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Recent advances in representation learning allow neural Information Retrieval (IR) systems to use learned dense representations
for queries and documents to effectively handle semantics, language nuances, and vocabulary mismatch problems. In contrast to
traditional IR systems that rely on word matching, dense IR models exploit query/document similarities in dense latent spaces but
need substantial training data and come with increased computational demands. Thus, it would be beneficial to predict how a system
will perform for a given query to decide whether a dense IR model is the best option or alternatives should be used. Traditional
Query Performance Predictors (QPP) are designed for lexical IR approaches and hence they perform sub-optimally when applied to
(dense) neural IR systems. Therefore, there has been a renewed interest in QPP to make it more effective for (dense) neural IR models.
While the results of the new QPP methods are generally encouraging, there is ample room for improvement in terms of absolute
performance and stability. We argue that by using features that are more aligned with the inner rationale underneath dense IR models,
we can improve the performance of QPP. In this respect, we propose the Projection-Displacement based QPP (PDQPP) that, exploiting
the geometric properties of dense IR models, projects queries and retrieved documents onto sub-spaces defined by pseudo-relevant
documents and considers the changes in retrieval scores in such sub-spaces as proxy for retrieval incoherence. Minor score changes
suggest coherent retrieval, while significant alterations indicate semantic divergence and potentially poor performance. Results over a
wide range of experiment settings on both traditional (TREC Robust) and neural-oriented (TREC Deep Learning) test collections show

that PDQPP mostly outperforms the state-of-the-art QPP baselines.
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1 INTRODUCTION

The advent of pretrained Large Language Models (LLMs) has accelerated the development of supervised Information
Retrieval (IR) models that use these LLMs as foundation models, the parameters of which are then fine-tuned on examples

of relevant and non-relevant documents for queries [33, 35, 36, 38, 62, 67]. The parameters of a fine-tuned bi-encoder
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model represent the dense vector representations (embeddings) of documents and queries [38, 46]. A bi-encoder model
encodes the query and the documents in the latent embedding space separately. This has the advantage that it is possible
to embed documents beforehand and only compute the query representation at run-time. Conversely, cross-encoders
embed queries and documents jointly, thus requiring reindexing of the documents and the query at runtime. Dense
end-to-end IR models operate by conducting an approximate nearest neighbor search on an indexed embedding space
of document and query vectors [33, 35, 36, 46, 62, 67].

While dense representations are more effective in bridging the semantic gap between queries and documents, they
are also more computationally expensive. Recognizing which queries benefit from using dense models and which ones
can be managed with traditional lexical approaches would allow us to reduce query latency and save computational
resources [15, 40]. A second major drawback of dense IR models is the need for vast training data. In particular, if
the training set does not contain enough examples for a specific query type, we might observe low performance for
such queries. In this sense, recognizing which queries are likely to fail may help collect aimed annotations to improve
the performance of the dense models on such queries [9, 27]. Consequently, developing effective Query Performance
Prediction (QPP) approaches can potentially help develop adaptive pipelines for IR systems, where only a subset of
queries on which lexical models do not perform well may be routed to more computationally expensive rankers [15, 40]
(e.g., dense end-to-end models). Additionally, QPP estimates may also be used to select queries for deeper relevance
assessments to help develop more effective rankers [28].

Most classical QPP approaches leverage discrete term statistics and hence operate on sparse retrieval pipelines
[53, 55, 70]. Off-the-shelf application of these classical QPP approaches on neural ranking models (NRMs) have
been shown not to produce sufficiently effective results mainly because these approaches do not factor in term
semantics [16, 21, 22].

This paper focuses on improving the QPP effectiveness for end-to-end dense rankers. It has been recently shown
that the use of query variants (i.e., alternative formulations of the information need of a query) plays an important role
in improving QPP effectiveness [16, 66], mainly because the ranked list of documents retrieved with these variants
provide additional sources of information about the retrieval quality of the original top-retrieved list itself. Existing
works on generating query variants operate in the discrete term space, e.g., reformulating a query ‘five stages of grief’
to a more specific version ‘five stages of grief in sports’ by adding terms. While such variants can be used for QPP
estimates via methods such as [16, 66], the variant generation process does not take into account the topology of the
embedded space itself, which is somewhat limiting in nature. In this paper, we try to address this limitation towards
devising an effective QPP approach for dense NRMs.

The main idea of our method is conceptually similar to the idea of aggregating the relative changes in QPP estimates
measured across the variants [16]. However, instead of generating variants in the discrete term space and then embedding
them as dense vectors, we rather measure these relative changes across the embedded vector representations of the
top-retrieved documents. In other words, a top-retrieved document in our proposed method acts as a proxy for a query
variant vector. More specifically speaking, our proposed QPP estimator Projection Displacement Query Performance
Predictor (PDQPP), projects both the query and the retrieved documents on the subspaces defined by a set of pivot
vectors constituted of top-k ranked documents. Our method then aggregates the relative changes in the similarities
between the projected vectors and the original ones for each query document pair.

Indeed, the pseudo-relevant documents provide us with an unsupervised way to describe different facets of the
topic underlying a query. Suppose there are no major changes in the retrieval scores when we project the query and

documents to the subspaces identified by each pseudo-relevant document. In that case, we can hypothesize the retrieval
2
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is of good quality. In contrast, significant changes in retrieval scores suggest that different pseudo-relevant documents
define semantically quite different spaces, which, in turn, indicates a possibly incoherent retrieval, potentially indicating
low performance.

Our research question can be formalized as follows: can we employ the projection displacement to exploit topological
properties of the latent embedding space of a dense IR model, to devise a query performance predictor that achieves
state-of-the-art effectiveness?

To answer this question, we conducted extensive experimentation, relying on both traditional experimental collections
(TREC Robust) and neural-oriented ones (TREC Deep Learning), considering several dense IR retrieval models (ANCE,
Contriever, and TAS-B) and a range of state-of-the-art QPP approaches. Our experiments show that our proposed
predictor - PDQPP - is very often the top-performing approach or, at least, in the top-performing group. Moreover, it
delivers very stable performance across experimental collections and IR models, different from current state-of-the-art
approaches, which suffer from performance variability under various operating conditions.

The paper is organized as follows: Section 2 summarizes the relevant literature; Section 3 introduces the projection
displacement operator based QPP (PDQPP); Sections 4 and 5 present the experiment setup and results; Section 6

concludes the paper with future directions.

2 RELATED WORK

Dense IR. Traditionally, IR systems relied on lexical signals, such as the presence of the query terms within
the documents. However, the emergence of neural models transformed how we represent and match queries and
documents. Dense IR approaches are traditionally divided into three main categories: bi-encoders, cross-encoders, and
late-interaction models [68].

Bi-encoders (a.k.a dual-encoders) are models that use two separate (but possibly identical) neural networks to
represent documents and queries [68]. In the most typical scenario, a placeholder token, such as the [CLS] token [45], is
appended to the text (i.e., the query or the document) and the string is fed to a transformer architecture. The latent
representation of the placeholder token is then used as a representation of the text. To compute the similarity between
the query and a document, the inner product between the representation of the two is used. This has the major advantage
of allowing to precompute the representation of all documents. At runtime, it is sufficient to compute the representation
of the query and compute its inner product with the representation of all the documents. In recent years, several such
models have been released, e.g., STAR [67], ANCE [62], Contriever [35], TAS-B [33]. In this work, we focus on this
category of models as they allow us to represent in the same latent space both queries and documents separately. More
in detail, we focus on symmetric bi-encoders using the same neural network to encode queries and the document.

