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Abstract
Contextual dense representation models for text marked a shift in
text processing, enabling a richer semantic understanding of the
text and more effective Information Retrieval. These models project
pieces of text into a latent space, describing them in terms of shared
latent concepts, which are not explicitly tied to the text’s content.
Previous work has shown that certain dimensions of such dense
text representations can be irrelevant and detrimental to retrieval
effectiveness depending on the information need specified in the
query. Higher effectiveness can be achieved by performing retrieval
within a linear subspace that excludes these dimensions. Dimension
IMportanceEstimators (DIMEs) aremodels designed to identify such
harmful dimensions, refining the representations of queries and doc-
uments to retain only the useful ones. Current DIMEs rely either
on pseudo-relevance feedback, which often delivers inconsistent
effectiveness, or on explicit relevance feedback, which is challeng-
ing to collect. Inspired by counterfactual modelling, we introduce
Counterfactual DIMEs (CoDIMEs), designed to leverage noisy im-
plicit feedback to assess the importance of each dimension. The
CoDIME framework presented here approximates the relationship
between a document’s click frequency and its interaction with a
given query dimension through a linear model. Empirical evalua-
tions demonstrate that CoDIME outperforms traditional pseudo-
relevance feedback-based DIMEs and surpasses other unsupervised
counterfactual methods that utilize implicit feedback.
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1 Introduction
Dense text representationshavedemonstrated remarkable capability
in capturing semantic meaning, emerging as the dominant technol-
ogy across numerous text-related tasks in Information Retrieval (IR)
and Natural Language Processing (NLP). Early approaches to digital
term representation for IR tasks primarily relied on lexical one-hot
encoding techniques [36] and retrieval heuristics such as BM25 [34]
and TF-IDF [22]. These methods represent a text as a sparse vector
with a dimensionality equal to the size of the entire vocabulary of
terms. Most vector elements are set to zero, with non-zero values
correspondingonly to the termswithin the text.This typeof represen-
tation offers several advantages. Its high sparsity facilitates efficient
storage and computation, and its straightforward structure makes it
highly interpretable. As a downside, it is affected by the semantic gap
problem, i.e., the difference between the digital representation of a
textand itshuman interpretation. For instance, it struggles toaccount
for synonyms or polysemous words, leading to challenges in disam-
biguating wordmeanings or retrieving documents containing query
term synonyms.Dense term representations, likeWord2Vec [28] and
GloVe [32], partially address the limitations of traditional methods.
However, the advent of contextual term representations, exemplified
by models such as BERT [9], marked a transformative shift in text
encoding, enabling a richer semantic understanding. These represen-
tationmodels are based on neural networks that project the text onto
a dense representation space where semantically similar contents
tend to be arranged closely. While these novel representations are
more effective than traditional lexical approaches in handling the
semantic gap, they are far less interpretable, even if the dimensions
of the representations are assumed to be associated with some latent
semantic meaning. Starting from this, Faggioli et al. [13] propose the
so-calledManifold Clustering Hypothesis which states that “High-
dimensional representations of queries and documents relevant to them
tend to lie in a query-dependent lower-dimensional manifold of the
representation space”. This hypothesis combines the well-known
clustering [39] and manifold [1] hypotheses and states that it is pos-
sible to find a query-wise subspace of the dense representation space
where the retrieval is more effective, i.e., where the representations
of the query and its relevant documents are more aligned. While
Faggioli et al. postulate that such a subspace can be an arbitrary
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manifold, to validate their hypothesis empirically, they reduce the
complexity of the problem by focusing only on linear subspaces, i.e.,
spaces obtained by zeroing some of the dimensions from the repre-
sentation. To do so, Faggioli et al. define the concept of Dimension
IMportance Estimator (DIME): a model explicitly meant to estimate
the query-dependent importance of each dimension to preserve
only the most important ones while discarding the others. In par-
ticular, Faggioli et al. propose DIMEs based on Pseudo-Relevance
Feedback (PRF) or relying on explicit feedback. The former is known
to have variable and not always consistent effectiveness, especially
when it comes to dense models [26]. The latter, on the other hand,
can be much more challenging to gather. To overcome this limita-
tion, in this paper, we propose to employ an intermediate relevance
signal, more reliable than PRF and far more available than explicit
feedback: implicit feedback. Implicit feedback leverages the analysis
of user interactions, such as clicks and dwell times, to infer weak
relevance signals for retrieved content. A key source of this data are
query logs, which, however, are generally not publicly accessible due
to their added value for companies and the substantial presence of
personally identifiable information1. The common practice in the
IR community is thus to resort to synthetic query logs simulating
realistic user interactions with an IR system. Also in this study, we
employ a set of simulated click logs to estimate the frequency of
clicks on the links in a Search Engine Result Page (SERP). By relying
on such click frequencies, we devise a counterfactual modelling of
the click probabilities. This model is then used as a source of implicit
feedback information, andwe exploit it to determine the importance
of the dimensions in the dense representation space, thus instanti-
ating a set of novel Counterfactual DIMEs (CoDIMEs). In particular,
we design a set of linear CoDIMEs that quantifies the importance
of a dimension by considering the characteristics of a linear model
that regresses the documents’ click frequency on the interaction
between the query and the documents on such a dimension, i.e., the
product of the representations on such dimensions. Empirically, we
show that such models overcome the original DIME approach and
can achieve state-of-the-art effectiveness using multiple backbone
dense models and several commonly used IR test-beds.

Compared to CoRocchio [44], a state-of-the-art counterfactual
approach, the CoDIME framework achieves up to +0.235 nDCG@10
points, moving from 0.404 to 0.639 (+58%) (Dragon and Robust ‘04)
and +0.117 nDCG@100 points, moving from 0.356 to 0.473 (+33%)
(Dragon and Robust ‘04). The remainder of this work is organised as
follows. Section 2 introduces the relevant literature upon which we
construct the CoDIME framework. Section 3 reports the description
of the CoDIME approach and the methodological part of this paper.
Finally, Section 4 details on the experimental evaluation, while in
Section 5, we draw the conclusions.

2 Background and RelatedWork
In this section, we introduce the related work and the theoretical
background underlying the development of theCoDIME framework.
We start by introducing some notation. Let 𝑞 be a query and 𝑑 ∈C a
document fromacorpusC.Adense encoder𝜙 is used to represent the
documents and the queries. The encoder 𝜙 takes in input a text and
projects it into aℎ-dimensional real spaceRℎ . Thuswewrite𝜙 (𝑞)=q

1https://en.wikipedia.org/wiki/AOL_search_log_release

and 𝜙 (𝑑)=d, i.e., the latent representations of 𝑞 and 𝑑 , respectively.
The retrieval is operated by ranking the documents according to the
dot product between the query and the documents’ representations.
In the following, we illustrate the related works on dense IR and
DIME (Section 2.1), and relevance feedback (Section 2.2), while in
Section 2.3 we provide background and discuss related works on im-
plicit feedback and its biases, concludingwith an existing application
of the implicit feedback modeling in dense IR (Section 2.4).

2.1 Dense IR
Traditionally, dense IR systems are divided into three main cate-
gories: bi-encoders, cross-encoders, and late interactionmodels [43].
Regardless of the category, the most recent and effective solutions
are based on the transformers [40] architecture and BERT [9]. Cross-
encoders, such as Electra [5] jointly project documents and queries
within the same latent space, thus preventing the pre-computation
of an index data structure.On the other hand, late interactionmodels,
suchasColBERT[23], arebasedonmatching thecontextual represen-
tation of the single terms in the documents and queries and tend to be
less efficient from the space perspective. Finally, bi-encoder models,
or dual encoders, use two separate neural networks to encode doc-
uments and queries. These networks can be identical (symmetric bi-
encoders) or distinct (asymmetric bi-encoders). This architecture en-
ables the precomputationof document representations,which canbe
stored in specialised index structures such as FAISS [10] for efficient
retrieval.Whilebi-encodersmightbe slightly less effective thansome
alternative approaches, they balance efficiency and effectiveness.

