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Dense Information Retrieval (IR) systems rely on neural networks to embed documents and queries within a latent low-dimensional
space. Among the Dense IR approaches, bi-encoders are particularly popular, as they achieve state-of-the-art performance and allow
for efficient encoding of documents and queries. Nevertheless, using this class of systems, by construction, all the documents and
queries are represented using the same set of dimensions. In this paper, we introduce the Manifold Clustering (MC) hypothesis which
states that, for each query, there exists a query-dependent manifold of the original embedding space where the query and documents
relevant to it cluster more effectively. We empirically validate the MC hypothesis showing that it is possible to find a query-dependent
linear subspace of the original embedding space where high retrieval effectiveness is achieved. To find such subspaces, we propose the
Dimension IMportance Estimators (DIMEs), a class of models that associate an importance score with each dimension of an embedding
and can be used to project the dense representations only on the most important dimensions. We first demonstrate the effectiveness of
the DIMEs by proposing an oracle DIME which employs annotated documents and induces performance improvements as big as
+184% in terms of AP. To demonstrate the practical applicability of the DIMEs beyond the oracle, we also propose a set of DIMEs based
on pseudo-relevance and active feedback that induce improvement as big as +49.6% in terms of AP and +55.9% in terms of nDCG@10.
The effectiveness of such DIMEs not only empirically supports the MC hypothesis, but illustrates an actual strategy to outperform the
state-of-the-art that does not require any form of retraining, fine-tuning or re-indexing and can be efficiently implemented at retrieval
time.
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1 INTRODUCTION

Information Retrieval (IR) systems have benefited from the emergence of pretrained Large Language Models (LLMs),
leading to the development of new systems with improved retrieval effectiveness over the previous state-of-the-art
IR systems [15]. These new IR systems leverage neural networks to represent and match queries and documents [40].
Among them, dense IR systems rely on learned semantic representations for queries and documents, called contextualized
embeddings. Queries and document embeddings are characterized by a lower dimensionality yet denser encoding than
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traditional sparse IR systems. Dense IR systems differ significantly from IR approaches based on traditional methods
like BM25 and query language models, which rely on lexical matching – where query terms in a document indicate
relevance. Instead, they use signals derived from semantic similarities in the latent space. This departure allows them to
effectively address challenges related to synonymity and polysemy thanks to the underlying pre-trained encoder-only
language model used to build their representation [27, 28, 64, 68]. In a dense IR system, queries and documents are
encoded as multidimensional vectors whose dimensions represent features that the model has learned to be important
for representing the textual content. Each vector dimension may correspond to a specific aspect learned from the data –
for example, it might capture the semantic meaning, the syntactic structure, or other linguistic features of the encoded
text. The values along those dimensions measure the presence and the importance of those features in a given query or
document. Ad hoc retrieval in this setting involves identifying the document embeddings that are nearest to the query
representation in the latent space and subsequently ranking them according to the specified similarity measure, typically
the dot product. These approaches operate according to the clustering hypothesis [62], which posits that documents
with similar meanings — and thus representations — tend to be relevant to the same queries. Another well-known
hypothesis concerning representation spaces was formulated by Bengio et al. [5] and is the manifold hypothesis. The
manifold hypothesis was originally postulated for images’ latent representation spaces and states that high-dimensional
data of interest often lives in an unknown lower-dimensional manifold embedded in the representation space. There
is strong evidence supporting this hypothesis in image representations [50]. Recently, several works in the natural
language processing and computational linguistics areas have found that contextualized embeddings from LLMs lie in
low-dimensional linear subspaces [26, 44] or nonlinear manifolds [9, 10].

We conjecture that both the clustering and the manifold hypotheses hold at the same time for IR and that it is possible
to find a subspace of the original latent space that best represents the query and the associated relevant documents.
However, when it comes to the manifold hypothesis, instead of assuming a single low-dimensional subspace for all
the queries and documents, we hypothesize that each query has its own low-dimensional subspace, i.e., we have
multiple low-dimensional subspaces, one per query, where documents can be projected as well. This also aligns with
the clustering hypothesis since we speculate that the subspace that best represents a query topic and its relevant
documents depends on the query itself. Putting everything together, we formulate the following Manifold Clustering

hypothesis (MC hypothesis) for dense IR systems:

High-dimensional representations of queries and documents relevant to them lie in a query-dependent
lower-dimensional manifold of the representation space.

If the MC hypothesis holds, there is a query-dependent low-dimensional manifold in the latent space where retrieval
is more effective, as the query and its relevant documents are clustered better than in the original latent space.

While the optimal manifold can have an arbitrary shape, finding it is a computationally challenging problem.
Therefore, we reduce the search space of the optimal manifold only to linear subspaces of the original latent space, one
for each query. In other words, we assume it is possible to devise a subset of the dimensions of the latent space, optimal
to represent the query and the documents and discard the others. As we will see in the following, this assumption,
despite being a first approximation, is highly effective and allows us to formulate several efficient heuristics to determine
such linear subspaces. Such an assumption implies that only a subset of dimensions of the latent space is needed to
optimize retrieval for a given query, and the other dimensions encode some “noise” which is detrimental to retrieval
performance. This makes sense if we consider that the number of dimensions is fixed ahead, independently of the
specific queries and documents. During training, learning algorithms globally optimize the disposal of the embeddings
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in the latent space by exploiting the relevance relations hidden in the training dataset. Therefore, they try to exploit the
full dimensionality anyway, making it extremely unlikely to completely zero out some dimensions, which, instead,
would produce the best linear subspace for a given query.

To provide the first evidence in support of our hypothesis, we put ourselves in an ideal case, and we assume that
relevant documents are known beforehand. In this context, we focus on different state-of-the-art dense IR systems [27,
28, 37, 38, 64] and, by relying on several TREC collections (Deep Learning 2019, 2020, DL HARD 2021, and Robust
2004), we show that there exist query-dependent linear subspaces, i.e., a specific type of manifold where dimensions are
zeroed, where dense IR system performance considerably improve, moving from 0.123 to 0.351 (+184%) in terms of AP
and from 0.334 to 0.649 (+94.2%) in terms of nDCG@10. This made us confident that our hypothesis offers ample room
for improving performance.

Then, since known relevant documents are rarely available ahead in operational settings, we design a set of
heuristics to estimate which dimensions to retain and which ones to discard, and we call them Dimension IMportance

Estimators (DIMEs). Thorough experimentation on the proposed DIMEs with state-of-the-art dense IR systems on
various TREC collections show impressive performance improvements: up to +0.117 (+49.6%, moving from 0.236 to
0.353) in AP and +0.210 (+55.9%, moving from 0.376 to 0.586) in nDCG@10.

This work builds upon a previous conference paper [20], extending it in several directions. The extensions include
the validation of the generality and robustness of our approach across two further dense representation models:
TCT-ColBERT and Dragon. While TCT-ColBERT adopts a standard bi-encoder, Dragon uses asymmetric encoders
for documents and queries to which we adapt our DIMEs. Another extension regards the introduction of three novel
DIMEs. The first is a basic DIME that randomly selects the dimensions to retain, allowing us to characterize the solution
space for our heuristic DIMEs. The second one is based on query variations, e.g., rewritings of the original query that
should retrieve the same set of documents. The last novel DIME exploits document relevance assessments returned by
an LLM. Moreover, we investigate the impact of the specific generative model on the performance of all our LLM-based
DIMEs. Specifically, we experiment with DIMEs using two 7B models (Gemma and Mixtral), a 70B model (LLama), and
a commercial model (GPT-4). Finally, in this extended paper, we include a novel analysis to determine the optimal
fraction of dimensions to retain depending on the retrieval model, collection, and measure considered, and to what
extent the optimal dimensions to retain are shared across different queries.

The paper is organised as follows: Section 2 summarizes the related work; Section 3 formalizes our methodology
and introduces the different DIMEs used in this paper; Section 4 reports the results of our extensive and reproducible
evaluation; finally, Section 5 draws some conclusions and outlines future work.

2 RELATEDWORK

Classical IR systems primarily rely on matching query and document terms: the presence of a query term within a
document is considered an indicator of relevance. This approach is particularly affected by the semantic gap: a concept
can be expressed using different synonyms, and the same term might be polysemous, impairing the effectiveness of
matching. With the advent of Neural IR and LLMs, the focus shifted from term matching to semantic matching. The
systems based on this novel paradigm take a piece of text, i.e., a query or a document, and project it into a latent space
using a neural network. This novel representation can be either sparse, i.e., it contains as many dimensions as the
terms in the vocabulary, as in the case of SPLADE [23], or dense. In this paper, we focus on IR systems relying on
dense representations. These representations are typically much smaller than the vocabulary size, e.g., a few hundred
dimensions, and denser than sparse ones. Dense IR approaches first project documents into a latent space using a
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projection function called an “encoder.. Such documents are stored efficiently in a specialized metric index, such as
the one offered by the FAISS toolkit [29]. At query time, the query is projected into the latent space as well. The
encoder used for the query can either be the same as the one used for the documents or a different one. In this paper,
we consider four state-of-the-art dense IR models that encode the query and the documents in the same embedding
space (ANCE [64], Contriever [28], TAS-B [27], and tct-ColBERT [38]) and a state-of-the-art approach that relies
on two asymmetric encoders for queries and documents, namely Dragon [37]. ANCE is a seminal approach that
uses contrastive learning with hard negatives: given a training query, the model is trained by asking it to guess the
relevant document between two documents, a relevant one and another document chosen among the top-ranked
documents scored by the model itself trained up to that point, i.e., a hard negative. Contriever is also based on contrastive
learning and differs from ANCE mainly in how positive and negative examples are chosen. Dense Retriever trained
with diverse AuGmentatiON (Dragon) [37] relies on distillation, i.e., using other IR models to devise soft labels. It
achieves state-of-the-art performance by operating on two aspects: the order in which teachers are employed and data
augmentation. Indeed, Lin et al. [37] observe that a proper ordering of the teachers improves performance. Similarly,
Lin et al. [37] highlight that expanding the dataset with additional automatically generated queries is beneficial. Topic
Aware Sampling Balanced (TAS-B) is a distillation method based on dual-teacher supervision, where teacher models
are BERT Cross-encoder [46] and ColBERT [31]. Furthermore, when constructing batches, it relies on Topic Aware
Sampling so that batches contain queries on similar topics. Tightly-Coupled Teacher ColBERT (tct-ColBERT) [38]
distils information from ColBERT [31] to devise a dense encoder. This enables performance similar to ColBERT while
reducing inference time by allowing precomputation of document embeddings. In particular, the loss function used to
train tct-ColBERT considers both hard labels—i.e., whether the document is relevant to the query within the training
set—and soft labels produced by ColBERT—i.e., the retrieval score of the document in response to the query.

A closely related area to our proposal is feature selection for machine learning [24, 30, 35, 54]. The objective of
feature selection is to isolate a subset of all available features to improve a model’s effectiveness while reducing the
computational cost. There are several approaches to the feature selection task. Such approaches include the usage of
ANalisys Of the VAriance (ANOVA) or chi-squared statistics to determine the importance of each feature [7, 16, 58] and
approaches based on correlation or mutual information to determine if some features overlap in terms of provided
information [48, 60, 67].

Regarding IR specifically, feature selection approaches have been successfully applied to the Learning-to-Rank
task [14, 25, 51, 52]. While our DIMEs can be categorized as feature selection algorithms—if dimensions are treated as
features—the key difference is that, in our case, the selected features vary on a query-by-query basis. Major feature
selection approaches instead identify a set of features, regardless of the instance on which to apply the machine learning
model [54]. A second difference is that, in the classical Learning-to-Rank task, features often have an explicit semantic
meaning, i.e., they represent and quantify real-world properties of the data that are interpretable by humans, and such
meaning can be exploited to drive the selection procedure. In our case, no dimension has an explicit meaning: the
latent semantic meaning is learned and not directly interpretable. Deciding which dimensions to preserve or remove
depends on the underlying representation model and can only be done at test time—i.e., when the query is available.
Determining if and how current feature selection approaches can be applied for the dimension importance estimation
task is left as future work.

Another line of research relevant to our work is related to Pseudo-Relevance Feedback (PRF) models. These methods
are supported by a long-established and rich body of literature, starting with the Rocchio approach [53]. As a general
pattern, PRF approaches operate by introducing additional terms to the query. Such terms can be chosen either by
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considering statistics of the terms in pseudo-relevant documents and the corpus [1, 2, 53], or by considering the
similarity between the query and the terms in a non-contextualized word-embedding space [18, 33, 55, 56, 65]. Most
PRF approaches can be interpreted under a geometric framework. Introducing new words into the query implicitly
applies a linear transformation to its representation, shifting it closer to where relevant documents are likely to be.
On the other hand, our DIMEs apply a spatial transformation, i.e., a projection to a linear subspace where relevant
documents might be closer to the query. Indeed, there are two major differences: i) PRF relies on linear combinations of
vectors, i.e., scaling and translations in a representation space, while the MC hypothesis conjectures that projections
are the most effective transformations; ii) PRF operates only on the query representation; MC hypothesis is designed
to operate the projection both on queries and documents. At the same time, as discussed in Section 4, PRF and the
MC hypothesis can also synergize. For example, pseudo-relevant documents can be used to instantiate a DIME that
operates under the MC hypothesis. Recent work has begun investigating how to use LLMs to generate PRF documents.
In this regard, given a query, Mackie et al. [42] employs several prompts corresponding to different “tasks” to generate
different pseudo-relevant outputs. Such pseudo-relevant documents are used to identify the most frequent terms and
use them to expand the query. It is important to note that Mackie et al. use their strategy to expand queries that are
then processed with lexical IR models, i.e., BM25, thus focusing on a different class of systems compared to the dense IR
systems that we consider here.
On a different line, some effort has also been devoted to developing PRF-based approaches specifically tailored for
dense IR models. One of the most prominent approaches in this regard is Vector PRF (VPRF), proposed by Li et al. [34].
VPRF, inspired by Rocchio, combines the dense representations of query and pseudo-relevant documents. More in
detail, VPRF computes a weighted centroid of the query and document representations that can be used as an expanded
query. Assuming 𝜙 is a dense encoder, the expanded query representation is computed as q∗ = 𝛽1𝜙 (q) + 𝛽2

k
∑k

i=1 𝜙 (di),
where 𝛽1 and 𝛽2 are two parameters that regulate the contribution of the original query and pseudo-relevant feedback
respectively, while 𝑘 is the number of pseudo-relevant documents considered. Given the similarity in setting, we
compare the proposed DIMEs with VPRF in our experimental analysis. Later on, Zhuang et al. [69] extended this
approach to employ implicit feedback instead of pseudo-relevance feedback. More in detail, Zhuang et al. develop a
counterfactual-based approach, called CoRocchio, to de-bias the click frequencies derived from query logs and use such
click frequencies to construct an informed centroid representation to serve as the query. Although the use of implicit
feedback makes direct comparison between CoRocchio and DIMEs difficult, we plan to investigate the integration of
implicit feedback and DIME in future work.

