoDIMEgy,, . approach is
the most effective in almost all scenarios. When we reach 20 or more
documents, CoDIME,,. is always the best. Furthermore, for the
CoDIMEj,p, in the lines are monotonically non-decreasing — the
only exception is represented by nDCG@10 with the near-random
user model. This suggests that the more information is available, the
better the model performs, or, in the worst case, the performance re-
mains the same. On the contrary, for CoRocchio and the near-random
user model, we observe decreasing lines that indicate that CoRocchio
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Figure 2: Effect of varying the selection bias (i.e., k) by including more documents on the click log simulations. P and R are the perfect and near-random user
models. For k =2, CoODIME;/,p. and CoRocchio have similar effectiveness. The CoDIMEg/,p is more effective in handling the scenario where more feedback is
available. This difference is particularly evident for the near-random (R) user model. The same patterns also occur for measures with higher cutoffs.

not only fails to exploit the additional information but is harmed by
it. As for the previous experiment, this analysis confirms that the
CoDIME framework is on par with the state-of-the-art regarding
simulations based on perfect users. Nevertheless, if we consider more
realistic and noisy situations, the CoDIME approach shows superior
capabilities, remaining stable when highly noisy data is considered.

4.6 Effect of the Position Bias

B CoDIMEe (Contriever) Bl CoDIMEqe. (TAS-B) CoDIMEg,pe (Dragon)
nDCG@10, P nDCG@20, P nDCG@10,R nDCG@20, R
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Figure 3: Consequences of overestimating (propensity = 0) or underesti-
mating (propensity = 2) the propensity for TAS-B. P and R are the perfect and
near-random user models.

As afinal analysis, we illustrate the consequences of overestimat-
ing or underestimating the propensity. In detail, we maintain the
same debiasing assuming 1=1 to compute the CoDIME ;. query
representations, but we change the underlying simulation process,
using n={0,1,2}. This allows us to estimate the approach’s effective-
ness in an even more noisy situation. Figure 3 reports our results for
the three considered encoders. We notice that if we assume a perfect
user that perfectly clicks only on relevant documents (‘P’ columns),
regardless of the considered encoder and propensity exponent, the

approaches tend to be overall stable, with a slight decrease in effec-
tiveness if we consider an under-estimation error (propensity = 2).
The phenomenon is more evident in the case of a near-random user
model (‘R’ columns). In this case, the impact of failing in correctly
modeling the 1 tends to be more severe, especially for the Robust ‘04
collection. This might be explained by the noise introduced in this
scenario, which makes the implicit feedback signal unreliable.

5 Conclusion

In this work, we introduced CoDIME, a novel counterfactual frame-
work for dimension importance estimation in dense text represen-
tations, leveraging implicit user feedback to address challenges in
existing DIME approaches. By incorporating counterfactual mod-
elling of click probabilities in various dimension importance estima-
tion strategies, our CoODIME approaches achieved state-of-the-art
performance in multiple dense IR testbeds. Compared to CoRoc-
chio [44], a state-of-the-art counterfactual approach, the CoDIME
framework achieves up to +0.235 nDCG@10 points, moving from
0.404 t0 0.639 (+58%) (Dragon and Robust ‘04) and +0.117 nDCG@100
points, moving from 0.356 to 0.473 (+33%) (Dragon and Robust ‘04).
These findings highlight the efficacy of counterfactual techniques
and DIME approaches in adapting dense representations and im-
proving retrieval effectiveness.
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