Dimension IMportance Estimators. When using bi-encoders for re-
trieval, Faggioli et al. [13] proposed themanifold clustering hypothe-
sis, which posits the existence of a query-dependent subspacewithin
the dense embedding space where encoding is more effective. While
Faggioli et al. conjecture that the optimal subspace could be an ar-
bitrary manifold, they also observe that the hypothesis holds even
when a linear subspace—i.e., a subspace of the original space with
certain dimensions removed—is employed. Building on this hypoth-
esis, Faggioli et al. define the concept of DIMEs. ADIME𝑢 (q|𝜃 ) ∈Rℎ
is a model that takes in input the representation of a query q, pos-
sibly some additional information 𝜃 , and outputs an ℎ-dimensional
real-valued vectorwhere the 𝑖-th element describes the “importance”
of the 𝑖-th dimension. Empirical observations by Faggioli et al. reveal
that truncating the query and document representations to retain
only the top 𝛼 ·ℎ most important dimensions, where 𝛼 ∈ (0,1) is a
parameter, leads to improved retrieval performance compared to us-
ing the full representation. Most of the DIMEs proposed by Faggioli
et al. were based on either PRF signal or shallow active feedback. In
this paper, we investigate how to build a set of DIMEs that rely on
implicit feedback and counterfactual modelling.

2.2 Relevance Feedback
In the most classical definition, relevance feedback approaches em-
ploy some form of feedback to direct the retrieval towards rele-
vant documents, for example, by expanding a query with terms
that appear in relevant documents. Relevance feedback approaches
are based on real user feedback or Pseudo-Relevance Feedback
(PRF). Approaches based on users’ feedback are further divided
into approaches that use explicit feedback, where the user explicitly

https://en.wikipedia.org/wiki/AOL_search_log_release
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identifies relevant and non-relevant documents, e.g., Rocchio algo-
rithm [35], and implicit feedback, where implicit signals, such as the
users’ clicks or dwell time, are used as feedback. In the case of PRF,
the information on which documents are thought to be relevant,
also known as pseudo-relevant signal, is either generated by the
model itself, e.g., RM3 [24], or might be generated through external
tools, such asLargeLanguageModels (LLMs) [27].While approaches
based on explicit feedback rely on exact signals, theirmain limitation
is data scarcity. On the contrary, approaches based on PRF rely on
themost available data but often have unstable performance, heavily
dependent on the quality model that generated the pseudo-relevant
signal. A mid-ground is represented by implicit feedback. In this
case, the feedback is collected passively, without explicit user input,
and thus can be acquired in large amounts. Nevertheless, it is more
reliable than the PRF because it is provided directly by a human. Im-
plicit feedback comes with its challenges, such as noise and the bias
that the user might introduce when interacting with the documents.

2.3 Implicit Feedback & Biases
Users continuously generate data as implicit feedback when inter-
acting with an IR system by issuing queries, examining SERPs, and
interacting with documents they perceive as relevant.

Implicit feedback is far more abundant than other types of feed-
back, such as editorial or crowd-sourced feedback, because it is easier
and less expensive to collect. Additionally, implicit feedback reflects
users’ genuinepreferences, free from the influenceof crowd-workers
or editorial assessors. However, implicit feedback is subject to signifi-
cant biases thatmust be addressed before using it. For example, a user
might accidentally interactwith a document and later determine it to
be irrelevant or not recognize a relevant document and ignore it. Sim-
ilarly, the order in which documents are presented to the user affects
the chance that the user will interact with them. Finally, only a small
subset of documents can be reasonably shown to the user in response
to a query: we cannot collect any feedback on documents not shown.
To leverage implicit feedback effectively, an IR systemmust account
for these biases and implement strategies to mitigate their impact.

A large body of literature [19, 21, 29–31, 42, 44–46] agrees on
three sources of bias affecting the interactions between the user and
the SERP: the position bias, the selection bias, and the relevance bias.

To formalize the implicit feedback from a user searching for a
given query 𝑞, we consider three events for any given document 𝑑 :
𝐸 is the ‘examination’ of the document 𝑑 , 𝑅 is the ‘relevance’ of 𝑑
in response to 𝑞, and𝐶 corresponds to the ‘click’ of the user on 𝑑 .
While 𝐸 and𝐶 are two binary events (either the user examines or
clicks on the document, or not), the relevance𝑅 is typicallymodelled
as a categorical event, e.g., not relevant, partially relevant, relevant,
and highly relevant. Finally,𝐾 corresponds to the rank at which a
document 𝑑 is ranked in response to the query 𝑞 by the IR system.

The position bias describes the tendency of the users to examine
the ranked documents based on their position. For example, fol-
lowing previous studies on eye-tracking [20], it is more likely that
a user will inspect documents ranked higher. Thus, the probabil-
ity that a user will examine a document depends on the position at
which thedocument is presented, i.e.,𝑃 (𝐸=1|𝐾). Followingprevious
studies [19, 21], it is common to model this probability as inversely
proportional to the position, i.e., 𝑃 (𝐸 = 1|𝐾) = (1/𝐾)𝜂 , where the

parameter 𝜂 describes the ‘patience’ of the user. A patient user that
will look at many documents before stopping can be represented
using a small 𝜂. Vice-versa, an impatient user can be modeled with a
large𝜂. One of themost common de-biasing approaches, the Inverse
Propensity Score (IPS) weighting, consists of dividing the observed
probability by the estimated propensity score [16, 21].

The selection bias corresponds to the fact that only some docu-
ments will be selected by the IR system to be shown to the user. This
bias can be modelled by saying that 𝑃 (𝐸=1|𝐾 ′)=0 for all𝐾 ′ >𝐾 .

The final bias to account for is the relevance bias. This bias models
the fact that relevant documents are more likely to be clicked. In
particular, the probability of a click on a document in response to
a query is conditioned on the document being examined and its
relevance in response to the query, i.e., 𝑃 (𝐶 |𝐸=1,𝑅). How this proba-
bility is estimated corresponds to defining multiple user models. For
example, we can imagine the perfect user for which 𝑃 (𝐶 |𝐸=1,𝑅) ∝𝑅.
The perfect user clicks on a document proportionally to its relevance:
they will never click on a non-relevant document and always click
on a relevant one. Similarly, we can define a “noisy” user who might
click on non-relevant documents or miss relevant ones.

To combine all the different biases, following previous litera-
ture [21, 33], we model the probability 𝑃 (𝐶) that a click will occur
as: 𝑃 (𝐶)=𝑃 (𝐸=1|𝐾)×𝑃 (𝐶 |𝐸=1,𝑅). In other words, the probability
of the click corresponds to the probability of the document being
examined and that the document is clicked, given that it is examined
and has a certain relevance. The advantage of being able to define
such a model and define mathematically the bias underlying the
clicks of the user is that it allows us to define a counterfactual frame-
work [17], where we can account for the bias and remove it from
the observational data that can be collected through a real click-log,
without the need for interventions, such as modifying the SERP for
different users. To estimate such probabilities in a practical scenario,
several approaches can be adopted, such as the use of a supervised
click model [2–4, 12, 14].

2.4 PRF via Implicit Feedback for Dense IR
An interesting application of the counterfactual framework aims to
combine the information gained by considering the clicked docu-
mentswith dense IR. Themost prominent example is theCounterfac-
tual Rocchio (CoRocchio) approach [44]. The CoRocchio approach
extends Rocchio’s algorithm [35] applied to dense IR system pro-
posed by Li et al. [25] to take into account implicit feedback instead
of explicit relevance feedback.

Let R = {𝑑1, ...,𝑑𝑘 } denote the SERP of length 𝑘 returned in re-
sponse to the query 𝑞. Assume a set of usersU has an information
need that can be expressed using the query𝑞. After issuing the query
to the IR system and obtaining the SERP R, each user interacts with
it, producing a click logC𝑢 = {𝑐𝑢,𝑑1 ,...,𝑐𝑢,𝑑𝑘 }.More in detail, the value
of 𝑐𝑢,𝑑 is 1 if the user𝑢 clicks on the document𝑑 ∈R, and 0 otherwise.