Traditional cross-encoders jointly represent documents and queries [68]. To do so, such models concatenate a
placeholder token to the query and the document, obtaining a final string with the format “[CLS] (query) [SEP]
(document)”, where the special token [SEP] indicates where the query finished and the document begins. The string is
fed to a transformer architecture that produces a contextual representation of each token. Then, the representation of
the [CLS] token is further fed to a fully connected layer that outputs the probability that the query is relevant to the
token. To obtain the aforementioned representation, it is necessary to have access to the query. This would require
computing a new representation for the documents every time a new query is received. Therefore, cross-encoders are
mostly used to operate on a small set of documents, such as for reranking.

Late-interaction models, such as ColBERT [36], require computing and storing a contextual representation of each

term of the query and documents. For what concerns documents, such representation can be computed beforehand and
3
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stored in an efficient index structure. At runtime, the contextual vector representation of each query term is matched
with the most similar document term representation for each document. The QPP proposed in this paper focuses on
approaches that employ a single representation for the query or the documents, while late-interaction models employ
multiple vectors (i.e., on for each word) to represent queries and documents. How to adapt PDQPP for late-interaction
models is left as a future work.

Dense IR systems produce smaller but denser representations than those produced by the traditional lexical IR
approaches. Indeed, traditional approaches are based on representations whose dimensionality ranges from the tens
of thousands to hundreds of thousands of dimensions: the number of terms in the vocabulary considered by the
IR. Vice-versa, dense IR systems learn representations whose dimensionality falls within the range of hundreds to

thousands.

Traditional QPP. Depending on the features they rely upon, traditional QPPs are divided into pre- and post-retrieval
predictors [6, 31, 32]. The former relies on signals that can be derived without considering the ranked list of documents
produced in response to the query. Such signals are, for example, the collection frequency of terms appearing in the
query [42, 69]. On the other hand, post-retrieval predictors infer their predictions by taking as input also the ranked list
of documents in response to the query. Depending on which aspects are considered to compute the prediction, there are
three main classes of post-retrieval predictors: coherence-, score-, and robustness-based. Coherence-based predictors
rely on measuring how strongly documents retrieved are clustered together: the most well-known representative of
this class of approaches is Clarity [12]. PDQPP, the predictor proposed in this paper, is a representative of this class.
Score-based predictors employ heuristics computed on the retrieval score of the retrieved documents, some examples
include Weighted Information Gain (WIG) [70], Normalized Query Commitment (NQC) [55], and Score Magnitude
and Variance (SMV) [57]. Finally, robustness-based predictors compare the original ranking of documents with one
produced by introducing noise in the query, the index, or documents, e.g., the Utility Estimation Framework (UEF) [53],
the Reference Lists framework [49, 54], and Robust Standard Deviation (RSD) [51]. Given their similarity with our
approach, we include the UEF framework and RSD as baselines.

Traditional QPPs were meant and designed to operate on lexical IR methods, such as BM25 [48] or the traditional
language models, that relied on the presence of the same terms in both queries and documents to determine the
relevance of a document. With the advent of Neural IR and semantic matching-based IR systems, it was highlighted the
need for novel QPPs explicitly designed to cooperate with such novel IR systems [22]. In this regard, we recognize two
novel classes of QPPs: those that employ semantic signals but are aimed at predicting the performance of lexical IR

systems, and those explicitly designed to cooperate with Neural IR models.

Semantic QPPs for lexical IR systems. The advent of word embeddings fostered the development of QPP models
that exploit them to compute their predictions. NeuralQPP, proposed by Zamani et al. [65], uses Deep Learning to
integrate three diverse signals: the query text, the retrieval scores, and aspects related to the distribution of the terms. On
the same line, Roy et al. [52] show that, by utilizing the semantic similarity aspect of word embedding, it is possible to
estimate the local neighborhood of a query using Gaussian Mixture Models. Roy et al. observe that the spatial properties
of such neighborhood correlate with system performance. In a similar manner, Arabzadeh et al. [4, 5] propose a set of
measures derived from neural embeddings that allow for quantifying the term specificity. They observe that the presence
of highly specific terms in a query is an indicator of more effective retrieval. Khodabakhsh and Bagheri [37] propose
three neural features based on dense word representations: Neural Matching, Neural Aggregated Matching, and Neural

Distance. These features combine the embeddings of query and document tokens to capture the semantic relationships
4
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occurring between them. The authors use the matching signals provided by such features to encode semantic aspects
within classic predictors. Different from this, Datta et al. [14] proposes to make use of interaction between query and
document terms as signals for QPP. More specifically, they employ 3D convolutional neural networks with shared
parameters to train an end-to-end pairwise predictor, called Deep-QPP.

Arabzadeh et al. [1] introduce BERT-QPP, one of the first methods harnessing LLMs for QPP. Specifically, they
fine-tune BERT [18] by utilizing BM25’s performance on each training query and the BERT representation of the first
retrieved document as supervision to train a QPP. Several subsequent works build upon BERT-QPP. Similarly, Chen
et al. [8] extend BERT-QPP, introducing a groupwise approach enabling the prediction of query performance using
signals from multiple queries simultaneously.

Arabzadeh et al. [3] also utilize LLMs to create a predictor for conversational search. They leverage BERT to construct
a document graph and cluster documents. If, for a document, multiple clusters exist, they identify the user’s information
need by posing clarifying questions to determine the cluster containing relevant documents. Subsequently, they test
this approach using BM25. While these methods lean towards Neural IR models, their primary application remains
associated with lexical IR approaches. This leads to a discrepancy between the query/document representations utilized
for ranking and prediction phases, with the former relying more on lexical aspects and the latter emphasizing semantic
information. All the aforementioned predictors are evaluated on IR systems that rely on lexical matching and therefore
are hindered when used to predict the performance of IR systems that exploit semantic matching [22]. Given that most
of these predictors are designed for and tested on lexical IR models, they do not align with the focus of this paper, which

instead addresses QPP predictors tailored for dense IR models.

QPP for Neural IR. Among QPPs explicitly designed to work the best with neural IR systems, Hashemi et al. [30]
introduce Non-Factoid Question Answering QPP (NQAQPP), a methodology incorporating retrieval scores, query
lexical features, and both query and answer lexical features within a deep neural network framework for addressing
Non-Factoid Question Answering. Hashemi et al. is also one of the early works evaluating the effectiveness of QPP
on neural IR models. They specifically evaluate it on BM25, aNMM [64], and Conv-KNRM [13], noting a substantial
gap in predictive accuracy between BM25 and neural IR models, attributed to distinct score distributions generated by
neural models. In a recent investigation, Faggioli et al. [22] scrutinize the capability of traditional QPP techniques in
predicting the performance of neural IR systems and, through a series of experiments, they find a significant decline in
the performance of current QPP models when applied to neural IR systems. This trend persists even when employing
BERT-QPP as a predictive model for neural IR. Similarly, Datta et al. [16, 17] observe the diminished effectiveness of
prior QPP methods when employed for neural IR compared to lexical IR. In response, they propose Weighted Relative
Information Gain-based model (WRIG), a statistical approach employing probabilistic combinations of retrieval scores
for multiple query formulations. To demonstrate the efficacy of their approach, they utilize WRIG to predict performance
in BM25, four variations of DRMM [29], and the initial stage neural IR model, ColBERT [36]. Singh et al. [56] propose a
novel QPP that employs an auxiliary pairwise ranker (DuoT5) as an unsupervised QPP model to measure how often the
ranking produced by the IR system agrees with the pairwise comparison of the auxiliary model. Similarly to [16, 17],
Singh et al. test the performance of the proposed model on multiple neural IR models, both considered end-to-end
retrieval as well as reranking. Faggioli et al. [20] utilize the geometric characteristics of dense representations for
performance prediction in conversational search, by devising the Hypervolume (HV) predictor which consists of
computing the volume on the axes-aligned bounding box containing the top-k retrieved documents and the query. More
recently, Arabzadeh et al. [2] proposed a strategy explicitly designed to be applied for dense IR systems. The predictor

5
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proposed by Arabzadeh et al., called DenseQPP (DQPP), is based on measuring the similarity between the original
ranked list and the ranked list obtained after perturbing the query with appositely crafted Gaussian noise. Faggioli
et al. [19] propose a novel framework, called Dense-Centroid (DC) framework, to adapt traditional predictors to the
dense IR systems. They start by noticing that classical predictors require regularizing predictions by the retrieval score
that the corpus would achieve in response to the query. This score cannot be computed for dense models, as it would
require feeding the entire corpus to the dense IR system and obtaining its representation. Therefore, they propose to
use, as a proxy representation of the corpus, the centroid of the documents. More concretely, in their approach, the dot
product between the original query and the centroid is used as a regularization factor within the classical QPPs. As
these approaches share similar characteristics with that of our proposed approach PDQPP, in Section 3.6, we provide a

detailed comparison between PDQPP and the above-mentioned state-of-the-art predictors.