On a different note, the novel Matryoshka Learning framework [32, 36] focuses explicitly on learning representations
that allow for easy and efficient dimensionality reduction. During the learning phase, Matryoshka embeddings are
optimised to maximise the similarity between the query representation and the relevant documents, while minimising
the similarity between the query and non-relevant documents. Unlike other approaches, Matryoshka Learning employs a
loss function that optimizes both the full query-document representation and nested subsets of dimensions. Consequently,
using Matryoshka embeddings, it is possible to use only the first dimensions of the representation for a more efficient
computation of the query-document similarity. After the first-stage retrieval, the list of retrieved documents can be
further refined using the entire representation. According to Kusupati et al. [32] and Li et al. [36], just a few hundred
dimensions of the Matryoshka representation achieve performance comparable to the full model. This aligns with the
MC hypothesis underlying DIMEs: the full representation can be reduced to a lower-dimensional manifold. Nevertheless,
two major differences must be highlighted. First, Matryoshka embeddings are, by construction, such that the most
important dimensions are the same for every query, allowing for efficient retrieval by retaining only the first dimensions.
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In contrast, DIME operates by “searching” such optimal dimensions on a pre-existing query representation. Secondly,
Matryoshka embeddings achieve optimal effectiveness when the full representation is used. DIMEs, on the other hand,
achieve optimal effectiveness when only a subset of dimensions is considered.
We hypothesize that Matryoshka Learning and MC hypothesis rely on the assumption that the full representation
contains some noise: Matryoshka Learning replaces this noise with redundancy to improve efficiency, whereas DIMEs
remove it to enhance effectiveness. The major advantage of DIME over Matryoshka Learning is that the former does
not require any training and can be applied at inference time.

3 METHODOLOGY

Relying on our MC hypothesis and the assumption that identifying linear subspaces is effective, in Section 3.1 we
formalize the dimension importance estimation framework and introduce our Dimension IMportance Estimators (DIMEs),
i.e., efficient methods for assigning query-dependent importance scores to dimensions in the latent representation. These
DIMEs allow us to sort the dimensions in decreasing order of estimated importance and to select the most important
ones, identifying the query-dependent linear subspace at the basis of our assumption. Specifically, in Section 3.2, we
define an oracle DIME to provide experimental evidence in support of the MC hypothesis in an ideal scenario where
relevance judgments are known. In Section 3.3, we discuss instead several DIME methods for practical use, i.e., when
relevance judgments are not known ahead.

3.1 The Dimension Importance Estimation Framework

Let q denote a query 𝑄 and {d, ...} a corpus of documents {𝐷, ...} represented in the latent space R𝑑 by an encoder
𝜙 of a dense neural model. Notice that 𝜙 can either be symmetrical (i.e., the same for the queries and documents) or
asymmetrical (i.e., two encoders 𝜙𝑄 and 𝜙𝐷 for the queries and the documents, respectively). The IR system takes as
input the representations of the query and the documents and produces a ranked list of documents ⟨q, {d, ...}⟩ as output.
LetM

(
⟨q, {d, ...}⟩

)
, be an evaluation measure to quantify the performance of the IR system for the query q.

Let𝑊 denote a subspace of R𝑑 . Furthermore, let 𝜋𝑊 be the projection operator that projects a vector from R𝑑 to𝑊 .
Our MC hypothesis implies that there exists a query-dependent subspace𝑊 that induces higher retrieval effectiveness
than the one observed in the original space:

∃𝑊 ⊂ R𝑑𝑠 .𝑡 .,M
(
⟨𝜋𝑊 (q), {𝜋𝑊 (d), ...}⟩

)
> M

(
⟨q, {d, ...}⟩

)
, (1)

where M
(
⟨𝜋𝑊 (q), {𝜋𝑊 (d), ...}⟩

)
denotes the evaluation measure when both the query q and the documents are

projected from R𝑑 onto the subspace 𝑊 by the corresponding projection operator 𝜋𝑊 . If there exists a space 𝑊
satisfying inequality (1), then MC hypothesis holds (at least for the query represented by q). More in detail, we are
interested in finding the optimal subspace𝑊 where retrieval performance improves over the full latent space in R𝑑 .
Thus, our objective can be formalized as finding the subspace𝑊 s.t.:

argmax
𝑊 ⊂R𝑑

M
(
⟨𝜋𝑊 (q), {𝜋𝑊 (d), ...}⟩

)
, (2)

and verify whether retrieval in𝑊 is more effective than in R𝑑 .
Exploring any possible linear or nonlinear subspace𝑊 is not feasible, since the solution space would be infinite; thus,

we need a constructive method to determine an appropriate subspace. Therefore, we assume that a linear subspace is a
suitable simplification and that, among all the linear subspaces, we can restrict ourselves to those obtained by zeroing
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out one or more dimensions of the representations in R𝑑 . As discussed in Section 1, this assumption is a reasonable
first approximation, which might lead to a suboptimal solution, but at the great benefit of a clear and straightforward
method to construct𝑊 , as we will discuss in the following sections.

Therefore, we specialise the projection operator 𝜋𝑊 to 𝜋𝛿 , which removes the components of a vector in R𝑑 not
included in a set of dimensions 𝛿 ⊆ {1, . . . , 𝑑}, and we rewrite eq. (2) as

argmax
𝛿⊆{1,...,𝑑 }

M
(
⟨𝜋𝛿 (q), {𝜋𝛿 (d), ...}⟩

)
. (3)

Although Eq. (3) restricts the infinite solution space of Eq. (2) to the finite solution space of finding the best subset of
dimensions 𝛿 which maximizesM, this is still a huge solution space, corresponding to the power set of the 𝑑 dimensions,
which has cardinality 2𝑑 .

To make the problem computationally tractable, we introduce a “bag-of-dimensions” assumption by considering
the contribution of each dimension to retrieval effectiveness independent of the others. Such an assumption allows
us to independently choose the dimensions in 𝛿 based on Dimension IMportance Estimators (DIMEs), i.e., functions
𝑢𝑞 : {1, ..., 𝑑};𝜃 → R that associate to each dimension of q a score estimating its importance. In other words, we assume
that if 𝑢𝑞 (𝑖) > 𝑢𝑞 ( 𝑗) for two dimensions 𝑖 and 𝑗 , then for two sets 𝛿𝑖 and 𝛿 𝑗 differing only for the presence of dimension
𝑖 in 𝛿𝑖 and 𝑗 in 𝛿 𝑗 , M

(
⟨𝜋𝛿𝑖 (q), {𝜋𝛿𝑖 (d), ..., }⟩

)
> M

(
⟨𝜋𝛿 𝑗 (q), {𝜋𝛿 𝑗 (d), ..., }⟩

)
. The DIMEs can exploit some additional

information 𝜃 to devise their estimation, e.g., the top retrieved documents, a relevant document, and query variations.
Given the previous assumption, to address the problem in Eq. 3, we can rely on a DIME to score the 𝑑 dimensions for

query q and simply search for the solution among the prefixes of the list of dimensions ordered by decreasing DIME
score. To formulate its importance estimation, a DIME can rely on several possible sources of information, including
the query and document representations.

Using DIMEs has two significant advantages: i) it relaxes the task, making it practical; ii) it lets us explore the
behavior of the proposed approaches for a varying number of subspace dimensions. It is worth noting that our DIMEs
are query-dependent. Our objective is not to find a global ordering of the dimensions that optimizes the effectiveness
performance on all queries, but to find a query-dependent ordering in line with the MC hypothesis.

3.2 Oracle DIME

To assess the impact of the MC hypothesis, we propose an estimator that shows the superior retrieval effectiveness
achievable by removing some of the dimensions. This oracle DIME uses all relevance-annotated documents, making
it unsuitable for operational scenarios. Nevertheless, it is useful to demonstrate that: i) different dimensions have a
diverse degree of importance, i.e., the MC hypothesis is well grounded; and ii) there is a large margin of improvement
for effectiveness, achievable by properly selecting the correct dimensions in dense IR representations.

Let R be the list of annotated documents for a given query 𝑞. A relevance label 𝑟 , represented as an integer, is
associated with each document in R. Depending on the collection, the integer label can be a binary value or a graded
relevance assessment. Without loss of generality, we assume that |R | > 2 and the annotated documents belong to
at least two distinct classes (e.g., relevant and non-relevant). Moreover, let 𝑅 ∈ R𝑑×|R | be a matrix s.t. 𝑅𝑖, 𝑗 = q𝑖 · R 𝑗

𝑖
.

In other terms, the element in the 𝑖-th row and 𝑗-th column of 𝑅 is the product of the 𝑖-th component of the query
representation q and the 𝑖-th component of the representation of the 𝑗-th document in R. To assess if a dimension
“correlates” positively with the relevance of documents in R, we build the relevance vector r ∈ R | R | , where the 𝑗-th
element is the relevance label of the 𝑗-th document in R. For each dimension 𝑖 , our oracle estimator 𝑢𝑜𝑟𝑞 measures the
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Pearson correlation 𝜌 between the 𝑖-th column of 𝑅, 𝑅:,𝑖 , and the relevance vector:

𝑢𝑜𝑟𝑞 (𝑖) = 𝜌 (r, 𝑅:,𝑖 ) . (4)

The oracle DIME associates the maximum importance to the dimension whose corresponding column in 𝑅 correlates
the most with the relevance labels. Thus, the better a dimension ranks the documents according to their relevance, the
more important it is.

3.3 DIMEs in Practice

Since relevance annotations are unavailable in practice, we now introduce practical DIMEs, which, unlike the oracle
DIME of Eq. (4), do not rely on such information. In particular, we identify two main families of DIMEs: those that rely
on internal information and those that rely on external information. With “internal information” we refer to what can
be derived exclusively by considering the representations of the query and the documents in the corpus. On the other
hand, “external information” includes additional sources of information, such as query variations, pseudo-relevant
documents not present in the corpus, or the active feedback of the user.

3.3.1 DIME Relying on Internal Information. DIMEs relying on internal information use exclusively the representations
of the query and/or the documents to compute the importance of each dimension. Within this family, we include a
DIME that correlates the importance with the magnitude of the dimensions of the query representation and a DIME
that employs the representation of the top documents retrieved in a pseudo-relevance fashion.

Magnitude DIME. In this case, we assume that the information that allows us to determine the importance of each
dimension is already available from the query representation q itself. Specifically, we hypothesize that the magnitude of
each dimension of the query describes how important the dimension is for producing a good ranking. If a dimension
is particularly large, it is likely associated with a latent facet that is of great importance to understanding the query.
On the other hand, dimensions with small magnitudes are likely to be associated with noise and irrelevant aspects for
the query and, therefore, can be neglected. Our magnitude-based DIME heuristic 𝑢𝑚𝑎𝑔

𝑞 for dimension 𝑖 is thus simply
defined as:

𝑢
𝑚𝑎𝑔
𝑞 (𝑖) = |q𝑖 |, (5)

where q𝑖 denotes the 𝑖-th component of q. Notice that we consider the absolute value of each element: stating that a
query is particularly skewed toward a specific dimension – even in negative terms – should be of great importance
to describe the query. A filter based on this heuristic will retain particularly large-magnitude dimensions and discard
small-magnitude dimensions.

PRF DIME. This DIME assumes that the top 𝜏 retrieved documents are relevant, and the interaction between such
documents and the query can provide effective insights on how to identify the most effective dimensions.

More in detail, given the representations d@1, ..., d@𝜏 of the top 𝜏 documents retrieved for the query 𝑞, which are
assumed to be pseudo-relevant, we construct the representation p of a generic pseudo-relevant document as the centroid
of the representations of the retrieved documents such that p𝑖 =

∑𝜏
𝑗=1 d@𝑗𝑖

𝜏
. This allows us to instantiate our PRF DIME

heuristic 𝑢𝑃𝑅𝐹𝑞 for the importance of dimension 𝑖 as follows:

𝑢𝑃𝑅𝐹𝑞 @𝜏 (𝑖) = q𝑖 · p𝑖 . (6)
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PRF DIME approximates the importance of dimension 𝑖 as the product between the 𝑖-th dimensions of the query and
the centroid of the representations of the top 𝜏 pseudo-relevant documents. We assume that if the alignment between
the query and the archetypal pseudo-relevant document is particularly prominent on a certain dimension, then it is
more likely that such a dimension is effective for retrieval and, therefore, should be retained.