Given the dense representation of the query q and free param-
eters 𝛽1,𝛽2 > 0, the CoRocchio approach constructs a new query
representation q∗ as:

q∗=𝛽1q+𝛽2
1
|U|

∑︁
𝑢∈U

∑︁
𝑑∈R

d
𝑝 (𝐸=1|𝑖) 𝑐𝑢,𝑑 ,
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where d is the dense representation of the document 𝑑 while
𝑝 (𝐸=1|𝑖) is the estimated examination propensity at rank 𝑖 . Follow-
ing previous literature, Zhuang et al. [44] approximate 𝑝 (𝐸=1|𝑖) as
(1/𝑖)𝜂 . In other terms, according to theCoRocchio approach, thenew
representation of the query q∗ is a linear combination of the original
representation of the query with the representations of the docu-
ments clicked, weighted by their click frequency debiased through
the IPS. Zhuang et al. prove that if every relevant passage has a
positive examination propensity, CoRocchio provides an unbiased
estimate of the query concerning the propensity.

3 The CoDIME Framework
This section introduces theCoDIMEmethodology and its theoretical
definition. Following the notation introduced in Section 2, we refer
to the list of the top 𝑘 documents retrieved in response to a query
𝑞 as R= {𝑑1,...,𝑑𝑘 }. All usersU who submitted the query 𝑞 interact
withR, each one generating a click logC𝑢 such that 𝑐𝑢,𝑑 is either 1 or
0, depending on whether the user clicked on document 𝑑 ∈R or not.
Based on this historical information, we can compute the observed
frequency of clicks ofU for 𝑞 and 𝑑 as: 𝑓𝑑 = 1

|U |
∑
𝑢∈U𝑐𝑢,𝑑 . In other

terms, 𝑓𝑑 describes the proportion of clicks received by a document
𝑑 ∈ R retrieved in response to 𝑞. Following the implicit feedback
modelling described in Section 2.3, we can expect this frequency to
be somewhat correlated with the relevance of the top 𝑘 documents
retrieved in response to 𝑞, but also with the position at which the
document is shown in the R. As a consequence, we need to debias it.
Akin toCoRocchio, we debias click frequencies using the IPS [16, 21].
The debiased click frequency is thus defined as: 𝑓𝑑 = 𝑓𝑑 · (1/𝑘)−𝜂
Where 𝑘 is the position at which the document 𝑑 was observed in
R and 𝜂 is the propensity parameter. The debiased click frequencies
describe how likely it is that a document is clicked, regardless of
where it is placed in the SERP. Given a query 𝑞 and a document 𝑑
and their respective dense representations q and d, we can define
the interaction𝐻𝑑 between them as the Hadamard product between
their representations. The interaction is a vector, and𝐻𝑑,𝑖 , the 𝑖-th
element of𝐻𝑑 , indicates howmuch the query and the document in-
teract on the 𝑖-th dimension. Assuming each dimension corresponds
to a latent concept, observing strong interaction between the query
and the document on such dimension indicates that the concept is
prime for the query and the document. Conversely, weak interaction
suggests either the document does not concern the concept, or the
concept is irrelevant to the query. By construction, the dot product
between the query and the document corresponds to the sum of the
interaction elements in 𝐻𝑑 . Suppose the query and the document
interact strongly on several dimensions: we can assume they are
aligned, and the document is likely ranked highly.

Finally, we define
(
𝑓𝑑1 ,...,𝑓𝑑𝑘

)
as the list of debiased click frequen-

cies of the top 𝑘 documents for 𝑞, included in R.

3.1 Magnitude-based CoDIMEApproaches
Basedonourdefinitionof thedebiased click frequencies 𝑓𝑑 and the in-
teraction𝐻𝑑 ,wecandefine twoCoDIMEs that employ themagnitude
of the interaction as an indicator of the importance of the dimensions.

Weighted Average CoDIME. This CoDIME, dubbed CoDIME𝑤𝑎𝑣𝑔 ,
is inspiredbyCoRocchio[44], and it reliesoncomputing theweighted

centroidof the interactionmatrix to identify themost relevantdimen-
sions. More in detail, the importance of each dimension is computed
as the average of the interactions between the query and the docu-
ments on such dimensions weighted by the debiased click frequency
of the documents. Formally, given a dimension 𝑖 ∈ {1,...,ℎ} of a rep-
resentation, its importance according to CoDIME𝑤𝑎𝑣𝑔 is defined as:

𝐶𝑜𝐷𝐼𝑀𝐸𝑤𝑎𝑣𝑔 (𝑖)=
1
𝑘

∑︁
𝑑∈R

𝐻𝑑,𝑖 · 𝑓𝑑

In other terms, the importance of all dimensions can be derived by
considering the centroid of the documents in the click log, weighted
by their debiased click frequency. This mimics the feedback used
by CoRocchio. The major difference between the two approaches
is how the feedback is used. In the case of CoRocchio, this vector
is linearly combined with the query vector. For CoDIME𝑤𝑎𝑣𝑔 , the
feedback vector is used to identify the most relevant dimensions of
the query representation and discard all the dimensions that are not
important, leaving the others unaltered.

WeightedMaxCoDIME. TheWeightedAverageCoDIMEdescribed
above might fail to treat unclicked documents correctly. Assume
that a single document of those shown to the user is clicked. This
would deflate theWeighted Average CoDIME, as several inputs of
the average sumwould be zeros. Similarly, assume a faceted query is
issued to the IR system. In such cases, documentsmight have orthog-
onal representations, insisting on different dimensions, all equally
important for the query.When using the average, the contribution of
such dimensions might be decreased due to the orthogonality of the
documents. Tomitigate these phenomena, we propose to replace the
mean aggregation with the maximum. TheWeighted Max CoDIME,
or CoDIME𝑤𝑚𝑎𝑥 , is formally defined as follows:

𝐶𝑜𝐷𝐼𝑀𝐸𝑤𝑚𝑎𝑥 (𝑖)=max
𝑑∈R

𝐻𝑑,𝑖 · 𝑓𝑑

3.2 Linear CoDIMEApproaches
Linear CoDIME approaches estimate the importance of a dimension
for a query by examining the linear correlation between the dimen-
sion’s interaction and the debiased click frequencyon the documents.
In other words, consider a scenario where the query and a document
exhibit strong interaction on a particular dimension. This indicates
that the dimension heavily impacts the document’s position within
the ranking constructed in response to the query. Consider now
the debiased click frequency on such a document. If the document
is clicked often—regardless of its position— the document is more
likely to be relevant and should be ranked high. Vice-versa, if this
document is rarely clicked, excluding it from the top-ranked ones
would be better. Thus, if the interaction on a dimension between a
clicked-often document and the query is big, then such a dimension
is likely to be important. On the contrary, if the document is clicked
often but the interaction is small, or if the document is clicked rarely
and the interaction is large, there is amisalignment that suggests the
dimension is noisy and should be removed from the representation.

Correlation CoDIME. The first linear CoDIME is inspired by the
Oracle DIME as proposed by Faggioli et al. [13]. More in detail, we
define 𝑓 and𝐻 𝑖 as themean debiased click frequency and the interac-
tion on the 𝑖-th component for a given query and the corresponding
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retrieveddocuments, respectively.Called𝜌 thePearson’s correlation,
the Correlation CoDIME, or CoDIME𝑐𝑜𝑟𝑟 , is defined as follows:

𝐶𝑜𝐷𝐼𝑀𝐸𝑐𝑜𝑟𝑟 (𝑖)=𝜌
(
(𝑓𝑑1 ,...,𝑓𝑑𝑘 ),(𝐻𝑑1,𝑖 ,...,𝐻𝑑𝑘 ,𝑖 )

)
=

∑
𝑑∈R (𝑓𝑑− 𝑓 ) (𝐻𝑑,𝑖−𝐻 𝑖 )√︃∑

𝑑∈R (𝑓𝑑− 𝑓 )2
√︃∑

𝑑∈R (𝐻𝑑,𝑖−𝐻 𝑖 )2
.