3 PROPOSED METHODOLOGY

In this section, we describe our proposed methodology of projection-based QPP estimation.

3.1 Notations and Core concepts

In this section, we introduce the notations for embedded query and document vectors and outline the concept of vector

projection, an essential component of our proposed predictor.

Embedded documents and queries. Since we aim to predict QPP for dense neural ranking models, we introduce
the notations that will be useful to understand how our methodology works on the space of embedded vectors
obtained via a bi-encoder-based neural representation model [35, 63]. Let ¢ be a bi-encoder-based supervised neural
representation model, which has learned the parameterised representations of queries and documents from a training
dataset. Embeddings of the textual representation of a query Q and that of a document D € D (D denotes a document
corpus) are then denoted, respectively, as q and d, where both q and d € R?. The retrieval score of a document for a
query Q is then usually obtained by computing a dot product between the embedded representations of the query and a

def

document from a candidate set, i.e., 7(Q, D) = q - d, where D € Dy denoting a candidate set of k documents obtained

via approximate nearest neighbour search on the embedded space.

Vector projections. We now introduce the concept of projection and discuss how it plays an important role in our
proposed predictor. Informally speaking, a projection of a vector d onto another vector v leads to aligning d in the

direction of v and also changes its magnitude. The standard notation to denote the projected vector is dy (read as d

av=(5)e 1)

vl

where ||v|| denotes any norm (e.g., L?) of the vector v, and ¥ denotes the unit vector along v, i.e., ¥ = v/||v||. Note that

projected onto v), and is defined as

the quantity within parenthesis is a scalar, and hence the projected vector dy is a scaled version of ¥.

Projection displacement. We now introduce the concept of projection displacement, which represents how much
the similarity between a pair of vectors (in terms of their dot product) or the angular distance between them (in terms
of the cosine inverse of their dot product) changes when both are projected onto a different vector. Formally, we define

the projection displacement of a pair of vectors (q, d) given a third vector v as

Sv(qd) =q-d-qy-dy, (2)
6
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where the notation xy, as per Equation 1, denotes the projection of x onto v. The projection displacement of Equation 2
represents the relative gain (or loss) of the estimated similarity between two vectors q and d when a different frame of

reference (v) is used to estimate this similarity.

3.2 Relative Changes in Retrieval Scores

In this section, we discuss the idea of projection displacement under the specific context of embedded documents and
query vectors. Revisiting Equation 2 with an assumption that q refers to the embedding of a query Q and d refers to
that of a document D, projection displacement can be interpreted as the relative change in the similarity between the
query and the document when a different frame of reference is used. In terms of retrieval using an NRM, this affects the
relative rank of the document D.

To better understand the characteristics of projction displacement within the specific context of dense retrievers,
let us revisit Equation 2 and express it in terms of the angles between the vectors. Substituting the identity x - y =
[Ix[[llyll cos(x,y) into Equation 2, we see that the dot product between a pair of vectors q and d when projected on an

arbitrary vector v can be expressed as

_ llqllllvllcos(q,v) . [ldl[|lv]| cos(d, v) .
qv-dy = V- v
(vl (vl

= llql[ cos(q, V)V - [|d|| cos(d, v)¥ 3)

= llqll cos(g, v)||d|[ cos(d, v) cos (¥, ¥)
= llqll[ld]| cos(q, v) cos(d, v).
The last step is derived from the fact that both gy and dy are vectors along the same direction, and hence cos(¥, V) = 1.
Equation 3 expresses the similarity between a query and a document vector projected along the same direction as a
product of their norms and their angles with the axis of projection, which when substituted into Equation 2 yields the
expression for projection displacement as
ov(qd)=q-d-gqy-dv
= llqlllld]| cos(q, d) — [[ql[lId]| cos(q, v) cos(d, v) (4)
= llglllld]|( cos(q, ) — cos(q, v) cos(d, v) ).
The formulation of projection displacement in Equation 4 allows relating it to QPP estimation. As a boundary case

realise that 6y(q,d) = 0if v = qor v = d, e.g., if v = q then cos(q,v) = 1 and cos(q,v) = cos(q,d), as a result
dv(q,d) = [|q][|ld]|(cos(q, d) — cos(q,d)) = 0.

By a similar argument, if the projection axis v is close to either the query or the document, i.e., |1 — cos(q, v)| < € for
a sufficiently small € € RY, it is easy to see that §y(q,d) — 0. In other words, projection axes v close to either the query

or the document induces small projection displacements.

3.3 Choosing the Projection Vectors

Till now, we have defined the projection displacement (Equations 2 and 4) in a generic way for an arbitrary vector v. We
now consider the situation when this vector v corresponds to an alternative formulation of the same information need

as expressed by the embedding q of a query Q. In such a case, qy - dy can be interpreted as the similarity between the

7
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query and a document D (embedded as d) in this transformed space of an alternative representation of the information
need.

According to the Clusering Hypothesis [59], if a document D is relevant to the query Q, then we expect their
representation to be similar. Furthermore, assume V represents a piece of information highly related to Q, such as a
reformulation or the response to Q. If D is relevant to a query Q, it is also likely to be relevant (and hence likely to yield
a high similarity score) to a query variant V [7, 16, 66].

In the context of QPP, this means that for a query and a relevant document pair (Q, D), the projection displacements
or the relative changes in the retrieval scores for a different way of expressing the information need (i.e., V) should be
small. This is the key idea of our proposed QPP estimator which measures the relative stability of the retrieval scores of
top-retrieved documents along different projection vectors.

While previous QPP approaches, such as [16, 66], have leveraged manually created or automatically generated query
variants for discrete text, it is inconvenient to generate such variants in the embedded space of vectors. For QPP on
dense vectors, we propose to make use of the top-retrieved documents themselves as the different axes for computing
the projection displacements.

Now we define the fundamental component of our proposed QPP predictor, that is the projection displacement
deviation (PDD) for a pivot document (say D) over a set of top-ranked k documents. Formally, given a query embedding
q, a set of top-retrieved documents Dy for the query and the embedding d of a pivot document D € Dy, we define
PDD as the standard deviation of the projection displacement values for each top-ranked document when projected

along the pivot, i.e.,

k N )2 k
PDD(q,d, Dy) = \/Z“‘l(a"(i’ W) 1" here = ) dalady). )
=

Intuitively, we expect the function PDD(q, d, Dy ) to yield a small value if the pivot document is topically aligned with
the query and every other document in the top-retrieved set. This is likely to happen if the pivot document is relevant
to the query.

For under-specified queries, but also in the case of unsuccessful retrieval, the top-retrieved set of documents likely
corresponds to different aspects of information need. In such a situation, selecting a pivot document that corresponds
to a particular aspect of information need may lead to larger PDD values due to the presence of other documents
corresponding to a different aspect. This also means that PDD concerning a pivot top-ranked document (Equation 5)
can potentially act as a component to define an effective query performance estimator for dense vector spaces of queries

and documents because a small value of this quantity is indicative of a likely well-specified query and vice-versa.