Bi-encoder models can be divided into two different families: symmetric bi-encoders that use the same encoder 𝜙 to
encode both the query and the documents (e.g., ANCE, Contriever, TAS-B, tct-ColBERT), and asymmetric bi-encoders
that use two different encoders, 𝜙𝑄 and 𝜙𝐷 , for the query and the documents, respectively (e.g., Dragon). Our definition
of the PRF DIME assumes that the default representation is used: if the bi-encoder is symmetric, then 𝜙 is used to encode
both the query and the documents. Conversely, if the bi-encoder is asymmetric, representations q are constructed as
𝜙𝑄 (𝑞) = q, while documents representations d@1, ..., d@𝜏 are such that 𝜙𝐷 (𝐷@1) = d@1, ..., 𝜙𝐷 (𝐷@𝜏) = d@𝜏 .

However, in the asymmetric case, the use of two different encoders, the queries and the documents live in two
different spaces, which might or might not be characterized by the same topological properties. For example, documents
might have more uniform representations while queries might have more diversified ones. This might impact which
dimensions are considered the most important, potentially leading to detrimental effects. Therefore, we define a second
PRF DIME, which we refer to as “symmetrical PRF DIME”. To compute it we first obtain the pseudo-relevant documents
using the asymmetric encoding—the standard one—then we compute their representation using the query encoder:
𝜙𝑄 (𝐷@1) = d@1𝑆 , ..., 𝜙𝑄 (𝐷@𝜏) = d@𝜏𝑆 . Similar to the standard PRF DIME, we compute p𝑆 , the centroid of the
embeddings d@1𝑆 , ..., d@𝜏𝑆 . Finally, the symmetric PRF DIME is defined as:

𝑢𝑃𝑅𝐹-𝑆𝑞 @𝜏 (𝑖) = q𝑖 · p𝑆𝑖 . (7)

A major aspect we wish to stress is that we do not change how documents are retrieved—for that, we still use the
asymmetric representation for queries and documents. The change regards only how we estimate the importance of the
dimensions. Notice that it makes sense to use the symmetrical PRF DIME—as well as the other symmetrical DIMEs
we will define later on—only in the case of asymmetric bi-encoders (Dragon, in our experimental section). Indeed, we
would observe no changes if the encoder 𝜙 is already symmetric.

3.3.2 DIME With External Information. DIMEs based on external information employ external information sources
to estimate the importance of each dimension. More in detail, we devise four external information DIMEs: i) a DIME
based on query variations; ii) a DIME that uses an LLM-generated pseudo-relevant document; iii) a DIME that employs
an LLM as a weak relevance annotator; iv) a DIME that utilizes a relevant document as a form of active feedback.

DIMEs Based on Query Variations. Query variations can provide a useful signal for identifying the most relevant
dimensions. Query variations are queries that correspond to the same information need and thus aim at retrieving the
same set of documents. Such variations might be specializations or generalizations of the query, contain synonyms or
hyperonyms of the query terms, or additional terms. Even though query variations express the same information need,
in the most common scenario, they tend to interact with the system and the corpus [3, 4, 13], leading to different results
in practice. For example, a certain query might perform poorly, while a reformulation might be extremely effective.
This behavior is commonly observed in everyday interactions with IR systems: by simply rewriting the query, we could
end up with a better or worse set of retrieved documents.

Query variations have been employed in several tasks meant to improve the system performance, such as query
rewriting [8], relevance modeling [39], rank fusion [6], to predict the performance of a system [17, 21, 22, 66], or
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measure its stability [13, 49]. We hypothesise that they can also be effectively used to determine which dimensions
are the most important in a dense representation. Indeed, if we assume that the dimensions have an underlying latent
semantic meaning, all the query variations that correspond to the same information need will insist more on those
dimensions that better describe the meaning of the query, while they will contain “noise” on the other dimensions.
Therefore, we expect important dimensions to be important for all the variations.

Let V𝑞 denote the set of query variations that represent the same information need as the query 𝑞. We call v the
embedding of a query variation in the latent space. The first estimator is based on computing the interaction between
the query and a randomly picked variant. We call such a heuristic Random Query Variation DIME and refer to it as 𝑢𝑣𝑎𝑟

𝑞 .
In this case, the weight of each dimension is defined as follows:

𝑢𝑣𝑎𝑟
𝑞 (𝑖) = q𝑖 · v𝑖 , (8)

where v is the embedding of a query variation 𝑣 uniformly sampled from V . One of the limitations intrinsic to
this approach is that, depending on which query variation is sampled, the results might differ, inducing different
performances.

Therefore, to address this limitation, we propose the Query Variations Centroid DIME, identified with 𝑢𝐶𝑣𝑎𝑟
𝑞 . Instead

of using a single query variation, this weighting mechanism weights the query representation by the centroid of the
representations of its query variations. More formally:

𝑢𝐶𝑣𝑎𝑟
𝑞 (𝑖) = q𝑖 ·

∑
𝑣∈V𝑞

v𝑖
|V𝑞 |

(9)

Notice that, mathematically speaking, either employing the centroid of the query variations or using each query
variation to compute the importance and then averaging the performance across the query variations is identical.

A limitation of the Query Variations Centroid DIME is that it weights more the query representation than any other
variations by a factor of |V𝑞 |. This behaviour might not be desirable: as mentioned before, it is common for query
variations to perform better or worse than the original query – by weighting the original query we do not exploit this
characteristic.

To avoid weighing more the original formulation, we propose a final DIME within this family that treats the original
query as an arbitrary variation. We refer to this estimator as Query and Query Variations Centroid DIME and indicate it
with 𝑢𝐶𝑄𝑣𝑎𝑟

𝑞 . The weight associated with each dimension according to this DIME is computed as follows:

𝑢
𝐶𝑄𝑣𝑎𝑟
𝑞 (𝑖) =

�����q𝑖 +
∑

𝑣∈V𝑞
v𝑖

1 + |V𝑞 |

����� (10)

More in detail, the weight is the absolute value of the 𝑖-th dimension of the centroid of all query variations, including
the query itself.

Notice that in this case, we employ the absolute value of the weight. Indeed, similarly to the magnitude-based DIME, if
one of the dimensions is particularly big in negative terms, it is an important piece of information: the query is opposed
to the latent concept underlying that dimension. If we do not employ the absolute value, this piece of information is
lost, and a large negative dimension is considered not important.

A major advantage linked to these DIMEs is that it is an easy task to obtain the query variations by simply looking
at the query log of a search engine. Following, for example, the procedure adopted to build the UQV 100 dataset [3], it
is possible to associate a set of queries with a large set of query variations.

10
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LLM DIME. LLMs are the current state of the art for generating text. Therefore, given a query 𝑞, we harness their
power to generate an artificial pseudo-relevant document that can be used to determine which dimensions of q are the
most important. More in detail, we employ an LLM to generate an answer 𝐴 in response to the query, which acts as a
pseudo-relevant document. We are not interested in investigating if the answer returned is correct, as it will not be
presented to the user but used only for computing the DIME. To avoid introducing any form of bias, we do not perform
any prompt engineering: we directly input the verbatim query to the LLM, without any form of preprocessing. Once
the text in response to the query has been generated by the LLM, we compute its representation a in the latent space.
Then, the DIME based on LLM feedback 𝑢𝐿𝐿𝑀𝑞 is defined as follows:

𝑢𝐿𝐿𝑀𝑞 (𝑖) = q𝑖 · a𝑖 . (11)

The dimension importance is given by the product of the 𝑖-th dimension of the representations of the query and the
LLM-generated answer.

Also in this case, if the bi-encoder is asymmetric, we need to decide which encoder to use to represent the answer
𝐴. Being 𝐴 a pseudo-relevant document, the most intuitive solution is to use 𝜙𝐷 s.t. 𝜙𝐷 (𝐴) = a𝑖 . Nevertheless, we
could consider representing both the query and the pseudo-relevant document using the same encoder 𝜙𝑄 . In this
case, we refer to the symmetric representation as 𝜙𝑄 (𝐴) = a𝑆𝑖 . Plugging this representation into Eq. 11, we obtain the
“symmetric LLM DIME”, which we refer to as 𝑢𝐿𝐿𝑀-𝑆 . As for the PRF DIME, this change affects only how we estimate
the dimensions’ importance, but leaves unaltered how we represent documents during the retrieval phase.

LLM Assessor DIME. Both the PRF DIME and LLM DIME present some limitations. The PRF DIME operates under
the assumption that the top-𝜏 documents retrieved are relevant and provide a useful signal in determining what are
the characteristics of relevant documents. Nevertheless, if the top-𝜏 retrieved documents are not relevant, there is a
high risk of pushing up non-relevant content, possibly damaging the quality of the ranked list. On the other hand,
the LLM DIME employs a LLM-generated document as an approximation of the relevance signal. Nevertheless, the
document will likely have a different structure and term distribution compared to the actual documents contained in
the collection. This might represent a limitation, as the representation of the generated pseudo-relevant document
might differ from that of actual documents in the collections. Inspired by recent efforts [19, 41, 59] that employ LLMs to
devise relevance judgments, we use an LLM to combine the effectiveness of the two approaches. In more detail, we use
an LLM to associate each document with a relevance label. Formally, we employ a prompt that combines a query and
a document and conditions the probability distribution of the LLM so that it will output one among not relevant,
partially relevant, relevant, highly relevant, according to the likelihood that the document is relevant to the
query. To simulate a real-world scenario while reducing the number of interactions with the LLM—typically expensive
both in terms of time and cost—we scan sequentially the list of the top-𝜏 documents retrieved by the IR system. The
sequential scan continues until either the LLM generates the highly relevant label to describe the relationship
between a document and a query, or until all the top-𝜏 documents have been considered. We then consider as the
pseudo-relevant document the first document whose LLM-generated label corresponds to the maximum relevance
among those assessed by the LLM. Let 𝑙 be such a document, and let l be its representation in the latent embedding
space. We can define the following DIME:

𝑢𝐿𝐿𝑀𝑅𝐽 (𝑖) = q𝑖 · l𝑖
This approach operates under the assumption that, by using a more expensive model, the LLM, we can better estimate
the relevance of a small subset of documents. Therefore, this might improve over the PRF DIME. Furthermore, unlike
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the PRF DIME, this approach has the advantage of not requiring tuning of the parameter 𝜏 : thanks to our sequential
scan, we can continue until we have found a highly relevant document or reached some predefined budget. On the
other hand, we rely on in-domain documents as pseudo-relevant in this case, compared to the LLM DIME.

As for both the PRF DIME and LLM DIME, we use the document encoder to encode 𝑙 into l. Therefore, in line with
such approaches, we define a second version of this DIME, the “Symmetric LLM Assessor DIME” (𝑢𝐿𝐿𝑀𝑅𝐽 -𝑆 ), in which
we use the query encoder to encode the document 𝑙 into 𝜙𝑄 (𝑙) = l𝑆 .

Active-Feedback DIME. This DIME constructs upon the LLM DIME, by replacing the document generated by the
LLM with an actual, human-assessed, relevant document. This estimator may not be suitable in offline scenarios, as it
requires access to a relevant document for each query. Nevertheless, it can be particularly effective for specific use cases
or in online situations. Consider, for example, the case in which the user has issued a query to a search engine and has
retrieved a set of documents in the form of a Search Engine Result Page (SERP). After inspecting it, the user clicks on a
link corresponding to a document they may consider relevant. Such a document can then be used to instantiate a DIME,
reorganizing the SERP according to the active feedback provided by the user. Other scenarios where this DIME can be
effective include, for example, legal IR, where some relevant previous cases are known, or systematic review.

Let us thus assume to have access to a relevant document in response to a query and let s be its representation in the
latent space. The DIME based on Active-Feedback is defined as follows:

𝑢𝑟𝑒𝑙𝑞 (𝑖) = q𝑖 · s𝑖 . (12)

In other terms, the weight of each dimension is the product of the 𝑖-th dimension of the relevant document representation
and the 𝑖-th dimension of the query representation.

While this DIME has a specific area of application, e.g., online retrieval, it is also effective in showing the power
of DIMEs in identifying the optimal dimensions. In turn, it represents a sort of middle solution between the superior
performance of the oracle DIME and the performance of the other, more practical DIMEs.

As for other DIMEs that use document encoding, 𝑢𝑟𝑒𝑙 assumes we use the default document representation in case of
asymmetric bi-encoders. Thus, we can define a second variant 𝑢𝑟𝑒𝑙-𝑆 which employs the same encoder to represent
both the query and the relevant document.

4 EXPERIMENTAL RESULTS

4.1 Operationalizing DIMEs

Our DIMEs produce a score for each dimension, estimating its expected relevance. Therefore, the higher the DIME score,
the more likely the dimension is to be relevant and effective in producing a well-ranked list of documents. We thus
use each DIME to rank dimensions and perform retrieval using a selected subset, analyzing how this dimensionality
reduction impacts performance. In this paper, we are interested in showing that reducing the number of dimensions
improves retrieval performance; we leave the task of determining the optimal number of dimensions to retain as future
work.

Given a generic DIME𝑢, we project the query onto the top 𝑘 dimensions. In practice, this means setting the remaining
𝑑 − 𝑘 dimensions (i.e., those not in the top 𝑘) to zero based on the DIME scores. We then use this modified query
representation to rank the documents, while keeping their original representations unchanged. By zeroing out the non-
selected dimensions in the query, we ensure that only the retained dimensions contribute to the final query–document
similarity score. This use of DIMEs enables seamless integration into existing retrieval pipelines: there is no need to
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re-index the collection, as operating solely on the query representations is sufficient. Future operationalizations could
skip computations on ignored dimensions, increasing retrieval efficiency.