This CoDIME quantifies the linear correlation between the in-
teractions on a given dimension and the debiased click frequencies
as their Pearson’s 𝜌 correlation. If the interaction on a dimension
between the query and the documents aligns with the debiased click
frequencies on such documents, the importance will be 1, and the
dimension likely belongs to the optimal subspace. If the interaction
and the debiased click probability are uncorrelated, the importance
of the dimension will be zero. Finally, when the interaction and the
debiased click probability have a negative relation, the importance
is negative, and the dimension will likely be discarded.

Slope CoDIME. One of the major limitations of the Correlation
CoDIME is that it cannot consider how fast the interactions and the
click frequencies tend to vary. In fact, the linear model that best fits
the points might be more or less steep. A steeper linear model indi-
cates that the dimension is better at separating the good and the bad
documents. Vice-versa, if the linear model grows slowly, it is harder
to separate documents clicked often from rarely clicked documents.
The value of the CorrelationCoDIME does not depend on such steep-
ness, but only on howwell a linear model fits the data. Therefore, we
propose a second linear CoDIME that explicitly quantifies the dimen-
sion’s importance based on the slope of the linear model that best
fits the data according to the Ordinary Least Square (OLS) approach.

In more detail, let us call H𝑖 ∈ R𝑘×2 a matrix such that its first
column contains 𝑘 1s and the second column contains the values
𝐻𝑑1,𝑖 , ... , 𝐻𝑑𝑘 ,𝑖 . This is the regressor matrix, while we treat f =

[𝑓𝑑1 ,..., 𝑓𝑑𝑘 ]
⊤ as the response variable. We fit a linear model using

the OLS approach by computing b𝑖 ∈R2: b𝑖 = (H⊤
𝑖
H𝑖 )−1H⊤

𝑖
f . Since

we added a column of ones to the regressor matrix, the first element
𝑏𝑖,1 of b𝑖 is the intercept of the OLS linear model while the second
element 𝑏𝑖,2 of b𝑖 is the slope.2 The CoDIME𝑠𝑙𝑜𝑝𝑒 is defined as:

𝐶𝑜𝐷𝐼𝑀𝐸𝑠𝑙𝑜𝑝𝑒 (𝑖)=𝑏𝑖,2 .
Figure 1 reports an illustrative visual comparison between differ-

ent dimensions and how they would be considered based on the Lin-
ear CoDIMEs. Each plot represents a different dimension, and each
dot represents a document. The debiased click frequency is reported
on the𝑦-axis of the figure, while, on the 𝑥-axis, we have the interac-
tion between the document and the query (i.e., the values in the in-
teraction𝐻𝑖 ). Based on our intuition, the scenario depicted in Figure
1a describes a harmful dimension. The query and documents interac-
tionand thedebiased click frequencyare inverselyproportional. This
means that the dimension pushes up documents with low debiased
click frequency and ranks low those clicked often. Correlation and
Slope CoDIMEwould assign a negative score to this dimension and
likely remove it. Subsequently, Figure 1b illustrates what happens
for a non-informative dimension: the debiased click frequency and
the interaction values are completely uncorrelated. This suggests
2We also experimented with a linear model without the intercept, obtaining slightly
inferior empirical results.

f

Hi

(a) A bad dimension.

f

Hi

(b) An useless dimension.

f

Hi

(c) A good dimension

f

Hi

(d) A very good dimension

Figure 1: A comparison between dimensions. Each dot represents a
document in R. The 𝑦-axis reports the debiased click frequencies (𝑓𝑑1 ,...,𝑓𝑑𝑘 )
and the 𝑥-axis reports the interaction values 𝐻𝑑1,𝑖 , ... , 𝐻𝑑𝑘 ,𝑖

. The more the
query-documents interaction on a dimension separates often and rarely
clicked documents, the better such dimension is.

that the dimension does not help separate documents that are more
likely to be clicked and documents that would not be clicked. Both
Linear CoDIMEswould assign a score close to zero to this dimension.
Finally, Figures 1c and 1d depict dimensions onwhich the interaction
between thequery and thedocuments helps separate documents that
are likely to be clicked from those that are not. The major difference
between Figure 1c and 1d lies in the scores that would be assigned by
theCoDIMEs. In both cases, the CorrelationCoDIMEwould assign a
score of 1, as the linear correlation is positive and perfect. Vice versa,
the SlopeCoDIMEwould assign a larger score to the dimension illus-
trated in Figure 1d. This behavior lets us recognize better dimensions
that best separate frequently and rarely clicked documents.

3.3 On the optimal dimension cutoff
AllDIMEsandourCoDIMEsarebasedonpreserving themost impor-
tant dimensions of the query and documents’ representations while
discarding the least important ones by setting them to 0. This ap-
proach requires a cutoff𝛼 to decide howmany dimensions should be
kept. Faggioli et al. [13] didnot investigate how to tune such𝛼 : as a re-
sult, they reported theperformance at various𝛼 levels.Wepropose to
choose the optimal𝛼 based on cross-validation.More in detail, we di-
vide thequeries in𝑚 folds (5 inourexperimental section), identify the
best𝛼 byaveraging the results across𝑚−1 folds, use theperformance
corresponding to such 𝛼 on the remaining fold as the test effective-
ness, and repeat the procedure using each fold as the test. In practice,
this can be implemented using a historical set of annotated queries.

4 Experimental Evaluation
4.1 Experimental Setup
to assess the proposed counterfactual strategy we consider three
well-known state-of-the-art dense encoders: Contriever [18], TAS-
B [15], and Dragon [26], fine-tuned on MSMARCO.3 While Con-
triever and TAS-B are based on a symmetric query and document
3We use the model weights publicly available on https://huggingface.co/

https://huggingface.co/
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encoder, Dragon uses a different encoder for queries and documents.
Experiments are conducted on three well-known TREC collections:
TREC Robust 2004 (Robust ‘04) [41], TREC Deep Learning 2019 (DL
‘19) [8], and TREC Deep Learning 2020 (DL ‘20) [7]. The Robust ‘04
collection contains 249 topics and is based on the Tipster disks 4 and
5 corpus of documents, minus the congressual records. Notice that,
since the dense models have been trained on a different corpus and
with different types of texts – passages instead of documents – this
collection can be considered as an out-of-domain scenario. On the
contrary, DL ‘19 and DL ‘20 contain 43 and 54 topics respectively
and are based on the MSMARCO passages corpus; therefore, they
are in-domain applications of the dense models.

The parameter𝜂, describing the user’s patience in clicking a docu-
ment of the SERP, is set to 1, while themaximum depth of inspection
is set to 20 documents unless specified differently. Furthermore, the
experiments are conducted by repeating 1000 times for each topic the
simulation of the click log. Differently from Faggioli et al. [13], our
CoDIMEs strategies choose the fraction 𝛼 of representation dimen-
sion retained by applying a 5-fold cross-validation on the validation
set (see Section 3.3). The code and the data are publicly released.4

4.2 Click Logs Simulation
TheCoDIMEapproachesarebasedonhistoricaluser feedbackneeded
to instantiate the counterfactual framework and estimate the click
probabilities. In a real-world deploymentwith a consistent user base,
click logs are easy to collect and use for our purposes. In our exper-
imental analysis, we use the TREC Deep Learning (DL) collections,
which are based on the MSMARCO dataset. While the MSMARCO
dataset has an associated click log, the ORCAS dataset [6], such a
click log is not suited for our case study. This log reports, in fact,
information about clicked query and document pairs, but this infor-
mation is not aligned with the TREC DL collections. Moreover, the
clicks refer to entire documents and not to passages as the TREC
DL collections, and any detail on the documents’ presentation or-
der is missing, preventing us from estimating the propensity bias.
Other datasets, such as the one used for the PersonalizedWeb Search
Challenge5, do not report the textual content of the documents and
queries, nor the relevance assessments. These two characteristics
make it impossible to compute the dense vectors used as the basis
of the CoDIME framework, and it prevents us from computing the
measures traditionally used in offline evaluation.