3.4 PDD-based QPP predictor

With the PDD definition (Section 3.3) and its geometric illustration (Section 3.5) we now formulate the predictor in
terms of the PDD values. The key idea behind the proposed predictor is to aggregate the evidence for PDD values along
several top-retrieved documents, which is similar to the idea of aggregating QPP estimates over multiple query variants
[16, 66].

While the PDD values indicate the standard deviation of the topical alignment of the top-retrieved documents, it is
potentially useful to scale these values relative to the similarities between the query and the document vectors in the
embedded space, i.e., the retrieval scores. This scaling is likely to help calibrate these values over a range of different
queries and potentially leads to an effective comparison between the QPP estimates.

8



417
418
419
420
421
422
423
424

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

468

Projection-Displacement based QPP for Embedded Space of Dense Retrievers Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

\ 4
\ 4

(a) An under-specified query. (b) A well-specified query.

Fig. 1. A 2D visualisation of the local geometry of the embedding spaces of two queries and their top-retrieved documents. a) It is
easy to find a pivot vector for which some of the document embeddings will be well-aligned whereas others will not. This will lead to
a large PDD value (Equation 5). b) document vectors are well-aligned to the pivot vector, which means that the PDD values will
be smaller. While v can be any possible direction, we observe empirically that the best results are achieved when w is aligned with
pseudo-relevant documents vectors

Since our predictor, which we call PDQPP, aggregates the scaled PDD values over multiple pivots, we introduce an
additional parameter to allow provision for how many documents to consider for this aggregation. Formally speaking,
we call [ the mean of the retrieval scores of the top-I retrieved document, i.e., [ = % 2.pep, Q- d- Then, PDQPP is defined

as:
3% PDD(q,dj, Dy)

k32l (q-di - D)2

where the numerator represents the PDD values (Equation 5) computed for k pivots over a set of h top-ranked documents

PDQPP(Q) = - (6)

(h and k being two different parameters), whereas the denominator corresponds to the scaling factor of average similarity
values between the query and a set of top-I ranked documents (again the parameter [ is different from k and h).

The predictor is an additive inverse of these aggregated displacement values (minus sign at the front of Equation 6)
because the higher the displacements the higher is the likelihood that the query itself is under-specified and the top
documents potentially correspond to different aspects of information need, some of which could be non-relevant thus
degrading the retrieval effectiveness of such queries.

The generic form of our proposed predictor has three hyper-parameters to control the sizes of the top-retrieved sets
for three different computation purposes - i) a top-set of A documents to compute the PDD values with respect to a
particular pivot document (Equation 5), ii) k, which specifies how many pivot documents to consider for aggregating
the PDD values, and iii) [, the number of documents considered to compute the standard deviation of the retrieval

scores.
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3.5 A Geometric lllustration

Dense vector representations of the top-retrieved documents addressing different aspects of the information need are
likely to be aligned along different subspaces while all of these are still similar to the query subspace. However, this
means that a document addressing a specific aspect of the information need is likely to less similar to another on a
different aspect.

We provide here an illustrative example using a query that contains the polysemous word “bank”, such as “Where is
the closest bank?”. The word “bank” might refer to the “financial institution” or “the land alongside a river”, among
many other meanings. Therefore, in response to the query, the retrieval system has retrieved documents concerning
both financial institutions and geographic structures. Assume now we can somehow disambiguate the meanings of
bank by transforming the projection space. If we could move to the “financial” projection space, we would observe
documents concerning financial institutions to be close to the query, as in this new space the word “bank” refers to the
financial institution, while documents regarding river sides would be demoted. Vice-versa, if we were to move on the
“geography” projection space, we would observe documents concerning river banks to be close to the query. Depending
on which meaning we attribute to the query, the ranking of documents dramatically changes. This is a clear indication
of a complex query for which the IR system is likely to fail — not even a human being would be able to answer the
query “Where is the closest bank?” without asking further questions!

Consider now a more specific query, such as “Where is the closest financial institution?”. In this case, we could
assume that our IR system will retrieve almost exclusively documents where the word bank refers to the financial
meaning. Thus, regardless of the space we consider, we will observe the documents to be close to the query.

Our example assumes we are capable of doing two types of geometric operations: i) we are able to define subspaces
that represent the different semantic meanings of the query ii) we can change our projection space to reflect different
semantic aspects. The second operation is handled using the projection operator defined in Eq. 1.

Conversely, to address the first operation, Equation 6 employs the first top k documents as pivot documents. We
assume that each of these documents conveys a specific semantic meaning and defines a subspace characterized by
a latent semantic. These subspaces might be very similar if the pivot documents have similar semantics (e.g., they
refer to closely related topics), or might be very different if different documents refer to completely unrelated subjects.
Considering our example again, when it comes to the query “Where is the closest bank”, the top-k documents could
for example focus on different meanings of the word bank. Therefore, depending on which document is used as the
pivot, we will observe differences in ranking when things are projected onto such pivot. This hints at a weak retrieval.
Vice-versa, when we consider the second query, “Where is the closest financial institution?”, if the top-k retrieved
documents have similar meanings, then, when using each of them as a pivot document, we will observe a relatively
stable ranking.

Figure 1 visualises the idea in two dimensions. Figure 1b shows the embeddings of the top-retrieved documents for
an under-specified query, where the angles between the top-retrieved documents can be large if they represent different
topics, whereas, for a well-specified query (Figure 1a), it is likely that all the top-retrieved documents are likely to be
similar to each other (and also to the query).

In terms of the project displacement deviation (as defined in Equation 5), choosing any direction as the pivot document
for computing PDD values over the embeddings of Figure 1b is likely to lead to a large value because there potentially

will be documents that are not well aligned with the pivot direction v. On the other hand, the PDD values for the
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embeddings in Figure 1a are likely to be small because each top-retrieved document will potentially be aligned well
with any pivot vector.

Considering the bank example, Figure 1a could represent the situation where the query is “Where is the closest
bank?”. In line with our example, d is a document about financial institutions, while d regards river banks. If our pivot
document v concerns financial aspects, then when we project the query and the documents on the subspace defined by
v, we observe dj being closer to the query in the subspace than d - i.e., when projected on v, d; is closer to g than ds.
This is exactly the opposite of what happens when we consider the default situation (i.e., d; and dy projected on the
query). Thus, our change or reference space induces a switch between d; and dy in the ranking. Vice-versa, Figure 1b
represents the scenario where all the retrieved documents are closely related. Then, when we observe the projection on

v of d; and dy, we do not notice any switch in their ranking.

3.6 PDQPP vs. other existing predictors

After presenting our predictor, we now discuss how PDQPP is different from existing predictors, while still resembling
them in certain ways. This will be useful to see how PDQPP generalises some predictors seeking to mitigate their

limitations.

PDQPP vs. Score Variance (SV)-based predictors. Several classical predictors [44, 50, 55], as well as DC predic-
tors [21], employ the retrieval score variance to produce predictions. The rationale is that a high variance indicates that
the IR system scored much higher on the documents retrieved in the top positions within a ranked list as compared
to lower positions. This utilises the hypothesis that such high scores are reflective of the relevance of the top-ranked
documents. Our predictor PDQPP uses the same signal (denominator of Equation 6) with a different underlying objective
- which is to normalise the projection displacement values to produce its predictions.

The major improvement obtained by our predictor PDQPP over score variance-based ones (results later in Section 5)
can most likely be attributed to the additional factor incorporated as the projection displacement deviation. While an
existing score variance-based predictor can only compute how topically distinct is a set of a very-top list of documents
from the ones that follow it, such predictors cannot predict the topical coherence of the top-retrieved set - a coherent

set potentially indicating better quality retrieval.