4.2 Experimental Setup

In our experimental analysis1, we examine five dense retrieval models: ANCE2 [64], Contriever3 [28], Dragon4 [37], TAS-
B5 [27], and tct-ColBERT6 [38]. This allows us to study the effectiveness of the DIMEs on dense IR models that employ
symmetric (ANCE, Contriever, TAS-B, tct-ColBERT) and asymmetric (Dragon) query and document encoders. We use
model weights that were fine-tuned on the MS-MARCO collection and are publicly accessible from the Huggingface
repository. All models operate in a 768-dimensional latent space. In terms of datasets, we consider four experimental
collections: TREC Deep Learning ‘19 (DL ‘19) [12], TREC Deep Learning ‘20 (DL ‘20) [11], Deep Learning Hard (DL
HD) [43], and TREC Robust ‘04 (RB ‘04) [63]. The first three datasets focus on ad-hoc passage retrieval, containing 43,
54, and 50 annotated queries, respectively. All are based on the MS MARCO passages collection [45]. RB ‘04 contains
249 queries and is based on the TIPSTER corpus (disks 4 and 5), excluding the congressional records. All dense IR
systems were fine-tuned on the MS MARCO passages collection, making them in-domain for DL ‘19, DL ‘20, and DL
HD. In contrast, applying them to RB ‘04 constitutes a zero-shot setting, as its queries and documents differ from the
training distribution. Additionally, the RB ‘04 queries will be considered an “out-of-domain” scenario, as test queries
and documents come from a different distribution from the training ones. To instantiate the DIME based on LLMs,
we used GPT-4 [47], Gemma and Mixtral with 7B parameters, and LLaMA with 70B parameters. To assess whether
improvements over the baseline are statistically significant, we use ANalysis Of the VAriance (ANOVA) [57] and Tukey’s
Honestly Significant Differences (HSD) post-hoc test [61] with a significance level of 𝛼 = 0.05.

4.3 Determining if Using Fewer Dimensions is Beneficial for Ranking

4.3.1 Random DIME. To provide initial empirical evidence supporting our MC hypothesis, we evaluate how per-
formance changes when using a random subset of dimensions. Figure 1 presents this analysis for three IR systems:
Contriever (Fig.1a), Dragon (Fig.1b), and ANCE (Fig. 1c). We vary the size of the sampled subset of dimensions in each
case. The sampling is repeated 100 times. Each dot represents the performance of a random subset of dimensions on
a single query. The x-axis shows the original nDCG@10 score, and the y-axis shows the score when using only the
sampled subset. For readability, we do not distinguish between individual queries in the figure; hence, vertical bands
represent multiple samples for the same query. By construction, points above the diagonal line (shown in green) indicate
an improvement over the original result, while points below the diagonal (shown in red) represent a performance drop.
A key observation is that, for every query, many random subsets result in improved performance over the original. For
Contriever and Dragon, some of these subsets include as few as 20% of the dimensions, whereas for ANCE, at least
80% are required to achieve improvements. Another pattern is that the maximum improvement tends to be higher for
queries with low initial performance, as shown by the higher green dots on the left side of the plots. Using only 20% of
the dimensions significantly increases the risk of performance degradation, as indicated by the lower red dots. As the

1source code available at: https://github.com/guglielmof/DIME-SIGIR-2024
2https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
3https://huggingface.co/facebook/contriever-msmarco
4https://huggingface.co/facebook/dragon-plus-context-encoder
5https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
6https://huggingface.co/castorini/tct_colbert-v2-hnp-msmarco
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Fig. 1. Effect of selecting a random sample of the dimensions when varying the sample size. Each dot describes the effect of sampling
the dimensions for a single query — vertically aligned dots represent the same query (i.e., the same original performance). Values
above the diagonal (green) indicate an improvement, below a decrement (red). Randomly sampling a subset of dimensions in several
cases induces an improvement in the performance.

number of used dimensions increases, this risk decreases, and the spread of the dots narrows. When using 100% of the
dimensions, all points would lie exactly on the diagonal.

This experiment provides preliminary empirical validation for our MC hypothesis. If we were able to sample the
optimal 20% of dimensions for Contriever and Dragon, and 80% for ANCE, performance would improve for every query.
Two challenges now arise: i) identifying these optimal dimensions and ii) developing a practical method to select them
during retrieval. Interestingly, these results support the hypothesis that not all dimensions contribute equally to ranking
quality. If every dimension were equally important, removing any of them would consistently degrade performance.
The observed improvements from removing random dimensions suggest that the current representation is suboptimal.
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Fig. 2. Retrieval performance using our oracle DIME when varying the fraction of retained dimensions. Horizontal dashed lines
correspond to the performance of baseline models that use all representation dimensions.

Therefore, we aim to guide it toward a more effective form, motivating the development of the DIMEs described in the
remainder of this work.

4.3.2 Oracle Dimension Identification. To estimate the upper bound of potential performance improvement achievable
through optimal dimension selection, Figure 2 show the performance of the oracle DIME, presented in Subsection 3.2. For
each possible configuration of collection/measure, we compute the performance of the dense IR systemwhen considering
only the first 𝑘 dimensions sorted according to the DIME, ranging from 10% to 100% of the total dimensions, in 1%
increments (i.e., 90 different cutoffs). For example, given a representation in R768, we start with the top 77 dimensions
identified by the DIME and continue adding 1% of the dimensions (∼8) at each step. Using 100% of the dimensions
corresponds to employing the model without any dimension importance estimation. We notice that Contriever, Dragon,
tct-ColBERT, and TAS-B exhibit similar behaviour, while ANCE displays a distinct pattern across scenarios.

Contriever, Dragon, tct-ColBERT and TAS-B. For all these systems, the oracle DIME exhibits impressive performance
improvement even if only 10% of the dimensions are retained in all scenarios (i.e., curves are much higher than the
dashed baseline). Retaining more than 10% of the dimensions leads to further improvement in almost all cases. The
performance follows a convex trend: it starts low, peaks as more dimensions are added, and then declines. This indicates
that the subsequent dimensions provide the IR system with additional relevance signals useful for increasing ranking
quality.

Patterns are generally more stable for Average Precision (AP), as small changes in the ranking are less likely to cause
significant shifts in the AP value—the only exception to this is DL HD. Due to its shallow pooling, DL HD is more
sensitive to small changes in the ranking list. Similarly, the behavior is more stable for RB ‘04: this might occur because i)
it has more queries; ii) this is an out-of-domain collection (we will provide more details on this later on). In contrast, the
behavior tends to be less stable with nDCG@10: even small changes in the top 10 ranked documents might impact the
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performance. Notice that, generally speaking, fluctuations between two consecutive points in the curves are typically
small and unlikely to be statistically significant. As for AP, in almost all scenarios, for Contriever, Dragon, tct-ColBERT,
and TAS-B, the performance peaks when only 20-40% of the dimensions are considered. After that, the performance
steadily decreases, reaching its lowest point when 100% of the dimensions are considered: the worst performance occurs
under the current standard usage of these models, without dimension importance estimation. For nDCG@10 (and AP
on DL HD), we notice a small initial increase in almost all cases, then a plateau, more evident for DL ‘19 and DL ‘20,
that continues until 60-80% of the dimensions are considered. As for AP, after that, we observe a monotonic decrease
until we reach the full-size representation.

We now present quantitative results highlighting the significant performance improvements enabled by the oracle
DIME. The maximum absolute improvement in AP is up to +0.258 (+116%) for Dragon on RB ‘04 with 40% dimensions.
Similarly, for nDCG@10, dimension pruning yields a maximum absolute improvement of +0.322 (+69.2%) when using
Contriever for RB ‘04 queries with 31% dimensions. In terms of maximum relative improvement, AP increases by +131%
when using 42% of the dimensions for tct-ColBERT on RB ‘04 and +78.7% nDCG@10 when using 21% of the dimensions
for Dragon on DL HD.

ANCE. ANCE exhibits a different pattern.In most cases, retaining only 10% of the dimensions does not yield significant
improvements. For instance, in the case of nDCG@10 on DL ‘20, it even leads to a performance drop. In all cases, the
performance continues to grow from 10% of the dimensions up to 90% of the dimensions. This indicates that, in general,
for ANCE, the information about relevance is distributed across multiple dimensions. Then, approximately the last 10%
of the dimensions are extremely harmful to ANCE, with a severe drop in performance. Without dimension importance
estimation, these harmful dimensions remain mixed in with the rest, introducing noise that impairs model quality.
Despite the different behavior, the oracle DIME still yields substantial performance improvements with ANCE: +0.228
(+184%) in AP on DL HD; +0.315 (+94.2%) in nDCG@10 on RB ‘04.

DIME on out-of-domain collections. An interesting pattern that can be observed is the difference in the behaviour
of the models under dimension importance pruning when applied to in-domain and out-of-domain collections. On
the out-of-domain collection, RB ‘04, we observe larger performance improvements. In contrast, improvements on the
in-domain collections—DL ‘19, DL ‘20, and DL HD—are more variable. When a dense IR model is applied in a zero-shot
fashion on an out-of-domain collection, the least important dimensions are extremely harmful. This is reasonable: being
an out-of-domain collection, the documents highly differ from those typically used to train the representation. This
suggests that when such documents are fed to the encoder, their unfamiliar characteristics are encoded as noise within
the representations: by choosing properly the dimensions, we can remove such noise.

The fact that using 100% of the dimensions results in the worst performance suggests not only that dimensions are
not equally informative for ranking, but also that many may actively degrade performance. Identifying and removing
such dimensions could lead to significant improvements in ranking performance.

4.4 DIME Relying on Internal Information

4.4.1 Magnitude DIME. We report AP and nDCG@10 results for varying numbers of retained dimensions, ranging from
20% to 100% (i.e., the full representation), in 20% increments. This DIME does not yield any notable improvement over
the baselines. When there is an improvement, it occurs at the third decimal place and is not statistically significant. These
results suggest that a dimension’s magnitude is not a reliable indicator of its importance. In other words, dimensions
might have been weighted highly by the representation model, but without being particularly relevant for document
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Table 1. Retrieval performance of the considered IR models, when 𝑢𝑚𝑎𝑔 is used to identify the most informative dimensions. While
in some cases we observe a slight improvement over the baseline, such an improvement is never statistically significant.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE 0.047 0.240 0.319 0.354 0.361 0.144 0.533 0.620 0.645 0.643 0.106 0.281 0.357 0.389 0.392 0.217 0.52 0.604 0.638 0.644
Contriever 0.463 0.486 0.492 0.494 0.493 0.648 0.672 0.676 0.677 0.674 0.463 0.478 0.479 0.479 0.479 0.66 0.663 0.664 0.671 0.672
Dragon 0.467 0.506 0.512 0.517 0.517 0.709 0.740 0.740 0.745 0.740 0.466 0.497 0.502 0.505 0.506 0.687 0.708 0.716 0.718 0.718
TAS-B 0.45 0.467 0.472 0.476 0.476 0.692 0.711 0.715 0.719 0.717 0.440 0.465 0.472 0.475 0.475 0.658 0.678 0.688 0.685 0.684
tct-ColBERT 0.353 0.383 0.386 0.387 0.387 0.611 0.648 0.674 0.671 0.671 0.332 0.38 0.392 0.399 0.398 0.574 0.630 0.642 0.648 0.648

DL HD RB ‘04

ANCE 0.023 0.126 0.164 0.180 0.181 0.072 0.284 0.321 0.326 0.325 0.020 0.078 0.111 0.120 0.124 0.08 0.240 0.307 0.325 0.334
Contriever 0.222 0.238 0.239 0.246 0.244 0.362 0.373 0.376 0.379 0.377 0.218 0.23 0.232 0.234 0.235 0.446 0.456 0.462 0.462 0.465
Dragon 0.237 0.260 0.257 0.260 0.262 0.363 0.394 0.383 0.379 0.384 0.191 0.215 0.221 0.223 0.223 0.417 0.449 0.459 0.460 0.461
TAS-B 0.211 0.228 0.232 0.236 0.236 0.335 0.377 0.375 0.374 0.376 0.186 0.2 0.206 0.208 0.208 0.410 0.431 0.444 0.446 0.447
tct-ColBERT 0.173 0.197 0.206 0.207 0.208 0.321 0.346 0.364 0.368 0.367 0.150 0.177 0.182 0.184 0.184 0.364 0.398 0.410 0.414 0.412

ranking. Conversely, some dimensions may be assigned a low weight by the encoder, yet still play an important role in
ranking. However, even with this basic DIME, we obtain effectiveness figures comparable with the baseline by using
about 40-60% of the representation dimensions.

This DIME relies solely on the query representation, which may not provide enough information to identify the
most relevant dimensions. Therefore, it is likely that additional information is needed beyond the representation of the
query to estimate dimension importance.

4.4.2 PRF DIME. Table 2 reports the results in terms of AP and nDCG@10 when filtering the dimensions using the
PRF DIME described in Subsection 3.3. First, we observe that regardless of the setup — i.e., the IR model, collection,
and measure considered — it is almost always possible to find at least one DIMEthat outperforms the baseline (i.e.,
using 100% of dimensions) for some fraction of retained dimensions. However, such improvements are not always
statistically significant. The magnitude of improvement depends on various factors, including the collection, evaluation
measure, and IR system used. Contriever and TAS-B consistently show improvements, whereas results for tct-ColBERT
are variable. For ANCE, any improvements only occur when at least 80% of the dimensions are retained, and these are
never statistically significant. Finally, for Dragon, this DIME consistently fails to improve performance.