Thus, following the previous literature [19, 21, 29–31, 42, 44–46]
on counterfactual implicit feedback and learning to rank, we simu-
late the interaction of the users with the documents to generate a set
of synthetic click logs. More in detail, following previous work, to
generate the synthetic click log, we need to simulate i) the selection
bias, ii) the position bias, and iii) the relevance bias.

The selection bias is implemented by assuming that every user
interacts and inspects the SERP up to the document in position𝑘′. To
simulate the click propensity, akin to the literature on counterfactual
learning-to-rank [19, 21], we model 𝑝𝑒,𝑖 , the probability of examina-
tion, as inversely proportional to the position, i.e., 𝑝𝑒 (𝑘)=

(
1
𝑘

)𝜂
. To

simulate the relevance bias, we need to model 𝑝𝑟 (𝑞,𝑑), the probabil-
ity that the user will click on a document 𝑑 , given its relevance to 𝑞.
4https://github.com/guglielmof/25-SIGIR-FFPT
5https://www.kaggle.com/c/yandex-personalized-web-search-challenge

More in detail, we consider three ideal user models: the perfect user
(P)whose click probability is directly proportional to the relevance of
the document; the binarized user (B) that, clicks on a non-relevant or
partially relevant document with probability 0.1 and clicks on a rele-
vant or highly relevant documentwith probability 1; thenear random
user (R) that clicks on a non-relevant document with probability 0.4
and clicks on ahighly relevant documentwith probability 0.6. Table 1
reports the click probabilities for the usermodels described above for
a four-grade relevance assessments collection. For the perfect and
near-randomusers, the probabilities are a linear spacing between the
minimum and maximum probabilities, respectively 0 and 1 and 0.4
and 0.6, with asmany steps as the relevance grades. For the binarized
user, the click probability of a document with relevance within the
lowest half of the grades is set to 0.1; otherwise, it is set to 1.

Thus, the simulated click probability is computed as: 𝑝𝑐 (𝑞,𝑑,𝑘)=
𝑝𝑟 (𝑞,𝑑) ·𝑝𝑒 (𝑘). In other terms, to simulate the click of a user on a
document 𝑑 retrieved in position 𝑘 in response to the query 𝑞, we
combine, by multiplying, the probability that the user will click on
such document given its relevance to the query (i.e., the relevance
bias) and the probability that the user will click on a document in
position 𝑘 , regardless of its relevance (i.e., the position bias).

Table 1: Click probabilities for the simulation for a four-grade relevance
labels collection (e.g., DL ‘19 and DL ‘20).

document relevance
user model non-relevant partially relevant relevant highly relevant

Perfect (P) 0.00 0.33 0.67 1.00
Binarized (B) 0.10 0.10 1.00 1.00

Near Random (R) 0.40 0.47 0.53 0.60

4.3 Considered baselines
Vector PRF (VPRF) [25]. We employ the Rocchio variant of VPRF

described by Li et al. [25] which combines linearly the centroid of
the top-𝑘 documents retrieved with the query vector. We use 𝛼 =0.4
and 𝛽 =0.6, following Li et al.. Furthermore, we test both with 𝑘 =20
(VPRF-20) to be comparablewith the other approaches, but alsowith
𝑘 =5 (VPRF-5), being the most effective setting according to Li et al..
An important note on VPRF is that it is ineffective by construction
with asymmetric encoders such asDragon. In fact, for such encoders,
documents’ and queries’ representations lie on two different latent
spaces; thus, their linear combination produces a resulting vector
that is semantically not meaningful. To address this limitation, for
Dragon, during the query expansion phase, we employ the query
encoder for both the query and the feedback documents.

LLMDIME[13]. TheLLMDIMEemploysaLLMgeneratedpseudo-
relevant document as feedback. In particular, according to thisDIME,
the importance of the 𝑖-th dimension is the interaction between the
query and the document on such dimension, i.e., the product of the
values of the query and document representations on that dimension.
To generate the pseudo-relevant documents, we use LLama 3.1 [11]
with 70B parameters.6

PRF DIME [13]. The PRF DIME estimates the importance of a di-
mension as the magnitude in such dimension of the centroid of the
interaction vectors between the top-k documents and the query.
6https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct

https://github.com/guglielmof/25-SIGIR-FFPT
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
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CoRocchio [44]. The approach is described in Section 2.4. Akin to
VPRF, this approach combines the representation of the query and
the documents and fails with asymmetric encoders. Therefore, for
asymmetric encoders, we use the query encoder for both the query
and the feedback documents.

Since our approach is unsupervised anddoesnot require any train-
ing, we do not compare with supervised Counterfactual Learning-
to-Rank solutions [19, 21, 29–31, 42, 45, 46].

4.4 Performance

Table 2: Performance comparison on DL ‘19. In bold the most effective
approach, underlined the runner-up. The top-tier according to an ANOVAwith
Tukey’s HSD post-hoc test at a significance level of 0.05 is marked with ∗. P,
B, and R are the Perfect, Binarized, and Near Random usermodels.

Contriever Dragon TAS-B
P B R P B R P B R

nDCG@10

retrieval only 0.674 0.674 0.674 0.740 0.740 0.740 0.717 0.717 0.717
VPRF-5 0.664 0.664 0.664 0.752 0.752 0.752 0.721 0.721 0.721
VPRF-20 0.636 0.636 0.636 0.732 0.732 0.732 0.667 0.667 0.667

DIME𝐿𝐿𝑀 0.742 0.742 0.742∗ 0.767 0.767 0.767 0.749 0.749 0.749
DIME𝑃𝑅𝐹 0.668 0.668 0.668 0.740 0.740 0.740 0.717 0.717 0.717
CoRocchio 0.804∗ 0.766∗ 0.632 0.830 0.824∗ 0.724 0.810∗ 0.780∗ 0.665

CoDIME𝑤𝑎𝑣𝑔 0.759 0.747 0.752∗ 0.764 0.780 0.762 0.749 0.749 0.747
CoDIME𝑤𝑚𝑎𝑥 0.774 0.760∗ 0.730 0.748 0.751 0.742 0.800∗ 0.774∗ 0.774∗
CoDIME𝑐𝑜𝑟𝑟 0.851∗ 0.828∗ 0.810∗ 0.891∗ 0.854∗ 0.831∗ 0.856∗ 0.835∗ 0.804∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.855∗ 0.829∗ 0.809∗ 0.897∗ 0.854∗ 0.842∗ 0.863∗ 0.839∗ 0.821∗

nDCG@20

retrieval only 0.655 0.655 0.655 0.726 0.726 0.726 0.679 0.679 0.679
VPRF-5 0.656 0.656 0.656 0.743 0.743 0.743∗ 0.701 0.701 0.701
VPRF-20 0.643 0.643 0.643 0.717 0.717 0.717 0.651 0.651 0.651

DIME𝐿𝐿𝑀 0.710 0.710 0.710 0.746 0.746 0.746∗ 0.724 0.724 0.724∗
DIME𝑃𝑅𝐹 0.655 0.655 0.655 0.726 0.726 0.726 0.682 0.682 0.682
CoRocchio 0.761∗ 0.729∗ 0.634 0.805∗ 0.796∗ 0.721 0.771∗ 0.746∗ 0.642

CoDIME𝑤𝑎𝑣𝑔 0.724 0.719∗ 0.711∗ 0.728 0.742 0.717 0.700 0.715 0.704
CoDIME𝑤𝑚𝑎𝑥 0.745∗ 0.740∗ 0.710 0.735 0.732 0.737 0.747 0.738∗ 0.734∗
CoDIME𝑐𝑜𝑟𝑟 0.796∗ 0.786∗ 0.777∗ 0.830∗ 0.815∗ 0.792∗ 0.807∗ 0.781∗ 0.760∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.796∗ 0.774∗ 0.770∗ 0.838∗ 0.817∗ 0.793∗ 0.821∗ 0.785∗ 0.775∗

nDCG@50

retrieval only 0.642 0.642 0.642 0.686 0.686 0.686 0.650 0.650 0.650
VPRF-5 0.644 0.644 0.644 0.718 0.718 0.718∗ 0.677 0.677∗ 0.677∗
VPRF-20 0.637 0.637 0.637 0.698 0.698 0.698 0.641 0.641 0.641