PDQPP vs. the UEF estimator. The UEF framework for QPP estimation [53] relies on using pseudo-relevant
documents to expand a query, retrieve a new set of documents, and compare the original ranked list with the one
obtained from the expanded query. Conceptually, the UEF framework and PDQPP share several common characteristics.
The UEF framework, in a sense, transforms a query into the reference space induced by the pseudo-relevant documents
and then estimates how this transformed representation affects the ranking of the documents. Our proposed PDQPP
operates in a similar but more explicit manner in that the query (and the documents) are explicitly projected within the
pseudo-relevant space. Furthermore, similar to UEF, the projection displacement measures the (dis-)similarity between
the results of the query in the original space as against the ones induced by the pseudo-relevant documents (Equation
5). The major difference is that by explicitly relying on the geometrical representation of the various elements, PDQPP

better suits the end-to-end dense IR models.

PDQPP and DQPP. DQPP [2] projects the top-ranked documents on a subspace obtained by a perturbed version of
the query, and then computes the robustness of the ranking of documents relative to this change. It can therefore be

argued that both DQPP and PDQPP models project information on a different space, and hence estimate the robustness
11
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Table 1. Evaluation (nDCG@10) of the dense IR models on the respective test collections subsequently used for our QPP experiments.

Topic set ANCE Contriever TAS-B

DL 19 0.645 0.676 0.716
DL ’20 0.646 0.671 0.684
DL Hard 0.328 0.376 0.376
Robust 04 | 0.362 0.499 0.453

of an IR model relative to this transformed representation. While DQPP obtains this directly by comparing the two
retrieved lists, PDQPP on the other hand, achieves this using the projection displacement operator. Moreover, PDQPP
offers an advantage over DQPP in the sense that the new subspace where documents and queries are projected is
not random. Instead, this reference subspace aligns with the pseudo-relevant documents, thus allowing provision to

leverage the latent semantics of these documents for query performance estimation.

PDQPP and WRIG. WRIG computes the relative changes in the QPP estimates with reference to a set of query
variants with the idea that a large increase potentially indicates that the original query itself was under-specified
(poor retrieval quality), whereas a large decrease suggests that the original query itself was well-specified (effective
retrieval quality) [16]. The idea of transforming a query via projection onto a reference subspace relates to that of
leveraging information from variants in WRIG. While WRIG uses the relative gains computed via a base QPP estimator,

our predictor PDQPP, instead, uses deviations of projection displacements.

4 EXPERIMENT SETTINGS
4.1 Datasets and Models

Dense Neural Models. In our experimental analysis, we consider three dense retrieval models: ANCE! [62],
Contriever? [35], and TAS-B? [33]. We use the model weights fine-tuned on the MS MARCO collection and publicly
available on the huggingface repository. All the models that we experimented with use 768 dimensional embeddings for

documents and queries.

Dataset. As benchmark datasets, we employ the following four collections: TREC Deep Learning 19 (DL *19) [11],
TREC Deep Learning ’20 (DL "20) [10], Deep Learning Hard (DL Hard) [39], and TREC Robust *04 (Robust *04) [60].
DL ’19, DL °20, and DL Hard datasets constitute 43, 54, and 50 queries, respectively, with depth pooled relevance
assessments (depth 10). The underlying task is ad-hoc passage retrieval on MS MARCO corpus, which contains over 8M
passages [43]. As a part of the experiment setup, all the dense IR systems were fine-tuned on the MS MARCO training
set of pairs of queries and relevant passages. The respective topic sets of DL *19, DL "20 and DL Hard, the predictions
are in-domain in nature.

Additionally, to evaluate the QPP effectiveness for the neural models for out-domain ranking predictions, we
employ Robust "04, constituted of disks 4 and 5 (minus congressional records) of the Tipster collection. The Robust 04
collection uses a deeper pool (depth 100) for relevance assessments, as a result of which recall plays a crucial role in
determining a query’s performance. It thus offers a different evaluation setting as compared to MS MARCO passage

collection.

!https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
https://huggingface.co/facebook/contriever
Shttps://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
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4.2 Baselines and Evaluation Measures

Since our proposed QPP estimator is an unsupervised approach, for a fair comparison we employ a wide range of
existing unsupervised predictors as baselines. More specifically, we consider two different categories of QPP models - i)
those that are agnostic of an IR model, and ii) those that are explicitly designed to operate on embedding spaces of

dense IR models.

IR Model agnostic QPP approaches. As QPP baselines that can work on both sparse and dense retrievers (i.e.,
agnostic QPP) we employ the following:

o SV [44] is an approach that predicts the variance of the retrieval scores of the first top-k retrieved as the QPP estimate.

e Clarity [12] computes the Kullback-Leibler (KL) divergence between the language model of the entire corpus and
the one of the top-k retrieved documents. Clarity operates under the assumption that observing a large KL divergence
indicates a well-characterized and coherent set of top-k documents, which hints at a good retrieval.

e NQC [55] is the standard deviation of the retrieval scores of the first top-k retrieved documents, regularized by the
retrieval score of the entire corpus.

e RSD [51] iterates over the retrieved list of documents, computing at each position the unbiased standard deviation
of the scores reweighed by the WIG score of the ranking list up to that position and sums all these values.

e SMYV [57] Combines NQC and WIG by taking into consideration both the magnitude and the variance of the retrieval
scores of the top-k documents.

e WIG [70] is the average retrieval score of the first top-k retrieved documents, regularized by the retrieval score of
the entire corpus.

o UEF Framework [53] The UEF framework operates by reweighing any of the aforementioned predictors (Clarity,
NQC, SMV and WIG) by the similarity between the original retrieved list of documents and the list of documents
retrieved after rewriting the query via Pseudo-Relevance Feedback (PRF).

o WRIG [16] is a variant-based predictor that computes the changes in the QPP estimates as obtained from a base
predictor on a set of query variants relative to the original query. As suggested in [16], we employed NQC as
the baseline predictor of WRIG. Additionally, we worked with a set of query variants automatically generated by
skipgram embeddings [41] as suggested in [16]. Notice that WRIG was observed to supersed reference lists based
methods [66].

Dense IR-based approaches. This class of QPP models are explicitly formulated to operate with dense IR models.

As baselines we use the following:

e DC framework [21] instantiates traditional predictors (e.g., WIG [70], NQC [55], SMV [57]) by considering the
centroid of all documents as an approximated corpus representation. Among the DC class of predictors, we consider
DCWIG, DCNQC, and DCSMYV as suggested in [21].

e HV [20] predictor correlates the IR system performance with the volume of the n-parallelepiped encompassing the
top-k documents retrieved.

e DQPP [2] introduces a small calibrated noise to a query’s dense representation, and then as the QPP score, measures

the similarity between the original ranked list of documents and the one obtained with the perturbed query.

QPP Evaluation Metrics. As evaluation metrics for QPP, we follow the standard protocol of reporting the correlation
of predicted QPP estimates and a target metric (measured with Pearson’s p), and also the rank correlation between the
13
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ideal ordering of query performance as obtained by a target metric vs. the predicted ordering obtained via QPP scores
(measured with Kendall’s 7) [25]. As the target metric, we employ nDCG@10 following previous work [2, 21, 22], and
being the official evaluation metric of TREC DL [10, 11]. In addition, we also employ a recently proposed error-based
metric - scaled Mean Absolute Rank Error (sMARE) [23, 24], smaller values of which indicate better performance. To
provide a consistent interpretation across the metrics, we report the values of one minus the sMARE scores (the range
of SMARE values is in [0, 1]), which we call sMARE.