Dragon and the Symmetric PRF DIME. Using the standard PRF DIME on Dragon does not yield any improvement,
unlike the other systems. Nevertheless, both the random and oracle experiments show that Dragon benefits from the
dimensionality pruning as much as any other system. As previously mentioned, Dragon differs from the other systems
as it employs asymmetric query-document encoders. Therefore, we can test the effectiveness of the symmetric PRF
DIME (Eq. 7), which uses the query encoder also to encode the top-𝜏 pseudo-relevant documents. The performance
achieved by such DIME on Dragon is reported in Table 3. Interestingly, this change in encoding strategy leads to
a substantial improvement in the effectiveness of DIME, aligning the results with those observed also for the other
dense IR models. In particular: i) in almost all scenarios, we notice an improvement compared to the baseline that uses
100% of the dimensions; ii) this improvement often occurs for large numbers of retained dimensions (60-80%); iii) the
improvement is significant only in half of the cases.

Understanding why the approach based on the symmetric encoder is more effective than the approach based on
the standard document encoder requires investigating the distribution of the vectors within the embedding space. In
particular, we observe that, for Dragon, the average cosine similarity between pairs of queries when encoded using
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Table 2. Performance of the PRF DIME at various 𝜏 . In bold, the best performance observed for each triple IR system, test collection,
and evaluation measure. Values marked with ∗ are a statistically significant improvement over the baseline using all the dimensions
(corresponding to Retained = 1). In almost all cases this heuristic allows for improving the performance. The exception is Dragon
where results are always worse.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE
𝑢𝑃𝑅𝐹@1 0.033 0.253 0.340 0.370

0.361
0.082 0.553 0.636 0.650

0.643
0.083 0.285 0.365 0.389

0.392
0.175 0.539 0.609 0.644

0.644𝑢𝑃𝑅𝐹@2 0.036 0.257 0.341 0.370 0.095 0.565 0.637 0.649 0.083 0.288 0.366 0.388 0.168 0.543 0.613 0.643
𝑢𝑃𝑅𝐹@5 0.034 0.257 0.344 0.370 0.087 0.563 0.635 0.648 0.077 0.289 0.364 0.391 0.147 0.542 0.613 0.644

Contriever
𝑢𝑃𝑅𝐹@1 0.483 0.503 0.507 0.507

0.493
0.676 0.683 0.687 0.689

0.674
0.488 0.497∗ 0.497∗ 0.494

0.479
0.711∗ 0.704∗ 0.703∗ 0.693

0.672𝑢𝑃𝑅𝐹@2 0.493 0.503 0.508 0.507 0.672 0.675 0.679 0.685 0.479 0.488 0.494 0.494 0.681 0.685 0.687 0.685
𝑢𝑃𝑅𝐹@5 0.491 0.503 0.511 0.509 0.647 0.664 0.679 0.681 0.488 0.494∗ 0.496∗ 0.494∗ 0.698∗ 0.686 0.690 0.685

Dragon
𝑢𝑃𝑅𝐹@1 0.407 0.460 0.478 0.497

0.517
0.699 0.713 0.716 0.736

0.740
0.428 0.465 0.476 0.487

0.506
0.676 0.704 0.708 0.708

0.718𝑢𝑃𝑅𝐹@2 0.411 0.458 0.476 0.497 0.699 0.716 0.717 0.735 0.426 0.467 0.477 0.488 0.676 0.702 0.702 0.711
𝑢𝑃𝑅𝐹@5 0.410 0.460 0.477 0.497 0.701 0.712 0.722 0.732 0.420 0.466 0.470 0.485 0.664 0.691 0.689 0.705

TAS-B
𝑢𝑃𝑅𝐹@1 0.487 0.506∗ 0.505∗ 0.503∗

0.476
0.720 0.732 0.733 0.729

0.717
0.465 0.484 0.490 0.489

0.475
0.698 0.702 0.712∗ 0.705

0.684𝑢𝑃𝑅𝐹@2 0.492 0.507∗ 0.508∗ 0.503∗ 0.719 0.731 0.731 0.725 0.466 0.481 0.488 0.487 0.684 0.697 0.709∗ 0.707∗
𝑢𝑃𝑅𝐹@5 0.499∗ 0.505∗ 0.507∗ 0.505∗ 0.712 0.725 0.722 0.724 0.468 0.479 0.488 0.488 0.685 0.685 0.694 0.697

tct-ColBERT
𝑢𝑃𝑅𝐹@1 0.390 0.413∗ 0.413∗ 0.408∗

0.387
0.630 0.643 0.659 0.658

0.671
0.381 0.418 0.428∗ 0.425

0.398
0.632 0.671 0.677 0.675

0.648𝑢𝑃𝑅𝐹@2 0.387 0.407∗ 0.410∗ 0.406 0.628 0.638 0.651 0.655 0.387 0.422 0.432∗ 0.433∗ 0.636 0.680 0.684 0.680
𝑢𝑃𝑅𝐹@5 0.390 0.411∗ 0.412∗ 0.406 0.634 0.659 0.662 0.661 0.385 0.423 0.435∗ 0.433∗ 0.635 0.676 0.676 0.681

DL HD RB ‘04

ANCE
𝑢𝑃𝑅𝐹@1 0.021 0.126 0.175 0.180

0.181
0.059 0.272 0.331 0.329

0.325
0.017 0.085 0.119 0.126

0.124
0.068 0.263 0.319 0.338

0.334𝑢𝑃𝑅𝐹@2 0.018 0.129 0.170 0.182 0.048 0.268 0.327 0.331 0.016 0.082 0.120 0.125 0.062 0.251 0.321 0.335
𝑢𝑃𝑅𝐹@5 0.017 0.126 0.173 0.184 0.046 0.275 0.334 0.332 0.016 0.081 0.119 0.125 0.059 0.247 0.321 0.333

Contriever
𝑢𝑃𝑅𝐹@1 0.241 0.250 0.253 0.255

0.244
0.387 0.386 0.388 0.390

0.377
0.243 0.256∗ 0.259∗ 0.259∗

0.235
0.483∗ 0.493∗ 0.495∗ 0.494∗

0.465𝑢𝑃𝑅𝐹@2 0.248 0.255 0.254 0.254 0.396 0.395 0.387 0.389 0.252∗ 0.262∗ 0.264∗ 0.262∗ 0.489∗ 0.495∗ 0.497∗ 0.494∗
𝑢𝑃𝑅𝐹@5 0.248 0.248 0.253 0.253 0.379 0.378 0.389 0.387 0.249∗ 0.258∗ 0.259∗ 0.257∗ 0.476 0.479∗ 0.479∗ 0.475

Dragon
𝑢𝑃𝑅𝐹@1 0.198 0.226 0.235 0.244

0.262
0.356 0.367 0.376 0.382

0.384
0.166 0.182 0.191 0.202

0.223
0.4 0.406 0.419 0.434

0.461𝑢𝑃𝑅𝐹@2 0.195 0.229 0.238 0.246 0.349 0.369 0.377 0.382 0.167 0.182 0.191 0.203 0.395 0.409 0.421 0.436
𝑢𝑃𝑅𝐹@5 0.198 0.233 0.235 0.240 0.354 0.377 0.378 0.372 0.167 0.182 0.190 0.202 0.395 0.404 0.417 0.437

TAS-B
𝑢𝑃𝑅𝐹@1 0.224 0.239 0.240 0.238

0.236
0.359 0.374 0.382 0.375

0.376
0.212 0.223∗ 0.226∗ 0.226∗

0.208
0.432 0.449 0.450 0.455

0.447𝑢𝑃𝑅𝐹@2 0.224 0.234 0.234 0.237 0.350 0.373 0.374 0.374 0.222∗ 0.230∗ 0.231∗ 0.229∗ 0.459 0.468∗ 0.468∗ 0.467∗
𝑢𝑃𝑅𝐹@5 0.236 0.243 0.250 0.255 0.369 0.385 0.391 0.395 0.224∗ 0.231∗ 0.231∗ 0.231∗ 0.463∗ 0.467∗ 0.468∗ 0.469∗

tct-ColBERT
𝑢𝑃𝑅𝐹@1 0.214 0.222 0.228 0.226

0.208
0.361 0.368 0.377 0.377

0.367
0.176 0.201∗ 0.206∗ 0.205∗

0.184
0.394 0.425 0.434∗ 0.437∗

0.412𝑢𝑃𝑅𝐹@2 0.203 0.223 0.228 0.227 0.340 0.365 0.375 0.374 0.183 0.204∗ 0.208∗ 0.207∗ 0.405 0.427 0.436∗ 0.437∗
𝑢𝑃𝑅𝐹@5 0.205 0.215 0.221 0.219 0.339 0.360 0.361 0.360 0.187 0.206∗ 0.208∗ 0.205∗ 0.412 0.431∗ 0.436∗ 0.434∗

Table 3. Performance of the symmetric PRF DIME on Dragon at various 𝜏 . Using the query encoder for both the query and the
documents to decide which dimensions are relevant is more effective than using the original Dragon encoders.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

Dragon
𝑢𝑃𝑅𝐹-𝑆@1 0.516 0.540 0.548∗ 0.549∗

0.517
0.746 0.745 0.757 0.763

0.740
0.489 0.511 0.515 0.515

0.506
0.706 0.714 0.720 0.720

0.718𝑢𝑃𝑅𝐹-𝑆@2 0.510 0.545∗ 0.544∗ 0.543∗ 0.740 0.744 0.759 0.757 0.494 0.518 0.517 0.519 0.716 0.727 0.719 0.725
𝑢𝑃𝑅𝐹-𝑆@5 0.527 0.545∗ 0.548∗ 0.547∗ 0.750 0.749 0.751 0.758 0.498 0.523∗ 0.520 0.519 0.704 0.721 0.715 0.718

DL HD RB ‘04

Dragon
𝑢𝑃𝑅𝐹-𝑆@1 0.253 0.260 0.265 0.269

0.262
0.390 0.389 0.392 0.394

0.384
0.194 0.218 0.223 0.226

0.223
0.426 0.447 0.454 0.459

0.461𝑢𝑃𝑅𝐹-𝑆@2 0.261 0.270 0.271 0.275 0.394 0.389 0.389 0.399 0.204 0.223 0.227 0.229 0.444 0.453 0.458 0.454
𝑢𝑃𝑅𝐹-𝑆@5 0.275 0.278 0.277 0.279 0.399 0.397 0.392 0.398 0.209 0.228 0.232∗ 0.233∗ 0.437 0.449 0.451 0.454

the query encoder 𝜙𝑄 is 0.488, indicating that, as expected, queries tend to lie on different subspaces characterized by
different relevant dimensions. In contrast, when encoding a random pair of documents using the document encoder 𝜙𝐷 ,
the average cosine similarity is 0.989: the documents tend to live in a very narrow hyper-cone with overall narrow angles.
If we consider documents annotated for the same query, both relevant and non-relevant, this similarity grows up to 0.992.
This is a relatively small change, considering the shift from completely uncorrelated documents to ones on the same
topic—even though possibly not relevant. Finally, when considering only relevant documents, the average similarity is
0.995—again, a small change given that now the documents should be very highly correlated. For comparison, consider
that for Contriever, the average similarity between query representations is 0.235, the average similarity between
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Table 4. Performance of the query variation-based DIMEs on the RB ‘04 collection. Except for ANCE, where the improvement is
present but not significant, we always observe at least one DIME that induces a statistically significant improvement.

AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

ANCE
𝑢𝑣𝑎𝑟 0.023 0.089 0.125 0.129

0.124
0.081 0.269 0.340 0.347

0.334𝑢𝐶𝑣𝑎𝑟 0.021 0.088 0.125 0.129 0.080 0.262 0.339 0.344
𝑢𝐶𝑄𝑣𝑎𝑟 0.021 0.096 0.137 0.136 0.077 0.289 0.364 0.362

Contriever
𝑢𝑣𝑎𝑟 0.241 0.251∗ 0.252∗ 0.250∗

0.235
0.488∗ 0.500∗ 0.497∗ 0.490∗

0.465𝑢𝐶𝑣𝑎𝑟 0.251∗ 0.256∗ 0.256∗ 0.252∗ 0.505∗ 0.501∗ 0.498∗ 0.494∗
𝑢𝐶𝑄𝑣𝑎𝑟 0.264∗ 0.267∗ 0.261∗ 0.249∗ 0.531∗ 0.531∗ 0.509∗ 0.489∗

Dragon
𝑢𝑣𝑎𝑟 0.212 0.235∗ 0.241∗ 0.239∗

0.223
0.456 0.482∗ 0.486∗ 0.486∗

0.461𝑢𝐶𝑣𝑎𝑟 0.223 0.244∗ 0.243∗ 0.240∗ 0.475 0.500∗ 0.495∗ 0.489∗
𝑢𝐶𝑄𝑣𝑎𝑟 0.235∗ 0.255∗ 0.250∗ 0.238∗ 0.506∗ 0.521∗ 0.502∗ 0.483∗

TAS-B
𝑢𝑣𝑎𝑟 0.203 0.221∗ 0.224∗ 0.223∗

0.208
0.443 0.470∗ 0.477∗ 0.472∗

0.447𝑢𝐶𝑣𝑎𝑟 0.213 0.225∗ 0.226∗ 0.222∗ 0.460 0.475∗ 0.479∗ 0.471∗
𝑢𝐶𝑄𝑣𝑎𝑟 0.220∗ 0.236∗ 0.232∗ 0.221∗ 0.481∗ 0.496∗ 0.482∗ 0.469∗

tct-ColBERT
𝑢𝑣𝑎𝑟 0.166 0.196∗ 0.200∗ 0.197∗

0.184
0.401 0.445∗ 0.451∗ 0.442∗

0.412𝑢𝐶𝑣𝑎𝑟 0.177 0.203∗ 0.203∗ 0.199∗ 0.409 0.449∗ 0.447∗ 0.443∗
𝑢𝐶𝑄𝑣𝑎𝑟 0.183 0.215∗ 0.211∗ 0.198∗ 0.430 0.473∗ 0.465∗ 0.442∗

random documents is 0.237 (almost identical to the average similarity between queries), while the average similarity
between documents relevant to the same query is 0.723. The single encoder used by Contriever effectively captures
the subspaces where closely related documents reside. This suggests that the query encoder is optimized to diversify
the dimensions on which the represented entities lie. For the same reason, it is also the most effective encoder to
instantiate the DIMEs, as it gives more importance to the different dimensions. Moreover, the high similarity between
entities encoded by the document encoder suggests that it is ineffective for identifying the most relevant dimensions. If
documents appear nearly identical across dimensions, then even having a pseudo-relevant—or truly relevant—document
provides little insight into the subspace where other relevant documents may lie.