DIME𝐿𝐿𝑀 0.686∗ 0.686∗ 0.686∗ 0.709 0.709 0.709∗ 0.693∗ 0.693∗ 0.693∗
DIME𝑃𝑅𝐹 0.647 0.647 0.647 0.686 0.686 0.686 0.653 0.653 0.653
CoRocchio 0.737∗ 0.708∗ 0.625 0.772∗ 0.767∗ 0.698 0.741∗ 0.723∗ 0.626

CoDIME𝑤𝑎𝑣𝑔 0.681∗ 0.684∗ 0.665∗ 0.696 0.704 0.681 0.659 0.671∗ 0.666
CoDIME𝑤𝑚𝑎𝑥 0.712∗ 0.706∗ 0.675∗ 0.689 0.693 0.692 0.722∗ 0.708∗ 0.711∗
CoDIME𝑐𝑜𝑟𝑟 0.743∗ 0.735∗ 0.721∗ 0.778∗ 0.764∗ 0.751∗ 0.745∗ 0.725∗ 0.712∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.741∗ 0.721∗ 0.715∗ 0.766∗ 0.763∗ 0.754∗ 0.747∗ 0.729∗ 0.733∗

nDCG@100

retrieval only 0.634 0.634 0.634 0.673 0.673 0.673 0.637 0.637 0.637
VPRF-5 0.647 0.647 0.647 0.703 0.703 0.703∗ 0.667 0.667∗ 0.667∗
VPRF-20 0.636 0.636 0.636 0.692 0.692 0.692∗ 0.636 0.636 0.636

DIME𝐿𝐿𝑀 0.676∗ 0.676∗ 0.676∗ 0.700 0.700 0.700∗ 0.684∗ 0.684∗ 0.684∗
DIME𝑃𝑅𝐹 0.643 0.643 0.643 0.673 0.673 0.673 0.647 0.647 0.647
CoRocchio 0.733∗ 0.703∗ 0.628 0.757∗ 0.750∗ 0.689∗ 0.726∗ 0.710∗ 0.621

CoDIME𝑤𝑎𝑣𝑔 0.669 0.675∗ 0.655 0.669 0.683 0.668 0.626 0.652 0.644
CoDIME𝑤𝑚𝑎𝑥 0.698∗ 0.692∗ 0.666∗ 0.673 0.676 0.669 0.702∗ 0.696∗ 0.686∗
CoDIME𝑐𝑜𝑟𝑟 0.734∗ 0.716∗ 0.708∗ 0.747∗ 0.741∗ 0.729∗ 0.725∗ 0.711∗ 0.703∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.735∗ 0.723∗ 0.699∗ 0.739∗ 0.739∗ 0.726∗ 0.723∗ 0.711∗ 0.712∗

As a first experiment, we report the comparison in terms of effec-
tiveness between the different approaches. Tables 2, 3, and 4 report
the effectiveness of our solution and the competitors on DL ‘19, DL
‘20 and Robust ‘04 collections, respectively. In bold, we report the
highest performance achieved, underlined the runner-up. At the
same time, the symbol ∗ denotes the top tier of systems (i.e., the set

Table 3: Performance comparison on DL ‘20. In bold the most effective
approach, underlined the runner-up. The top-tier according to an ANOVAwith
Tukey’s HSD post-hoc test at a significance level of 0.05 is marked with ∗. P,
B, and R are the Perfect, Binarized, and Near Random usermodels.

Contriever Dragon TAS-B
P B R P B R P B R

nDCG@10

retrieval only 0.672 0.672 0.672 0.718 0.718 0.718 0.684 0.684 0.684
VPRF-5 0.693 0.693 0.693 0.722 0.722 0.722 0.695 0.695 0.695
VPRF-20 0.647 0.647 0.647 0.707 0.707 0.707 0.649 0.649 0.649

DIME𝐿𝐿𝑀 0.717 0.717 0.717 0.750 0.750 0.750 0.712 0.712 0.712
DIME𝑃𝑅𝐹 0.663 0.663 0.663 0.718 0.718 0.718 0.679 0.679 0.679
CoRocchio 0.793∗ 0.780∗ 0.633 0.833 0.825∗ 0.703 0.807∗ 0.785∗ 0.628

CoDIME𝑤𝑎𝑣𝑔 0.741 0.757 0.745 0.738 0.731 0.740 0.713 0.719 0.718
CoDIME𝑤𝑚𝑎𝑥 0.774∗ 0.752 0.756∗ 0.732 0.731 0.732 0.794∗ 0.787∗ 0.779∗
CoDIME𝑐𝑜𝑟𝑟 0.822∗ 0.822∗ 0.797∗ 0.883∗ 0.872∗ 0.838∗ 0.849∗ 0.829∗ 0.808∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.820∗ 0.824∗ 0.806∗ 0.885∗ 0.863∗ 0.839∗ 0.861∗ 0.848∗ 0.813∗

nDCG@20

retrieval only 0.662 0.662 0.662 0.692 0.692 0.692 0.658 0.658 0.658
VPRF-5 0.667 0.667 0.667 0.701 0.701 0.701 0.666 0.666 0.666
VPRF-20 0.644 0.644 0.644 0.692 0.692 0.692 0.633 0.633 0.633

DIME𝐿𝐿𝑀 0.678 0.678 0.678 0.715 0.715 0.715 0.683 0.683 0.683
DIME𝑃𝑅𝐹 0.672 0.672 0.672 0.692 0.692 0.692 0.661 0.661 0.661
CoRocchio 0.746∗ 0.733∗ 0.625 0.784∗ 0.774∗ 0.688 0.755∗ 0.725∗ 0.608

CoDIME𝑤𝑎𝑣𝑔 0.698 0.712∗ 0.699 0.700 0.684 0.692 0.659 0.649 0.648
CoDIME𝑤𝑚𝑎𝑥 0.714 0.705 0.706∗ 0.711 0.705 0.703 0.730∗ 0.730∗ 0.724∗
CoDIME𝑐𝑜𝑟𝑟 0.767∗ 0.754∗ 0.750∗ 0.806∗ 0.801∗ 0.774∗ 0.783∗ 0.746∗ 0.757∗

CoDIME𝑠𝑙𝑜𝑝𝑒 0.756∗ 0.749∗ 0.749∗ 0.801∗ 0.795∗ 0.767∗ 0.782∗ 0.776∗ 0.751∗

nDCG@50

retrieval only 0.635 0.635 0.635 0.671 0.671 0.671 0.631 0.631 0.631
VPRF-5 0.643 0.643 0.643 0.681 0.681 0.681 0.640 0.640 0.640
VPRF-20 0.622 0.622 0.622 0.675 0.675 0.675 0.609 0.609 0.609

DIME𝐿𝐿𝑀 0.657 0.657∗ 0.657∗ 0.686 0.686 0.686∗ 0.663 0.663 0.663∗
DIME𝑃𝑅𝐹 0.642 0.642 0.642 0.671 0.671 0.671 0.631 0.631 0.631
CoRocchio 0.707∗ 0.691∗ 0.607 0.745∗ 0.732∗ 0.663 0.718∗ 0.691∗ 0.593

CoDIME𝑤𝑎𝑣𝑔 0.651 0.662∗ 0.647 0.671 0.671 0.671 0.615 0.613 0.614
CoDIME𝑤𝑚𝑎𝑥 0.673∗ 0.665∗ 0.672∗ 0.677 0.675 0.675 0.683∗ 0.688∗ 0.675∗
CoDIME𝑐𝑜𝑟𝑟 0.698∗ 0.691∗ 0.689∗ 0.743∗ 0.728∗ 0.720∗ 0.715∗ 0.696∗ 0.697∗

CoDIME𝑠𝑙𝑜𝑝𝑒 0.693∗ 0.688∗ 0.682∗ 0.735∗ 0.731∗ 0.718∗ 0.721∗ 0.714∗ 0.694∗

nDCG@100

retrieval only 0.628 0.628 0.628 0.659 0.659 0.659 0.633 0.633 0.633
VPRF-5 0.639 0.639 0.639 0.674 0.674 0.674∗ 0.644 0.644 0.644∗
VPRF-20 0.618 0.618 0.618 0.667 0.667 0.667 0.616 0.616 0.616