4.3 Hyper-parameter tuning

For each predictor, we validate the hyper-parameters using the commonly adopted 2-fold validation strategy [16, 20,
55, 65, 66]. Specifically, this commonly used validation strategy involves randomly splitting a set of queries into two
partitions, one used as a ‘training set’ for tuning parameters (for supervised approaches) or hyper-parameters (for
unsupervised approaches), and the other partition is used as a ‘test set’ to evaluate the model performance. The roles of
the two partitions are then switched, and the average performance over the two folds is then used as an evaluation
measure. Evaluation measures collected this way are then aggregated over 30 random 2-fold splits of the data.

Recall that the hyper-parameters of our proposed method are the three cut-off values k, h and I, denoting the number
of top documents to used to aggregate PDD values, the number of ones used as pivots for computing PDD values and
the number of documents used to compute the scaling factor based on retrieval scores, respectively (see Equation 6).
For a tractable choice of the number of experiments, we set the value of k to 5, which means that PDD values are
aggregated over 5 documents. Later, in Section 5.3, we analyze the sensitivity of PDQPP to the number of documents
used as pivots. The other two cut-offs in PDQPP, namely h and [, were optimised via grid search over the training splits
from the set {5, 10, 50, 100, 250, 500}.

For a fair comparison, the hyper-parameter k (the number of top-documents used for estimation cut-off) of all
the other baseline predictors were also optimised over the training folds. The baseline DQPP involves an additional
parameter - the standard deviation of the Gaussian noise used to perturb query vectors. This parameter was validated in

the range [0.01,0.09] with a step of 0.01 following the implementation in the repository provided by Arabzadeh et al.*.

5 RESULTS
5.1 Comparison with other predictors

As a sanity checking step, we first report in Table 1 the nDCG@10 (our QPP target metric) values for the various
datasets used for each IR model considered in our experiments. It can be seen that the results are consistent with
existing numbers reported in the literature [33, 35, 62], which, in turn, shows that our retrieval setup is at par with
previous findings.

Tables 2, 3, and 4 report the effectiveness of the proposed PDQPP model in comparison to the different baseline
models. The best results obtained for a particular collection is shown bold-faced, whereas the second-best ones are
shown underlined. To denote whether the best performing approach (bold-faced) is statistically indistinguishable from
other methods, we append an asterisk to both. In particular, for the significance testing we employed ANOVA with
Tukey’s honestly significant difference (HSD) test with significance level & = 0.05 [58].

In addition, to provide further insights on the relative performance of the QPP models, we report the number of times

a particular method turns out to be a winner model either by outperforming other approaches or being statistically

“https://github.com/Narabzad/Dense-QPP
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Table 2. Performance of PDQPP compared to the baselines in predicting ANCE’s nDCG@10 in terms of Kendall’s 7, Pearson’s p and
SMARE (1 — sMARE). For each dataset and IR model, we highlight in bold the best method and underline the runner-up. The postfix
“*” indicates QPP models that are statistically at par with the best. The last column reports the effectiveness index (El), which is the
number of times a QPP model either is the winner or ends up being a ‘star’ competitor (i.e., statistically indistinguishable from the
best method).

DL 19 DL ’20 DL Hard Robust *04 EI

T P sMARE T p sMARE T p sMARE T p sMARE

ANCE

SV | 355 497 .781 254 318 743 .348* 330 .783* 407 430 797 | 3
Clarity | .100  .151 .697 .044 013 678 306 .486° 758 11 167 .702 1
NQC | .285 363 .760 137 .201 .697 .243 .256 735 251 410 745 0
RSD | .267  .445 744 317 443 .765 378" 450  .786" 380 498 785 2
SMV | .185 189 732 .007 -.051 .662 170 .100 710 118 .220 .700 0
WIG | 323 483 759 286 456 .746 184 279 713 414" 546" 794 2
UEFClarity | .136 222 692 121 139 701 .089 119 .689 164 214 723 0
UEFNQC | .190  .312 714 148 215 .704 177 169 714 231277 742 0
UEFSMV | 172 .256 717 .047 123 673 177 048 731 185 229 726 0
UEFWIG | .177  .281 .705 173 254 .708 .080  .101 .691 272299 754 0
WRIG | 292 451 .768 196 .498* 733 141 223 719 .099 161 .690 1
DCNQC | 361  .528 784 255 .340 744 353 .405 783" 407 509 .796* 4
DCSMV | 334 492 769 .267 364 744 276 351 762 .403 .483 .796* 2
DCWIG | .411* 537 .798* 269 .389 .740 158 215 710 276 400 747 2
HV | 224 357 735 .252 321 735 -.182 -.187 .616 .235 .347 733 0
DQPP | .369* .600*  .787* 205 275 728 123183 .700 262 377 749 3
PDQPP ‘ 367  .611* 787" | .403* 502"  .790" 309 394 764 405 .547* 793 6

indistinguishable from the best performing model. We call this count the effectiveness index (EI) of a model and report
its values in the last column of Tables 2 to 4 (higher values of this number indicating better effectiveness). Intuitively
speaking, it does not over-penalise a model for not yielding the best results. Instead, it rewards the runner-up model for
being statistically indistinguishable from the best one thus factoring in the variational effects of random 2-fold splits -
the commonly used setup of QPP experiments [16, 20, 25, 55, 65, 66], as well as the well-known problem of the intrinsic
variability of the QPP measurements (see Section 5.2).

In Tables 2, 3, and 4 we see that with a few exceptions, the proposed PDQPP model outperforms the current state of
the art models, or is at par with the best approach. With a few exceptions, PDQPP can easily outperform agnostic QPPs
(upper part of the Tables). This phenomenon is unsurprising as previous work showed the diminished effectiveness of
classic QPP models in dealing with dense and semantic-based IR systems [21, 22]. Furthermore, PDQPP makes use of
topological characteristics of the embedded space in an explicit manner via leveraging subspace projections, which is
the likely reason for its superior performance. Indeed, dense-IR based approaches are a more effective comparison with
DCNQC, DCWIG or DQPP being particularly effective, depending on the collection/predicted system. IR system-wise,
PDQPP is the most effective in predicting the retrieval performance for Contriever (Table 3) and TAS-B (Table 4). As
can be seen from the Tables, for both these models PDQPP turns out to be the best or indistinguishable from the best in
11 out of 12 setups. No other baseline approach exhibits this high consistency in predicting the retrieval performance
for Contriever and TAS-B.
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Table 3. Performance of PDQPP compared to the baselines in predicting Contriever’s nDCG@10 in terms of Kendall’s 7, Pearson’s p
and sMARE (1 — sMARE). For each dataset and IR model, we highlight in bold the best method and underline the runner-up. The
postfix *” indicates QPP models that are statistically at par with the best. The last column reports the effectiveness index (El), which
is the number of times a QPP model either is the winner or ends up being a ‘star’ competitor (i.e., statistically indistinguishable from
the best method).