4.5 DIMEWith External Knowledge

4.5.1 DIMEs Based onQuery Variations. To assess the performance of the query variations-based DIMEs, we use the
UQV 100 collection [3]. We selected this collection because it contains human-authored reformulations of the RB ‘04’s
queries. Our objective is to determine whether real query variations have a positive impact on identifying the optimal
dimensions; the analysis of the role of automatic query variation generation approaches is left as future work. This
limitation confines our analysis to the RB ‘04 collection, as, at the current time, no human-made query variations are
available for the DL ‘19, DL ‘20, and DL HD collections.

Table 4 reports the results of our three query variations-based DIMEs. For each retrieval model, rows represent
the Random Query Variation (eq. 8, 𝑢𝑣𝑎𝑟 ), Query Variations Centroid (eq. 9, 𝑢𝐶𝑣𝑎𝑟 ), and Query and Query Variations
Centroid (eq. 10, 𝑢𝐶𝑄𝑣𝑎𝑟 ) DIMEs. These DIMEs yield substantial improvement over the PRF DIMEs. The magnitude
of the improvement and its significance depend on the experimental setting considered. In particular, if we consider
Contriever, Dragon, TAS-B, and tct-ColBERT, when more than 20% of dimensions are retained, we always have a
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statistically significant improvement regardless of the DIME considered. Nevertheless, the optimal improvement is
given by the 𝑢𝐶𝑄𝑣𝑎𝑟 estimator. This improvement is approximately 0.03 (ranging from +13.4% to +16.8%) AP points for
all IR models and 0.05-0.06 (ranging from +11.0% to +14.8%) nDCG@10 points.

ANCE. If we consider ANCE, the best performance is achieved by the Query and Query Variations Centroid (𝑢𝐶𝑄𝑣𝑎𝑟 ).
When 60% of the most important dimensions according to this DIME are retained, both for AP and nDCG@10, the
performance is above the baseline (i.e., when 100% of the dimensions are retained), but the improvement is not significant.
An identical pattern is also observed for the other two DIMEs, although in this case, the improvement is smaller. It is
also important to notice that ANCE is the least performing approach: it is likely that, regardless of which dimensions
are considered, the representations likely contain too much noise to allow this model to perform on a par with the
others.

Other IR models. Moving beyond ANCE, we notice that, on all other scenarios, these DIMEs consistently yield
statistically significant improvements over the 100% dimensions baselines. As a general pattern, the Random Query
Variation DIME is overcome by the Query Variations Centroid DIME, which is, in turn, surpassed by the Query and
Query Variations Centroid DIME. This supports our hypothesis that individual query variations are less informative
than the combined set of variations. It also supports our hypothesis that the query should be treated as any arbitrary
query variation. Nevertheless, even a single query variation can lead to significant improvements when using the
Random Query Variation DIME by retaining at least 40% of the dimensions.

In terms of the number of dimensions to be retained, we notice that the improvement is always significant when
40% of the dimensions are retained. Indeed, using 40% of the dimension is also the optimal strategy for both the
Query Variations Centroid and for the Query and Query Variations Centroid DIME. Conversely, for the Random Query
Variations DIME, the optimal dimension is 60% of the dimensions.

In absolute terms, the largest improvement is observed when using the Query and Query Variations Centroid with
40% to pick the dimensions of Contriever evaluated using nDCG@10, with an increase of +0.066 (+14.2%). In percentage,
the improvement ranges from 11.0% (+0.049 nDCG points) for TAS-B evaluated using nDCG@10, to 16.8% (+0.031
nDCG) in the case of tct-ColBERT using AP as evaluation measure.

4.5.2 DIME Based on Large Language Models. Table 5 reports the performance of the LLM DIME for the different
experimental settings considered in this paper. We notice that, in line with what we observed for the PRF DIME,
excluding Dragon, there is always a dimension cutoff that yields improved performance over the baseline, where all the
dimensions are taken into consideration. Notably, when LLaMA or GPT-4 is used, improvements are often observed
even with just 20% of the dimensions retained. The optimal cutoff depends on several factors, such as the considered
system, LLM, dataset, and measure.

While all the LLMs tend to provide an improvement over the baseline, whether such improvement is significant or
not depends on several factors. As a general trend, the 7B models, Gemma and Mixtral, tend to be less effective, with
the latter being slightly better than the former in most cases. This is reasonable: being smaller models, it is likely that
the quality of the generated pseudo-relevant document is lower. For both models, the greatest improvement is achieved
when 80% of the dimensions are retained. This suggests that while these models are effective in recognizing harmful
dimensions, i.e., the worst 20% of dimensions that should not be used, they are not equally effective in recognizing
good dimensions. In contrast, LLaMA and GPT-4 are significantly more effective. In particular, for Contriever, TAS-B,
and tct-ColBERT, LLaMA and GPT-4 provide improvements even when only 20% of the dimensions are considered. In
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Table 5. Performance achieved by the LLM DIME, using different LLMs. 7B models (Gemma and Mixtral) tend to perform worse,
while the 70B model (LLama) and GPT4 are more effective with relatively similar effectiveness.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE

𝑢𝐿𝐿𝑀 -Gemma 0.025 0.236 0.338 0.370

0.361

0.062 0.517 0.636 0.647

0.643

0.074 0.281 0.370 0.398

0.392

0.128 0.534 0.629 0.650

0.644𝑢𝐿𝐿𝑀 -Mixtral 0.032 0.261 0.355 0.373 0.075 0.537 0.655 0.655 0.066 0.296 0.377 0.397 0.130 0.559 0.630 0.652
𝑢𝐿𝐿𝑀 -LLama 0.026 0.261 0.355 0.374 0.065 0.570 0.670 0.656 0.070 0.296 0.377 0.397 0.141 0.550 0.628 0.654
𝑢𝐿𝐿𝑀 -GPT 0.031 0.260 0.351 0.370 0.081 0.568 0.651 0.664 0.084 0.284 0.374 0.397 0.171 0.537 0.629 0.655

Contriever

𝑢𝐿𝐿𝑀 -Gemma 0.473 0.500 0.507 0.509

0.493

0.647 0.672 0.686 0.687

0.674

0.488 0.492 0.498∗ 0.498∗

0.479

0.697 0.687 0.692 0.691

0.672𝑢𝐿𝐿𝑀 -Mixtral 0.514 0.525∗ 0.525∗ 0.521 0.663 0.693 0.705 0.708 0.501∗ 0.515∗ 0.512∗ 0.507∗ 0.705∗ 0.712∗ 0.714∗ 0.718∗
𝑢𝐿𝐿𝑀 -LLama 0.524 0.537∗ 0.534∗ 0.530∗ 0.724∗ 0.746∗ 0.745∗ 0.742∗ 0.506∗ 0.518∗ 0.517∗ 0.508∗ 0.714∗ 0.722∗ 0.715∗ 0.712∗
𝑢𝐿𝐿𝑀 -GPT 0.516 0.528∗ 0.534∗ 0.527 0.720 0.742∗ 0.752∗ 0.750∗ 0.503∗ 0.512∗ 0.511∗ 0.504∗ 0.719∗ 0.722∗ 0.725∗ 0.710∗

Dragon

𝑢𝐿𝐿𝑀 -Gemma 0.393 0.452 0.473 0.492

0.517

0.667 0.705 0.721 0.728

0.740

0.415 0.469 0.477 0.486

0.506

0.662 0.694 0.695 0.708

0.718𝑢𝐿𝐿𝑀 -Mixtral 0.399 0.457 0.476 0.496 0.687 0.702 0.723 0.738 0.427 0.467 0.473 0.490 0.662 0.689 0.694 0.713
𝑢𝐿𝐿𝑀 -Llama 0.394 0.458 0.476 0.498 0.673 0.705 0.720 0.736 0.431 0.466 0.479 0.487 0.677 0.692 0.697 0.707
𝑢𝐿𝐿𝑀 -GPT 0.401 0.455 0.475 0.497 0.688 0.708 0.720 0.732 0.432 0.469 0.481 0.487 0.679 0.694 0.700 0.710

TAS-B

𝑢𝐿𝐿𝑀 -Gemma 0.477 0.493 0.503 0.503

0.476

0.679 0.710 0.723 0.725

0.717

0.470 0.494 0.497∗ 0.496∗

0.475

0.697 0.704 0.710 0.709

0.684𝑢𝐿𝐿𝑀 -Mixtral 0.515∗ 0.526∗ 0.521∗ 0.519∗ 0.716 0.727 0.733 0.733 0.480 0.489 0.497∗ 0.496∗ 0.690 0.691 0.705 0.702
𝑢𝐿𝐿𝑀 -LLama 0.532∗ 0.537∗ 0.532∗ 0.525∗ 0.754∗ 0.761∗ 0.761∗ 0.751 0.482 0.505∗ 0.505∗ 0.506∗ 0.691 0.710 0.706 0.708
𝑢𝐿𝐿𝑀 -GPT 0.511∗ 0.529∗ 0.527∗ 0.521∗ 0.747 0.749 0.760∗ 0.756∗ 0.483 0.498∗ 0.501∗ 0.500∗ 0.708 0.706 0.710 0.712

tct-ColBERT

𝑢𝐿𝐿𝑀 -Gemma 0.368 0.387 0.400 0.399

0.387

0.614 0.638 0.654 0.657

0.671

0.361 0.407 0.418 0.419

0.398

0.596 0.656 0.671 0.683

0.648𝑢𝐿𝐿𝑀 -Mixtral 0.405 0.419∗ 0.423∗ 0.421∗ 0.653 0.660 0.680 0.684 0.369 0.417 0.420 0.419 0.618 0.660 0.664 0.676
𝑢𝐿𝐿𝑀 -LLama 0.415 0.434∗ 0.438∗ 0.432∗ 0.673 0.690 0.713∗ 0.711 0.375 0.413 0.421 0.419 0.617 0.658 0.667 0.678
𝑢𝐿𝐿𝑀 -GPT 0.393 0.421∗ 0.424∗ 0.419∗ 0.669 0.703 0.704∗ 0.694 0.380 0.423 0.429∗ 0.426∗ 0.645 0.683 0.689 0.685

DL HD RB ‘04

ANCE

𝑢𝐿𝐿𝑀 -Gemma 0.009 0.116 0.169 0.183

0.181

0.027 0.245 0.327 0.326

0.325

0.015 0.080 0.119 0.125

0.124

0.056 0.249 0.332 0.338

0.334𝑢𝐿𝐿𝑀 -Mixtral 0.013 0.130 0.175 0.185 0.036 0.274 0.339 0.338 0.017 0.086 0.125 0.128 0.068 0.261 0.337 0.341
𝑢𝐿𝐿𝑀 -LLama 0.011 0.126 0.178 0.184 0.033 0.272 0.348 0.339 0.016 0.085 0.124 0.128 0.066 0.268 0.339 0.344
𝑢𝐿𝐿𝑀 -GPT 0.012 0.129 0.175 0.186 0.040 0.284 0.339 0.348 0.017 0.086 0.126 0.130 0.067 0.267 0.343 0.347

Contriever

𝑢𝐿𝐿𝑀 -Gemma 0.228 0.239 0.249 0.254

0.244

0.358 0.366 0.378 0.386

0.377

0.237 0.250∗ 0.255∗ 0.253∗

0.235

0.486∗ 0.502∗ 0.507∗ 0.504∗

0.465𝑢𝐿𝐿𝑀 -Mixtral 0.239 0.251 0.257 0.260 0.357 0.373 0.389 0.390 0.241 0.253∗ 0.254∗ 0.253∗ 0.479 0.499∗ 0.499∗ 0.497∗
𝑢𝐿𝐿𝑀 -LLama 0.254 0.269 0.272∗ 0.274∗ 0.401 0.409 0.409 0.414∗ 0.245∗ 0.259∗ 0.261∗ 0.259∗ 0.501∗ 0.515∗ 0.519∗ 0.513∗
𝑢𝐿𝐿𝑀 -GPT 0.259 0.267 0.270∗ 0.270∗ 0.392 0.409 0.414∗ 0.412∗ 0.262∗ 0.270∗ 0.270∗ 0.267∗ 0.528∗ 0.534∗ 0.531∗ 0.525∗

Dragon

𝑢𝐿𝐿𝑀 -Gemma 0.182 0.222 0.232 0.237

0.262

0.322 0.363 0.375 0.376

0.384

0.164 0.182 0.189 0.202

0.223

0.386 0.400 0.414 0.434

0.461𝑢𝐿𝐿𝑀 -Mixtral 0.197 0.226 0.237 0.247 0.343 0.364 0.379 0.386 0.167 0.183 0.191 0.204 0.397 0.403 0.413 0.439
𝑢𝐿𝐿𝑀 -Llama 0.187 0.231 0.232 0.246 0.327 0.372 0.371 0.383 0.168 0.184 0.192 0.203 0.402 0.406 0.419 0.438
𝑢𝐿𝐿𝑀 -GPT 0.195 0.228 0.238 0.248 0.343 0.373 0.378 0.384 0.171 0.186 0.194 0.204 0.398 0.414 0.421 0.439