DIME𝐿𝐿𝑀 0.661∗ 0.661∗ 0.661∗ 0.678 0.678 0.678∗ 0.659 0.659 0.659∗
DIME𝑃𝑅𝐹 0.637 0.637 0.637 0.659 0.659 0.659 0.638 0.638 0.638∗
CoRocchio 0.700∗ 0.690∗ 0.605 0.738∗ 0.725∗ 0.658 0.715∗ 0.692∗ 0.595

CoDIME𝑤𝑎𝑣𝑔 0.644 0.652 0.642 0.659 0.659 0.659 0.622 0.622 0.621
CoDIME𝑤𝑚𝑎𝑥 0.664∗ 0.666∗ 0.658∗ 0.661 0.658 0.662 0.672∗ 0.677∗ 0.673∗
CoDIME𝑐𝑜𝑟𝑟 0.689∗ 0.687∗ 0.680∗ 0.723∗ 0.721∗ 0.705∗ 0.707∗ 0.686∗ 0.680∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.683∗ 0.680∗ 0.674∗ 0.717∗ 0.714∗ 0.702∗ 0.703∗ 0.699∗ 0.681∗

of systems deemed statistically not distinguishable) according to
an ANalysis Of the VAriance (ANOVA) [37] with Tukey’s Honestly
Significant Differences (HSD) [38] pairwise multiple comparison
test and significance level of 0.05. The columns (P, B, and R) cor-
respond respectively to Perfect, Binarized, andNear Random users.
Within each measure, the first line reports the performance of the
base encoder. Notice that some of the baselines (the encoder itself,
VPRF, DIME𝐿𝐿𝑀 and DIME𝑃𝑅𝐹 ) are not based on users’ clicks, and
thus, they are not affected by the user model, and their performance
is the same across all user models.

For what concerns the DL ‘19 collection (Table 2), we notice that
the most effective approaches for nDCG@10 and nDCG@20 are
thosebasedontheLinearCoDIMEs (CoDIME𝑐𝑜𝑟𝑟 andCoDIME𝑠𝑙𝑜𝑝𝑒 ).
Both approaches have comparable performance, with no clear dom-
inance between the two: in all the cases, the two approaches are
statistically equivalent according to the chosen statistical testing
procedure. In general, the approaches based on the weighted mag-
nitude of the dimensions (CoDIME𝑤𝑎𝑣𝑔 and CoDIME𝑤𝑚𝑎𝑥 ) tend to



SIGIR ’25, July 13–18, 2025, Padua, Italy Guglielmo Faggioli, Nicola Ferro, Raffaele Perego, and Nicola Tonellotto

Table 4: Performance comparison on Robust ‘04. In bold themost effective
approach, underlined the runner-up. The top-tier according to an ANOVAwith
Tukey’s HSD post-hoc test at a significance level of 0.05 is marked with ∗. P,
B, and R are the Perfect, Binarized, and Near Random usermodels.

Contriever Dragon TAS-B
P B R P B R P B R

nDCG@10

retrieval only 0.465 0.465 0.465 0.461 0.461 0.461 0.447 0.447 0.447
VPRF-5 0.474 0.474 0.474 0.447 0.447 0.447 0.470 0.470 0.470
VPRF-20 0.469 0.469 0.469 0.434 0.434 0.434 0.411 0.411 0.411

DIME𝐿𝐿𝑀 0.515 0.515 0.515 0.478 0.478 0.478 0.485 0.485 0.485
DIME𝑃𝑅𝐹 0.479 0.479 0.479 0.461 0.461 0.461 0.450 0.450 0.450
CoRocchio 0.687 0.639 0.456 0.649 0.605 0.404 0.648 0.599 0.389

CoDIME𝑤𝑎𝑣𝑔 0.456 0.609 0.474 0.461 0.482 0.461 0.447 0.589 0.443
CoDIME𝑤𝑚𝑎𝑥 0.535 0.620 0.553 0.491 0.489 0.491 0.524 0.578 0.519
CoDIME𝑐𝑜𝑟𝑟 0.737∗ 0.723∗ 0.643∗ 0.725∗ 0.714∗ 0.625∗ 0.685∗ 0.677∗ 0.604∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.734∗ 0.725∗ 0.648∗ 0.734∗ 0.726∗ 0.639∗ 0.699∗ 0.689∗ 0.618∗

nDCG@20

retrieval only 0.435 0.435 0.435 0.425 0.425 0.425 0.406 0.406 0.406
VPRF-5 0.446 0.446 0.446 0.422 0.422 0.422 0.435 0.435 0.435
VPRF-20 0.439 0.439 0.439 0.405 0.405 0.405 0.387 0.387 0.387

DIME𝐿𝐿𝑀 0.475 0.475 0.475 0.439 0.439 0.439 0.441 0.441 0.441
DIME𝑃𝑅𝐹 0.450 0.450 0.450 0.425 0.425 0.425 0.412 0.412 0.412
CoRocchio 0.605 0.568 0.425 0.571 0.541 0.385 0.566 0.528 0.364

CoDIME𝑤𝑎𝑣𝑔 0.435 0.536 0.435 0.425 0.434 0.425 0.406 0.518 0.406
CoDIME𝑤𝑚𝑎𝑥 0.475 0.553 0.489 0.443 0.444 0.440 0.459 0.504 0.457
CoDIME𝑐𝑜𝑟𝑟 0.650∗ 0.642∗ 0.568∗ 0.635∗ 0.631∗ 0.549∗ 0.601∗ 0.597∗ 0.520∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.649∗ 0.646∗ 0.567∗ 0.642∗ 0.641∗ 0.554∗ 0.614∗ 0.607∗ 0.539∗

nDCG@50

retrieval only 0.406 0.406 0.406 0.389 0.389 0.389 0.376 0.376 0.376
VPRF-5 0.415 0.415 0.415 0.392 0.392 0.392 0.397 0.397 0.397
VPRF-20 0.411 0.411 0.411 0.386 0.386 0.386 0.364 0.364 0.364

DIME𝐿𝐿𝑀 0.440 0.440 0.440 0.403 0.403 0.403 0.409 0.409 0.409
DIME𝑃𝑅𝐹 0.427 0.427 0.427 0.389 0.389 0.389 0.388 0.388 0.388
CoRocchio 0.539 0.505 0.390 0.500 0.471 0.357 0.496 0.462 0.330

CoDIME𝑤𝑎𝑣𝑔 0.406 0.467 0.406 0.389 0.387 0.389 0.376 0.442 0.376
CoDIME𝑤𝑚𝑎𝑥 0.423 0.488 0.434 0.400 0.400 0.397 0.402 0.445 0.400
CoDIME𝑐𝑜𝑟𝑟 0.565∗ 0.560∗ 0.498∗ 0.536∗ 0.536∗ 0.475∗ 0.514∗ 0.508∗ 0.448∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.567∗ 0.560∗ 0.496∗ 0.553∗ 0.554∗ 0.483∗ 0.528∗ 0.523∗ 0.465∗

nDCG@100

retrieval only 0.412 0.412 0.412 0.392 0.392 0.392 0.381 0.381 0.381
VPRF-5 0.420 0.420 0.420 0.393 0.393 0.393 0.400 0.400 0.400
VPRF-20 0.414 0.414 0.414 0.388 0.388 0.388 0.369 0.369 0.369

DIME𝐿𝐿𝑀 0.441 0.441 0.441 0.406 0.406 0.406 0.414 0.414 0.414
DIME𝑃𝑅𝐹 0.428 0.428 0.428 0.392 0.392 0.392 0.391 0.391 0.391
CoRocchio 0.525 0.495 0.390 0.488 0.460 0.356 0.487 0.453 0.333