DL’19 DL 20 DL Hard Robust "04 EI

T p sMARE T P sMARE T P SMARE T P sMARE

Contriever

SV | 233 411 744 | 114 276 708 | 251* 197 .760° | 298 336 767 | 2
Clarity | 198 297 725 | -015 -019 657 | .261" .344* 750 | 100 .137  .699 | 2
NQC | .241 197 743 | 103 -016 701 | 172 282 729 | 227 339 739 |0
RSD | .163 283 709 | 264 304 742 | .272% s291  752° | 212 330 733 | 2
SMV | 214 148 732 | 039 -188 676 | .210 200 716 | .131  .187 707 | 0
WIG | 198 372 728 | .104 239 .69 | 139 278 711 | 248 355 745 |0
UEFClarity | 255 .298 743 | -045 -098  .655 | -105 -171 633 | .154 239 719 | 0
UEFNQC | 250 210  .743 | -023 -117 669 | -018 -068  .670 | .197 331 733 | 0
UEFSMV | .204 103 730 | -001 -226 670 | 030 -120 671 | .168 282  .724 | 0
UEFWIG | 254 315 739 | -015 -075  .668 | -107 -211 627 | .191 292 730 | 0
WRIG | 214 273 725 | 113 252 702 | -011 .193 663 | .048 151  .681 | 0
DCNQC | 263 439 757 | 125 250 712 | .252* 248 760" | 279 376 764 | 3
DCSMV | .238 411 744 | 162 279 715 | 229" 245  751% | 264 379 756 | 2
DCWIG | .309* 506"  .752* | 259" 415*  747° | .124 170 689 | 219 345 734 | 6
HV | 129 259 724 | 241 322 733 | -139 -194 625 | 252 384 742 | 0
DQPP | .328* 538" .763* | -078 -011  .652 | 128 228 714 | 188 297 726 | 3
PDQPP | 268" 479" 744 | .288" 438" 754" | 225* 340  757* |.310" 415 774" |11

PDQPP appears to be slightly less effective on ANCE (Table 2), where it belongs to the top-tier of predictors only 8
times out of 12. Notice that it is still the predictor with the highest EL. Furthermore, as per our observations on ANCE,
the best baseline predictor depends heavily on the collection considered: for DL *19, we observe good high performance
for DCWIG, while for DL Hard and Robust "04 the most effective baselines are SV and DCNQC. If we inspect the results
collection-wise, we notice that PDQPP is particularly effective on DL ’19,DL "20, and Robust ’04.

5.2 On the improved QPP stability of DPQPP

Overall, the high variance in terms of the quality of the predictions is a well-known problem in the QPP domain [6, 22,
24, 31]. The variability is influenced by a number of different factors, such as which queries are considered, collections,
retrieval models and evaluation measures. For example Hauff [31, p. 83-84] considers different subsets of queries of
three collections, TREC Vol. 4 and 5, WT10g, and GOV2, observing how the best QPP heavily depends on which subset
of queries is considered. On a different line, but with similar conclusions, Carmel and Yom-Tov [6, p. 23-24,35-36]
apply several predictors on different collections, observing high volatility in terms of which QPP can be considered the
most effective, depending on the collection. [47] employed 9 different corpora, observing again variability in which
system performs the best. More recently, Ganguly et al. [26] explore the impact that several factors have on the QPP
effectiveness, observing important consequences linked to the chosen metric as well as the IR system. Finally, Faggioli
et al. [22] investigate several predictors applied on both lexical and neural IR systems, observing a strong variability on
what is the best predictor, depending on which IR system we are trying to predict the performance for.
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Table 4. Performance of PDQPP compared to the baselines in predicting TAS-B’s nDCG@10 in terms of Kendall’s 7, Pearson’s p and
SMARE (1 — sMARE). For each dataset and IR model, we highlight in bold the best method and underline the runner-up. The postfix
“*” indicates QPP models that are statistically at par with the best. The last column reports the effectiveness index (El), which is the
number of times a QPP model either is the winner or ends up being a ‘star’ competitor (i.e., statistically indistinguishable from the

best method).

DL ’19 DL 20 DL Hard Robust ’04 EI

T P sMARE T P sMARE T P SMARE T P sMARE

TAS-B

SV | 167 241 709 214 394% 727 | 360" .411* 779" | .402F 464  .792* | 6
Clarity | 171 268 727 | -045 -014  .653 238 334 745 209 287 733 0
NQC | .131 .19 714 101 139 691 213 389 722 282 417 751 0
RSD | .151  .244 701 275 406  .758* | 289 432" 763 362 507 781 3
SMV | .124  .145 705 035 -164 681 162 264 719 161 226 719 0
WIG | .195  .353 727 174 279 711 192 311 716 318 .468 765 0
UEFClarity | .205  .281 724 | -032 -105 669 | -.063 -.080  .644 198 304 728 0
UEFNQC | 217 244 740" | 004 -072  .667 048 134 689 269 371 750 1
UEFSMV | 228  .249 735 | -.009 -206 667 | -.004 .027 669 236 299 739 0
UEFWIG | .223 332 726 004 003 676 | -.023  -031  .660 241 354 740 0
WRIG | .228 353"  .744* | .151 .09 708 235 179 739 166 230 717 2
DCNQC | .170  .284 712 204 346 724 | 355  433*  .775% | 399%  .530%  .791% | 6
DCSMV | .164  .259 711 185 360 721 284 405 750 | 395" 516 785 2
DCWIG | .164  .182 716 178 253 726 | -190 -203  .609 303 432 764 | 0
HV | .086 .145 694 251 327 743 | -.088 -100  .637 183 299 718 0
DQPP | 209 .190  .738* | -.024 -.041  .658 066 210 699 268 382 746 1
PDQPP | .293* 401" .749* |.303" 437" 761" | 339" 454" 759 | .405* .543* 792" |11

The very same behaviour can be observed in our results reported in Tables 2, 3, and 4). Depending on what collection
is considered and which retrieval model is the target of our predictions, we observe most of the baselines exhibit a
high variance in evaluation metric values. For example, consider Table 2, where we observe that when predicting the
performance of ANCE on Robust *04, WIG is the best system. If we apply WIG on Contriever and DL ’20 (Table 3),
WIG performance is 63% worse than PDQPP, the most effective predictor in those cases. Similarly, Clarity, which is
the best for predicting the performance of Contriever on the DL Hard collection, perfroms quite poorly on DL *20 for
all IR systems sometimes leading to negative correlation. Generally speaking, this pattern is more severe for agnostic
predictors than for dense ones (with few exceptions, such as HV and DQPP which also exhibit instability).

The major advantage of PDQPP is indeed able to provide a more stable performance than the current baseline
predictors (as can be seen from the consistency in the EI values from Tables 2 to 4). Even in scenarios where PDQPP
fails to outperform all the baselines, it is either statistically at par with the best, or reasonably close to the best.

To better exemplify this, we report the critical difference diagram of the evaluated QPP in Figure 2. The critical
difference diagram reports on the x axis (on top) the rank, indicating what is the average rank for a QPP over the
various experimental settings (i.e., retrieval model, collection, and correlation measure considered). Furthermore, the
thick horizontal lines represent groups of statistically equivalent approaches, according to the Wilcoxon test [61]
corrected according to the Holm correction procedure [34]. For example, in Figure 2, we observe that the average rank
of PDQPP is 2.14. Furthermore, the second-best approach is DCNQC with an average rank of 4.22. Furthermore, PDQPP
is statistically the best according to the multiple-comparison adjusted Wilcoxon test, while the second-best, DCNQC,
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Fig. 2. Critical difference diagram across all experimental settings (IR system, collection, correlation measure). The average rank for
PDQPP is 2.14, and it is statistically better than the average rank of the second best (DCNQC, with average rank of 4.22).
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Fig. 3. The performance of the PDQPP when varying the number of pseudo-relevant documents. The general trend suggests that
choosing 2-6 documents as pseudo-relevant is the most effective strategy, but large confidence intervals (or the almost flat lines for
Robust ’04), indicate a relatively small impact on the performance due to picking a wrong amount of pseudo-relevant documents.

given the high variance in its rank across different scenarios, is statistically at par with SV, DCSMV, RSD, WIG and
DCWIG.

While designing a QPP that performs the best on all possible situations — predicted ir system, measure, collection - is
a very complex task, we argue that the QPP systems should be reasonably reliable, without major drops in performance
which render them untrustworthy. Our choice of including in our analyses multiple IR systems and collections is aimed
at showing the overall stability of the proposed PDQPP. Indeed, where PDQPP is not the best, it still provides reasonable
guarantees of effectiveness, even if compared against an always different most effective predictor. This observation, in

fact, leads to a justification of our choice of considering three different IR systems and multiple collections.