TAS-B

𝑢𝐿𝐿𝑀 -Gemma 0.226 0.236 0.242 0.242

0.236

0.365 0.377 0.389 0.385

0.376

0.205 0.221∗ 0.222∗ 0.221∗

0.208

0.444 0.470∗ 0.469∗ 0.465∗

0.447𝑢𝐿𝐿𝑀 -Mixtral 0.235 0.246 0.246 0.251 0.364 0.373 0.384 0.393 0.213 0.227∗ 0.227∗ 0.227∗ 0.455 0.469∗ 0.469∗ 0.473∗
𝑢𝐿𝐿𝑀 -LLama 0.257 0.261 0.261 0.264 0.395 0.405 0.407 0.407 0.219∗ 0.230∗ 0.231∗ 0.229∗ 0.470∗ 0.483∗ 0.485∗ 0.481∗
𝑢𝐿𝐿𝑀 -GPT 0.243 0.254 0.258 0.250 0.385 0.397 0.401 0.397 0.224∗ 0.239∗ 0.238∗ 0.236∗ 0.476∗ 0.501∗ 0.495∗ 0.489∗

tct-ColBERT

𝑢𝐿𝐿𝑀 -Gemma 0.140 0.189 0.202 0.206

0.208

0.256 0.342 0.351 0.369

0.367

0.151 0.184 0.189 0.190

0.184

0.365 0.416 0.424 0.424

0.412𝑢𝐿𝐿𝑀 -Mixtral 0.168 0.205 0.210 0.207 0.280 0.336 0.341 0.351 0.160 0.191 0.194∗ 0.194∗ 0.374 0.422 0.428 0.426
𝑢𝐿𝐿𝑀 -LLama 0.191 0.221 0.227 0.226 0.317 0.362 0.382 0.377 0.156 0.190 0.193∗ 0.193∗ 0.375 0.425 0.432∗ 0.432∗
𝑢𝐿𝐿𝑀 -GPT 0.193 0.223 0.226 0.228 0.339 0.381 0.382 0.387 0.166 0.199∗ 0.206∗ 0.204∗ 0.385 0.442∗ 0.455∗ 0.449∗

Table 6. Performance achieved by the symmetric LLM DIME for Dragon. In line with the PRF DIME, using the query encoder for
both the query and the pseudo-relevant documents allows us to obtain the improvement also for Dragon.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

Dragon

𝑢𝐿𝐿𝑀-𝑆 -Gemma 0.466 0.515 0.528 0.532

0.517

0.708 0.737 0.749 0.754

0.740

0.488 0.521 0.524 0.525

0.506

0.705 0.735 0.739 0.741

0.718𝑢𝐿𝐿𝑀-𝑆 -Mixtral 0.509 0.543 0.543 0.540 0.704 0.732 0.750 0.744 0.503 0.522 0.527∗ 0.525∗ 0.722 0.730 0.741 0.738
𝑢𝐿𝐿𝑀-𝑆 -LLama 0.533 0.555∗ 0.557∗ 0.553∗ 0.753 0.772∗ 0.772∗ 0.772∗ 0.502 0.525∗ 0.527∗ 0.524∗ 0.725 0.738 0.742 0.747
𝑢𝐿𝐿𝑀-𝑆 -GPT 0.511 0.557∗ 0.556∗ 0.552∗ 0.747 0.775∗ 0.773∗ 0.771∗ 0.507 0.534∗ 0.532∗ 0.532∗ 0.735 0.758∗ 0.755∗ 0.759∗

DL HD RB ‘04

Dragon

𝑢𝐿𝐿𝑀-𝑆 -Gemma 0.245 0.262 0.271 0.272

0.262

0.379 0.394 0.400 0.397

0.384

0.200 0.224 0.230 0.231∗

0.223

0.432 0.470 0.472 0.474

0.461𝑢𝐿𝐿𝑀-𝑆 -Mixtral 0.242 0.266 0.267 0.262 0.355 0.378 0.390 0.384 0.206 0.229 0.233∗ 0.233∗ 0.441 0.468 0.475 0.475
𝑢𝐿𝐿𝑀-𝑆 -LLama 0.279 0.293∗ 0.290 0.284 0.404 0.417∗ 0.416 0.411 0.205 0.228 0.233∗ 0.232∗ 0.449 0.472 0.476 0.474
𝑢𝐿𝐿𝑀-𝑆 -GPT 0.267 0.282 0.280 0.276 0.402 0.416 0.410 0.403 0.216 0.242∗ 0.245∗ 0.243∗ 0.449 0.495∗ 0.492∗ 0.492∗

line with all the previous experiments, excluding Dragon, ANCE is the model that benefits the least from DIMEs. The
optimal LLM depends on the target collection. For example, for the DL ‘20 and DL HD collections, the optimal strategy
solution is based on using LLaMA to generate the pseudo-relevant document. Vice versa, for the RB ‘04 collection,
GPT-4 seems to be more effective on average. In the case of the DL ‘20, the performance achieved by the two LLMs is
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Table 7. LLM Assessor DIME (𝑢𝐿𝐿𝑀𝑅𝐽 ) and Symmetric LLM Assessor DIME (𝑢𝐿𝐿𝑀𝑅𝐽 -𝑆 ) performance. Overall, the results are closer
to those of the PRF DIME than those of the LLM DIME, suggesting that either the LLM assessor is not sufficiently effective in
recognizing highly relevant documents.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE 𝑢𝐿𝐿𝑀𝑅𝐽 0.030 0.240 0.334 0.370 0.361 0.083 0.552 0.636 0.656 0.643 0.091 0.286 0.367 0.392 0.392 0.177 0.545 0.623 0.651 0.644

Contriever 𝑢𝐿𝐿𝑀𝑅𝐽 0.507 0.512 0.509 0.509 0.493 0.715 0.726 0.722 0.724 0.674 0.492 0.508∗ 0.505∗ 0.500∗ 0.479 0.717∗ 0.719∗ 0.711∗ 0.707∗ 0.672

Dragon 𝑢𝐿𝐿𝑀𝑅𝐽 0.410 0.460 0.478 0.497 0.517 0.700 0.715 0.723 0.737 0.740 0.428 0.465 0.478 0.489 0.506 0.681 0.700 0.699 0.708 0.718
𝑢𝐿𝐿𝑀𝑅𝐽 -𝑆 0.505 0.527 0.533 0.535 0.731 0.732 0.743 0.752 0.496 0.518 0.521 0.518 0.723 0.729 0.736 0.734

TAS-B 𝑢𝐿𝐿𝑀𝑅𝐽 0.492 0.500 0.497 0.492 0.476 0.715 0.721 0.714 0.715 0.717 0.481 0.499∗ 0.502∗ 0.498∗ 0.475 0.716∗ 0.721∗ 0.719∗ 0.719∗ 0.684

tct-ColBERT 𝑢𝐿𝐿𝑀𝑅𝐽 0.406 0.429∗ 0.431∗ 0.424∗ 0.387 0.670 0.702 0.706 0.706 0.671 0.392 0.428 0.438∗ 0.437∗ 0.398 0.663 0.689 0.700∗ 0.698∗ 0.648

DL HD RB ‘04

ANCE 𝑢𝐿𝐿𝑀𝑅𝐽 0.019 0.128 0.179 0.185 0.181 0.060 0.281 0.344 0.341 0.325 0.018 0.089 0.127 0.133 0.124 0.070 0.279 0.349 0.356 0.334

Contriever 𝑢𝐿𝐿𝑀𝑅𝐽 0.238 0.259 0.252 0.256 0.244 0.388 0.408 0.398 0.404 0.377 0.240 0.253∗ 0.256∗ 0.257∗ 0.235 0.476 0.483 0.488∗ 0.490∗ 0.465

Dragon 𝑢𝐿𝐿𝑀𝑅𝐽 0.199 0.227 0.240 0.246 0.262 0.358 0.366 0.376 0.387 0.384 0.169 0.184 0.192 0.204 0.223 0.404 0.417 0.424 0.439 0.461
𝑢𝐿𝐿𝑀𝑅𝐽 -𝑆 0.250 0.262 0.265 0.266 0.386 0.388 0.392 0.390 0.199 0.223 0.229 0.231 0.440 0.462 0.469 0.473

TAS-B 𝑢𝐿𝐿𝑀𝑅𝐽 0.231 0.245 0.246 0.241 0.236 0.383 0.397 0.401 0.393 0.376 0.221∗ 0.231∗ 0.235∗ 0.234∗ 0.208 0.469∗ 0.475∗ 0.479∗ 0.480∗ 0.447

tct-ColBERT 𝑢𝐿𝐿𝑀𝑅𝐽 0.201 0.218 0.223 0.223 0.208 0.330 0.349 0.362 0.361 0.367 0.187 0.213∗ 0.217∗ 0.216∗ 0.184 0.428 0.461∗ 0.460∗ 0.464∗ 0.412

very similar, without a clear winner. Overall, the two large models perform similarly, with most differences appearing
only at the third decimal place, which are unlikely to reflect on the overall quality of the retrieval perceived by the user.

Dragon and the Symmetric LLM DIME. The LLM DIME, like the PRF DIME, is not effective for Dragon. Therefore, we
test the symmetric LLM DIME that uses the query encoder to encode the pseudo-relevant document generated by the
LLM. Table 6 reports the performance of such a DIME for Dragon. Akin to the PRF DIME, the symmetric encoding
strategy renders the LLM DIME effective also in the case of Dragon. As for the other IR systems, we notice that this
DIME always allows for improving the performance over the standard representation. In line with previous experiments,
even though the 7B models are already effective, the best performances are achieved with LLaMA and GPT-4. Overall,
the two LLMs tend to perform similarly. The highest absolute improvement is achieved on DL ‘20 if nDCG@10 is the
evaluation measure. In this case, using GPT-4 as LLM to generate the pseudo-relevant and 80% of the dimensions, the
improvement is +0.041 (+5.71%) of nDCG@10. The greatest relative improvement, on the other hand, is observed for AP
on DL HD, where, with LLaMA and 40% of the dimensions, the improvement is +0.031 (+11.8%).

4.6 LLM Assessor DIME

We now describe the effectiveness of the LLM Assessor DIME that combines the positive effect of the PRF DIME, i.e.,
the usage of actual documents from the corpus, with those of the LLM DIME, i.e., a more expensive model to provide
the feedback. Different from the LLM DIME, where the prompt was directly the query, in this case, we need a minimal
prompt that allows us to condition the LLM distribution on the terms so that it outputs one among not relevant,
partially relevant, relevant, highly relevant. The prompt used is the following:

is document:

<document>

relevant to the query:

<query>

respond only with one among: ["non relevant", "partially relevant", "relevant", "highly relevant"]
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As LLM, in this case, we experiment only with LLaMA: the experiments with the LLM DIME highlighted the
sub-optimality of Gemma and Mixtral. At the same time, the similar performance between GPT-4 and LLaMA, as
well as the fact that LLaMA is an open weights model — thus, it has stronger reproducibility — led us to choose it
as the LLM relevance assessor. Table 7 reports the performance achieved by both the LLM Assessor DIME and the
Symmetric LLM Assessor DIME (in the case of Dragon). Overall, we notice that the performances achieved by this
DIME are comparable to, or worse than, those achieved using the PRF DIME, across almost all scenarios. One of the
advantages of this approach is that it does not require setting a number of pseudo-relevant documents to be considered.
Therefore, given their substantial similarity, this approach might be preferable where the number of pseudo-relevant
documents considered might negatively impact the performance. Secondly, if we look across datasets, the dataset where
the approach is the most effective is the RB ‘04: this approach might perform the best in out-of-domain scenarios, where
the dense IR models are more likely to retrieve highly relevant documents in the first positions. Finally, this limited
performance of the assessor DIME can be due to the overall low agreement between real and LLM-generated relevance
judgements. If we consider the small pool of annotated documents through our sequential annotation process, we
observe a Cohen’s 𝜅 of 0.15 between real and LLM-generated labels for DL ‘19 (slight agreement), 0.24 for DL ‘20 (fair
agreement), and 0.05 for DL HD, which indicates no agreement. We can expect that future generations of LLMs will
behave as more effective annotators: in such a case, this DIME might become more and more relevant.

Table 8. Performance of the Active-Feedback DIME. Contriever, TAS-B, tct-ColBERT and Dragon (with symmetric encoding) show a
significant improvement, regardless of the proportion of retained dimensions. ANCE improves when 60-80% dimensions are retained.
Values marked with ∗ are a statistically significant improvement over the baseline using all the dimensions (corresponding to Retained
= 1).