CoDIME𝑤𝑎𝑣𝑔 0.412 0.456 0.412 0.392 0.392 0.392 0.381 0.424 0.381
CoDIME𝑤𝑚𝑎𝑥 0.424 0.484 0.435 0.401 0.401 0.401 0.399 0.437 0.401
CoDIME𝑐𝑜𝑟𝑟 0.549∗ 0.543∗ 0.488∗ 0.520∗ 0.516∗ 0.464∗ 0.496∗ 0.491∗ 0.438∗
CoDIME𝑠𝑙𝑜𝑝𝑒 0.550∗ 0.545∗ 0.489∗ 0.535∗ 0.535∗ 0.474∗ 0.508∗ 0.503∗ 0.448∗

be far less effective and are generally surpassed by the CoRocchio
baseline. Comparing the Linear CoDIMEs with the most effective
baseline, CoRocchio, we notice that the CoDIMEs are almost always
more effective than CoRocchio for cutoffs lower than 100 (the only
exception is Dragon with nDCG@50 and the binarized model). If we
considernDCG@100,CoRocchio ismoreeffective than theCoDIMEs
in the case of TAS-B and Dragon with a perfect or binarized user
model but the difference is not statistically significant and small (0.01
or less nDCG@100 points). Compared to CoRocchio, all CoDIMEs
are less vulnerable to changes in the user model considered. In fact,
for CoRocchio, when moving from the perfect to the near-random
user model, we notice a performance drop which is in the range
of 10 to 15 points, depending on the considered measure or cutoff.
Vice versa, the CoDIMEs tends to be stable, with variations between
the perfect and near-random users in the 1-3 points range, up to
5 points in the worst scenarios. This is a desirable property: in a
real-world scenario, where the clicks are far more affected by noise

than in a simulated environment, amore stable solution as the Linear
CoDIMEs offers better guarantees of a good performance.

In line with the tests on DL ‘19, for DL ‘20 (Table 3), the CoDIME
approaches are particularly effective with the binarized and random
user models and measures at small cutoffs. With cutoffs equal to or
above 50, the CoRocchio approach is more effective in the case of the
perfect user model. Nevertheless, the difference is not statistically
significant and generally small (0.015-0.002 nDCG points).

The effectiveness of the CoDIME approach is even more evident
when we consider Robust ‘04 (Table and 4). In this case, the linear
CoDIMEs, especially CoDIME𝑠𝑙𝑜𝑝𝑒 , are always the best. Further-
more, in every case, this difference is statistically significant. This
is in line with what was observed by Faggioli et al. [13], who no-
ticed that, in the out-of-domain scenario, the DIMEs are particularly
effective, as they allow to denoise the representation. Since the rep-
resentation model was trained on a different distribution, it is more
likely that it contains more noise, and thus, it is easier to debias.

In the remainder of thiswork,we focus on theCoDIME𝑠𝑙𝑜𝑝𝑒 being,
together with the CoDIME𝑐𝑜𝑟𝑟 , the most effective solution. Similar
patterns can be observed with the other approach.

4.5 Effect of the Selection Bias
As a second analysis, we are interested in investigating the impact of
selection bias on the performance of the proposed CoDIME frame-
work. In particular, in the experiment described above, the length
of the click log simulation was set to 20 (i.e., we considered only the
20 top-ranked documents to simulate the clicks). In this case, we
experiment with different sizes of the click logs, considering click
logs of length {2, 5, 10, 20, 50}. Figure 2 illustrates the consequences
of varying the length of the click log when we consider as backbone
model Contriever and TAS-B (blue and orange respectively); we do
not consider Dragon, as CoRocchio achieves performances close to
0 due to its asymmetrical nature. The continuous lines represent the
performanceofCoDIME𝑠𝑙𝑜𝑝𝑒 ,while thedashed lines indicate theper-
formance ofCoRocchio. Furthermore,we report only nDCG@10 and
nDCG@20 to avoid encumbering— the patterns remain the same (al-
though lessmarked) alsowithmeasureswith longer cutoffs.As afirst
pattern, we notice that if we compare the behaviour with click-logs
generated by a perfect user model (‘P’ columns, on the left) and by a
near-randomusermodel (‘R’, on theright), thedifferencebetweenthe
two counterfactual approaches is larger on the latter. This is in line
withwhat was observed until now. If the information is precise, both
approaches perform sufficiently well, but as soon as the information
gets more noisy, CoDIME𝑠𝑙𝑜𝑝𝑒 is superior by far. Interestingly, the
plots show that, for very short click-logs (2 documents), the CoRoc-
chio approach tends to be slightly more effective, especially for TAS-
B (orange dashed line above at the beginning). Nevertheless, as soon
as the click log is 5-10 documents long, the CoDIME𝑠𝑙𝑜𝑝𝑒 approach is
the most effective in almost all scenarios.Whenwe reach 20 or more
documents, CoDIME𝑠𝑙𝑜𝑝𝑒 is always the best. Furthermore, for the
CoDIME𝑠𝑙𝑜𝑝𝑒 in the lines are monotonically non-decreasing — the
only exception is represented by nDCG@10 with the near-random
user model. This suggests that the more information is available, the
better the model performs, or, in the worst case, the performance re-
mains the same.On thecontrary, forCoRocchioand thenear-random
usermodel,we observe decreasing lines that indicate thatCoRocchio
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Figure 2: Effect of varying the selection bias (i.e., 𝑘) by includingmore documents on the click log simulations. P and R are the perfect and near-random user
models. For 𝑘 = 2, CoDIME𝑠𝑙𝑜𝑝𝑒 and CoRocchio have similar effectiveness. The CoDIME𝑠𝑙𝑜𝑝𝑒 is more effective in handling the scenario where more feedback is
available. This difference is particularly evident for the near-random (R) usermodel. The same patterns also occur formeasures with higher cutoffs.

not only fails to exploit the additional information but is harmed by
it. As for the previous experiment, this analysis confirms that the
CoDIME framework is on par with the state-of-the-art regarding
simulations basedonperfect users.Nevertheless, ifwe considermore
realistic and noisy situations, the CoDIME approach shows superior
capabilities, remaining stable when highly noisy data is considered.

4.6 Effect of the Position Bias
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Figure 3: Consequences of overestimating (propensity = 0) or underesti-
mating (propensity = 2) the propensity for TAS-B. P and R are the perfect and
near-random usermodels.

As a final analysis, we illustrate the consequences of overestimat-
ing or underestimating the propensity. In detail, we maintain the
same debiasing assuming 𝜂=1 to compute the CoDIME𝑠𝑙𝑜𝑝𝑒 query
representations, but we change the underlying simulation process,
using 𝜂= {0,1,2}. This allows us to estimate the approach’s effective-
ness in an even more noisy situation. Figure 3 reports our results for
the three considered encoders. We notice that if we assume a perfect
user that perfectly clicks only on relevant documents (‘P’ columns),
regardless of the considered encoder and propensity exponent, the

approaches tend to be overall stable, with a slight decrease in effec-
tiveness if we consider an under-estimation error (propensity = 2).
The phenomenon is more evident in the case of a near-random user
model (‘R’ columns). In this case, the impact of failing in correctly
modeling the 𝜂 tends to be more severe, especially for the Robust ‘04
collection. This might be explained by the noise introduced in this
scenario, which makes the implicit feedback signal unreliable.

5 Conclusion
In this work, we introduced CoDIME, a novel counterfactual frame-
work for dimension importance estimation in dense text represen-
tations, leveraging implicit user feedback to address challenges in
existing DIME approaches. By incorporating counterfactual mod-
elling of click probabilities in various dimension importance estima-
tion strategies, our CoDIME approaches achieved state-of-the-art
performance in multiple dense IR testbeds. Compared to CoRoc-
chio [44], a state-of-the-art counterfactual approach, the CoDIME
framework achieves up to +0.235 nDCG@10 points, moving from
0.404 to 0.639 (+58%) (Dragon andRobust ‘04) and+0.117nDCG@100
points, moving from 0.356 to 0.473 (+33%) (Dragon and Robust ‘04).
These findings highlight the efficacy of counterfactual techniques
and DIME approaches in adapting dense representations and im-
proving retrieval effectiveness.
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