5.3 Sensitivity to the pivot documents

To keep the number of experiments to tractable limits, we used the set of top 5 documents as pivots for computing the
PDD values, i.e., we set k = 5, for all the results reported in Table 2 to 4. We now analyse the sensitivity of our predictor
on this parameter. Figure 3 reports the effect of modifying the number of pivot documents from which we can make
some interesting observations.

Firstly, we observe that since DL ’19, DL "20, and DL Hard contain a much smaller number of queries than Robust "04,
as a result of which, the performance of PDQPP on such collections is affected by a larger variance. Secondly, as a general

trend, we observe that the performance tends to decrease with an increase in the number of pivot documents. This is in
18
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Table 5. A comparison between the original PDQPP and its three variants where directions to project the embedded document and
query vectors are sampled from different distributions. Similar to the results of Tables 2, 3, and 4, the target IR metric to compute
QPP effectiveness is nDCG@10.

DL 19 DL 20 DL Hard Robust ’04
T p sMARE T p SMARE T p sMARE T p sMARE

\ ANCE
R-PDQPP | .155 .236 723 A71 143 718 137 148 712 291 416 753
Q-PDQPP | .387 .558 792 300 353 765 302 418 .769 382 .507 787
D-PDQPP | .380 .562 .788 415 .564 .788 282 384 755 386 524 787
PDQPP ‘ 360 .611 782 399 504 791 304 394 .763 405 .547 793

\ CONTRIEVER
R-PDQPP | .090 .136 .694 161 237 .709 .053  .054 .696 227 288 741
Q-PDQPP | 208 .432 724 230 .269 732 270 374 746 298  .396 .760
D-PDQPP | .272 .493 745 278 399 748 239 336 755 312 416 772
PDQPP ‘ 274 475 .740 275 437 753 254 340 757 310 415 774

\ TASB
R-PDQPP | 212 284 729 080 .131 .688 221 220 725 273 373 748
Q-PDQPP | .211 .352 726 267 298 .746 385 462 773 | .418 .564  .798
D-PDQPP | .368 .456 .782 .268 357 751 304 427 756 393 514 .789
PDQPP ‘ 286 .401 743 297 436 .759 344 456 762 405 543 792

line with our hypothesis that such documents provide a way to disambiguate the meanings of the query in a latent space.
The more documents we use further down a ranked list to define the reference spaces for computing the projection
displacements, the more the chances are that such documents are not relevant to the query, thus incorporating noise in
the prediction.

We also observe that the QPP effectiveness mostly decreases (often monotonically with a small number of exceptions)
with an increase in k, e.g., see the results for the DL Hard collection. For some collections, we observe that the QPP
effectiveness peaks at a value close to the range of about 2 to 4 documents beyond which it decreases almost steadily,
e.g., see the plots for DL ’19 and DL 20 collections. The ANCE model on DL 19 and DL ’20 collections shows a reverse

trend of improved QPP effectiveness with a larger number of pivots.

5.4 Using arbitrary subspaces for projections

As mentioned in Section 3, PDQPP relies on pseudo-relevant documents to identify the axes on which to project the
query and the retrieved documents. While we argue that this approach allows leveraging the information within the
ranked list itself, there might be alternative approaches to sample directions that might also be effective. Therefore,
we conduct additional experiments with three different variations of PDQPP, each with its own way of obtaining the

directions on which to compute the projection displacements, as detailed below.

¢ Random PDQPP (R-PDQPP) samples the directions from a Normal distribution centered at zero with standard
deviation tuned in [0.1,0.9] with steps of 0.1.



989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

Conference acronym "XX, June 03-05, 2018, Woodstock, NY TEMP

e Query PDQPP (Q-PDQPP) samples directions by perturbing the query with random noise drawn from a Normal
distribution centred at zero, with standard deviation tuned in [0.1, 0.9] with steps of 0.1. DQPP uses the same method
for generating perturbed queries. However, DQPP does not involve computing projection displacements as is the
case for the variant Q-PDQPP.

e Documents PDQPP (D-PDQPP) samples directions by from an isotropic multivariate Normal distribution with

parameters estimated from the top-5 document vector samples.

Table 5 reports a comparison of these variants with the originally proposed predictor (Equation 6). As a general
trend, we observe that R-PDQPP is the worst-performing solution, the likely reason for which can be attributed to the
fact that the projection axes being randomly sampled do not contain enough semantic information to differentiate
between the different aspects of the information need inherent in a query. Q-PDQPP and D-PDQPP, on the other hand,
yield much better results than R-PDQPP; in some cases, they even outperform the original predictor PDQPP based
on pseudo-relevant documents. Interestingly, Q-PDQPP yields the best results on DL Hard, which constitutes a set of

manually chosen ‘hard’ queries, i.e., queries for which retrieval performance is low.

5.5 PDQPP Limitations

While compared to the current state of the art PDQPP appears more robust and capable of achieving good performance
across all scenarios, three major limitations that affect PDQPP need to be discussed. Limitation 1: PDQPP is not a model
agnostic QPP. Indeed, PDQPP can be applied to predict the performance only of dense IR models. Two mitigating
conditions should be taken into consideration. First, dense models are more and more popular in the IR community. It
is usually common for IR pipelines to include a dense component for the purposes of first stage retrieval (as in this
work), for reranking, or for both. Even though PDQPP, in principle, can also be applied for sparse vectors, the method is
particularly suitable for dense vectors. This is because the projection of a sparse vector over another sparse one can lead
to an abrupt effect of removing term weights from the former thus making it more sparse. Whereas for dense vectors
the projections over subspaces retain more information. The popularity of dense IR models motivates its importance.
Secondly, a model agnostic QPP cannot take into consideration specific additional information available to the IR model
that might lead to an improvement in performance. In this case, the predictor exploits the geometric properties of
the embedding space to better identify queries whose documents are affected by high variability in their semantics,
suggesting possibly weak retrieval.

Limitation 2: PDQPP may not be suited for scenarios where the diversity in results is particularly important. PDQPP
operates under the assumption that a stable and coherent retrieval list is likely more effective than a highly diversified
one. These assumptions underly many QPPs such as Clarity [12], the UEF framework [53] or the reference lists
framework [49]. This might not be the case of a fairness-oriented IR system which aims at maximizing the diversity of
the results. Nevertheless, as future research direction, PDQPP should be tested for fairness-oriented IR tasks.
Limitation 3: PDQPP is not always the best performing QPP. This limitation has been extensively discussed in 5.2. To
summarize such discussion, PDQPP is the most stable predictor compared to all other baselines, making it reliable even
when it is not the most effective predictor. Conversely, most of the other approaches exhibit both gains and losses of

high magnitudes in effectiveness depending on the experimental setup considered.
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6 CONCLUSIONS AND FUTURE WORK

In this work, we proposed PDQPP, a novel QPP model capable of exploiting geometric properties in a dense embedding
space to predict IR performance. The proposed predictor is based on the concept of projection displacement: we project
the query and the retrieved documents on a reference subspace induced by the pseudo-relevant documents. The change
of retrieval scores observed in the novel space represents a measure of the incoherence of the IR system. If, in the novel
subspace, the query and the documents remain closely related, then we can assume the dense IR system to be successful.
On the other hand, if we observe major changes in the novel subs-pace, then it is possible that the retrieval was
unsuccessful and the performance will be low. In terms of effectiveness, the proposed QPP model can overcome several
state-of-the-art baselines under a wide range of settings. Additionally, we also show that using pseudo-documents as
subspaces yield better solutions than to use randomly selected ones.

In future directions, we plan to extend our predictor to other types of representation-learning based IR systems,
including distillation models of late-interaction systems and sparse IR systems. We also plan to investigate other
strategies to devise projection spaces, such as the space defined by previous utterances for a conversational search

system or clustering of documents.
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