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ‘19 DL ‘20

ANCE 𝑢𝑟𝑒𝑙 0.034 0.271 0.369 0.380 0.361 0.084 0.584 0.684 0.684 0.643 0.080 0.295 0.377 0.396 0.392 0.155 0.568 0.644 0.669 0.644

Contriever 𝑢𝑟𝑒𝑙 0.554∗ 0.561∗ 0.559∗ 0.553∗ 0.493 0.796∗ 0.803∗ 0.785∗ 0.774∗ 0.674 0.507∗ 0.521∗ 0.525∗ 0.520∗ 0.479 0.789∗ 0.788∗ 0.786∗ 0.761∗ 0.672

Dragon 𝑢𝑟𝑒𝑙 0.418 0.465 0.483 0.500 0.517 0.708 0.714 0.732 0.744 0.740 0.440 0.470 0.479 0.494 0.506 0.705 0.715 0.711 0.719 0.718
𝑢𝑟𝑒𝑙-𝑆 0.551 0.590∗ 0.589∗ 0.582∗ 0.821∗ 0.834∗ 0.821∗ 0.822∗ 0.509 0.536∗ 0.543∗ 0.542∗ 0.783∗ 0.787∗ 0.788∗ 0.778∗

TAS-B 𝑢𝑟𝑒𝑙 0.563∗ 0.571∗ 0.566∗ 0.557∗ 0.476 0.827∗ 0.829∗ 0.820∗ 0.804∗ 0.717 0.482 0.503∗ 0.511∗ 0.508∗ 0.475 0.763∗ 0.767∗ 0.772∗ 0.761∗ 0.684

tct-ColBERT 𝑢𝑟𝑒𝑙 0.451∗ 0.480∗ 0.470∗ 0.460∗ 0.387 0.770∗ 0.788∗ 0.766∗ 0.759∗ 0.671 0.408 0.444∗ 0.446∗ 0.446∗ 0.398 0.734∗ 0.775∗ 0.768∗ 0.769∗ 0.648

DL HD RB ‘04

ANCE 𝑢𝑟𝑒𝑙 0.026 0.147 0.202 0.195 0.181 0.071 0.321 0.390 0.364 0.325 0.012 0.084 0.127 0.130 0.124 0.048 0.250 0.337 0.345 0.334

Contriever 𝑢𝑟𝑒𝑙 0.349∗ 0.357∗ 0.349∗ 0.334∗ 0.244 0.579∗ 0.581∗ 0.561∗ 0.529∗ 0.377 0.273∗ 0.290∗ 0.298∗ 0.297∗ 0.235 0.592∗ 0.611∗ 0.620∗ 0.611∗ 0.465

Dragon 𝑢𝑟𝑒𝑙 0.222 0.251 0.249 0.253 0.262 0.409 0.412 0.399 0.395 0.384 0.168 0.185 0.193 0.203 0.223 0.395 0.411 0.423 0.438 0.461
𝑢𝑟𝑒𝑙-𝑆 0.363∗ 0.372∗ 0.372∗ 0.353∗ 0.588∗ 0.590∗ 0.575∗ 0.549∗ 0.191 0.226 0.236 0.241∗ 0.456 0.499∗ 0.504∗ 0.511∗

TAS-B 𝑢𝑟𝑒𝑙 0.353∗ 0.353∗ 0.345∗ 0.337∗ 0.236 0.586∗ 0.586∗ 0.570∗ 0.546∗ 0.376 0.238∗ 0.256∗ 0.260∗ 0.256∗ 0.208 0.550∗ 0.569∗ 0.570∗ 0.548∗ 0.447

tct-ColBERT 𝑢𝑟𝑒𝑙 0.291∗ 0.317∗ 0.310∗ 0.300∗ 0.208 0.540∗ 0.567∗ 0.551∗ 0.535∗ 0.367 0.216∗ 0.247∗ 0.250∗ 0.246∗ 0.184 0.552∗ 0.577∗ 0.570∗ 0.558∗ 0.412

4.6.1 Active Feedback DIME. In this section, we investigate whether we can exploit active feedback information to
improve retrieval by following our DIME approach. To this end, we use the active-feedback DIME 𝑢𝑟𝑒𝑙 . A similar
scenario may occur in systematic reviews, where documents are annotated iteratively. In particular, for each query, we
assume that the user provides us with feedback on a single document that is highly relevant to the query. To simulate
this feedback, we randomly select, for each query, the most relevant annotated document. Exploring the impact of
partially relevant or non-relevant feedback is left for future work. For DL ‘19, DL ‘20, and DL HD, we randomly pick a
document annotated with relevance “3”—the maximum—for queries having them, else “2”. For RB ‘04 we sample among
documents annotated with either “2” or “1”, depending on the maximum relevance of the documents annotated for
the query. Once we have a relevant document for each query, we instantiate 𝑢𝑟𝑒𝑙 and use the products of the weights
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Fig. 3. Distribution of performance on DL ‘19 for 𝑢𝑎𝑐𝑡 when using different relevant documents. The dashed line represents the
original performance (i.e., 100% dimensions retained). Contriever and TAS-B improves always, ANCE only if 60% dimensions are
retained.The dot is the performance reported in Table 8.

in each dimension of the representations of the query and the relevant document to sort the dimensions in order of
importance. Table 8 shows the performance achieved if, based on such active-feedback DIME, we retain a varying
fraction of the representation dimensions. We also include in Table 8 the performance of the symmetric active-feedback
DIME for Dragon. To simulate a real-life scenario, Table 8 reports the results when considering a single relevant
document returned as feedback. First of all, it is interesting to notice that in all scenarios there is an improvement over
the baseline. In particular, in the case of Contriever, TAS-B, tct-ColBERT, and Dragon (if the symmetric encoder is used),
the improvement is significant (and large), regardless of the collection or evaluation measure considered. The maximum
improvement is observed on the DL HD, where: Contriever achieves an impressive +0.204 (+55.6%) improvement in
nDCG@10; TAS-B performance grows by +0.210 (+55.9%); Dragon increases of +0.206 (+53.6%) (using the symmetric
approach); tct-ColBERT gets a +0.200 (+54.5%). ANCE, on the other hand, remains the most challenging model, with
improvements that are not significant, although they are quite large in some cases (e.g., +0.065 of nDCG@10 with DL
HD). Table 8 assumes a single relevant document as active feedback to obtain comparable results. Nevertheless, we
can imagine that different users might click on different documents. We are thus interested in determining if, when
using different documents as feedback, the user will observe widely different performances. To this end, we repeat the
experiment mentioned above 1,000 times: for each query, we pick a random highly relevant document and use it to
instantiate 𝑢𝑟𝑒𝑙 . In this setting, we carry out retrieval and measure the average performance over the test queries of DL
‘19. Figure 3 shows the results of this experiment for three systems (ANCE, Contriever, and TAS-B). Specifically, the
plots report the distribution of nDCG@10 scores measured by randomly selecting 1,000 times the relevant document
used to instantiate 𝑢𝑟𝑒𝑙 as a function of the fraction of dimensions retained. In line with Table 8 (but also with the oracle
DIME used in Figure 2) for both Contriever and TAS-B (Figures 3b and 3c), all the fractions of retained dimensions allow
improving the performance over the baseline (dashed red line). In the case of Contriever, we see that the settings using
0.4 or 0.2 of the dimensions obtain the best performance, while we achieve slightly lower nDCG@10 scores with 0.6
and 0.8, even if, also in these cases, we strongly outperform the baseline. Similarly, for TAS-B, 0.6, 0.4, and 0.2 achieve
almost identical top performance, while 0.8 performs slightly lower, even if always better than the baseline. On average,
the choice of the relevant document instantiating the DIME has a limited impact as the performances are distributed in
an interval of ±0.025 around the mean. For ANCE (Fig. 3a), in line with previous analyses, the improvement is observed
only when 60%/80% of the dimensions are retained. Even in this case, the improvement is observed independently of
the relevant document considered.
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To conclude our analysis, it is worth noting that 𝑢𝑚𝑎𝑔 , 𝑢𝑃𝑅𝐹 , and 𝑢𝐿𝐿𝑀 are entirely automatic—therefore, they
represent a full-fledged improvement over the current state of the art. On the contrary, the results of the 𝑢𝑟𝑒𝑙 DIME
cannot be compared with purely automatic ranking strategies, as they require some active feedback from the user.
Nevertheless, its application is simple as it requires a single relevant document—we can rely, for example, on a user’s
click. Thus, it can be used online to reduce the dimensions and retrieve more precise new documents or re-rank those
already retrieved. Finally, it provides a clear view of the achievable improvements using proper DIME techniques.

4.7 Comparing DIMEs with the State of the Art

Table 9 reports the comparison of the most effective DIMEs proposed in this paper with VPRF [34]. In terms of DIMEs,
we consider 𝑢𝑃𝑅𝐹@5, 𝑢𝐶𝑄𝑣𝑎𝑟 , 𝑢𝐿𝐿𝑀 -GPT, 𝑢𝐿𝐿𝑀𝑅𝐽 , 𝑢𝑟𝑒𝑙 . Concerning Dragon, we use the symmetric encoder approaches
to compute the importance, since they are more effective. For each DIME, we report the performance considering
dimension cutoffs at 20%, 40%, 60%, and 80%. The performance of the models without any dimension pruning is reported
in the column “100% dims”. For VPRF, following Zhuang et al. [69], we set 𝛽1 = 0.4 and 𝛽2 = 0.6. The symbols “∗” and
“†” represent a statistical improvement over the representation that uses all the dimensions and over VPRF. The patterns
observable in Table 9 align with what was observed for the approaches in isolation. In almost all cases, we observe an
optimal dimension pruning that allows us to overcome the representation based on all dimensions. Furthermore, such
improvement is statistically significant for 𝑢𝐶𝑄𝑣𝑎𝑟 , 𝑢𝐿𝐿𝑀 -GPT, and 𝑢𝑟𝑒𝑙 . On the contrary, 𝑢𝑃𝑅𝐹@5 and 𝑢𝐿𝐿𝑀𝑅𝐽 tend to
be less effective, with improvements that are statistically significant only in a limited number of cases. As observed
before, DIMEs tend to be more effective with precision-oriented measures (nDCG@10). If we compare the DIMEs with
VPRF, we notice that the 𝑢𝑃𝑅𝐹@5 and 𝑢𝐿𝐿𝑀𝑅𝐽 are subpar. On the other hand, in most cases, other DIMEs overcome
VPRF—all the exceptions occur when using AP as the evaluation measure. Furthermore, the improvement provided by
the DIMEs over VPRF is significant in several cases, especially when considering 𝑢𝐶𝑄𝑣𝑎𝑟 and 𝑢𝑟𝑒𝑙 . In terms of significant
improvement, VPRF improves over the baseline in a limited number of cases—almost exclusively when using AP. On
the contrary, the improvement provided by the DIMEs is statistically significant in several more scenarios. Finally, as in
previous scenarios, the ANCE model tends to benefit the least of DIMEs. When measuring the performance of ANCE
using AP, the overall most effective approach is VPRF, although the difference is not statistically significant.
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Fig. 4. Distribution of the number of optimal dimensions. The number of optimal dimensions is typically bigger (i.e., lower curves) for
ANCE and for AP.

4.8 An Analysis on the Optimal Dimensions

We propose here a more detailed analysis of the dimensions that induce the optimal performance. The objective of this
analysis is twofold: i) determining how many dimensions are optimal and if there is a pattern across queries in this
regard; and ii) understanding if the optimal dimensions are common across different queries. The next experiments
are based on the Oracle DIME, which allows us to better investigate the role of the different dimensions in improving
performance. Since we want a more fine-grained analysis, we consider the number of retained dimensions from 1%
(approximately 8 dimensions) to 100%, with a step of 1%.

4.8.1 How many dimensions are optimal. Figure 4 reports the optimal number of retained dimensions depending on the
retrieval model, collection, and measure considered. For example, in Figure 4a we can observe that for approximately
40% of the queries (y-axis), the optimal number of dimensions is less than 20% (x-axis). The first pattern that we can
observe concerns ANCE having a systematically lower distribution compared to the other IR models. This indicates
that, to achieve optimal performance, more dimensions need to be retained on average. In most cases, approximately
50% of the queries (y-axis, upper part) need more than 60-80% of the dimensions (x-axis, right) to obtain the optimal
performance. This follows our previous observations concerning this specific model needing more retained dimensions
compared to the others to improve compared to the full representations. The other IR models present a more uniform
behaviour: they have very similar curves. In general, we see that, to optimize approximately 60% of the queries (y-axis,
lower part), less than 20-40% dimensions are sufficient. Notice that the opposite holds: if we add dimensions beyond the
optimal point, performance deteriorates. Concerning the IR measures, we notice that the curves tend to be slightly
shifted towards the left for nDCG@10 than AP (i.e., fewer dimensions are needed to optimize nDCG@10 than AP).
This pattern is particularly evident for RB ‘04 and visible in DL ‘19 and DL HD. Using a representation with fewer
dimensions, we are likely to retrieve documents concerning similar topics, as the representation is “less expressive”.
Being nDCG@10, a precision-oriented measure, it is sufficient to find 10—possibly similar—relevant documents to
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Fig. 5. Distribution of the times each dimension is retained over the queries.

optimize it. Vice versa, AP is more recall-oriented: therefore, to optimize it, it is necessary to retrieve more relevant
documents, possibly concerning very different topics. Thus, slightly more expressive representations are needed. The
general absence of a prolonged plateau indicates that the number of optimal dimensions is a query-dependent property.
Being able to find the optimal cutoff in a query-wise manner would allow us to further improve the performance beyond
what can already be achieved using DIMEs. We leave the study of determining such a cutoff as future work.

4.8.2 Which dimensions are optimal. The second question we are interested in answering concerns whether some
dimensions are never among the set of optimal dimensions. This would be extremely beneficial from the efficiency
performance perspective: if such dimensions existed and we could identify them, they could be removed from the
representation. This would reduce the number of operations and the disk occupation. To verify this, Figure 5 describes
how many times each dimension is retained, for all the queries. We report the plots assuming to retain the 20% best
dimensions (Figure 5a), the 50% (Figure 5b), and the optimal number of dimensions, as described in the previous Section
(Figure 5c). Consider, for example, Figure 5a: the first blue bar describes what happens with the ANCE retrieval system
used on DL ‘19, if we were to retain only the top 20% of the dimensions. We observe that the dimension that is retained
the least amount of times, is retained 2.3% of the times (1 query), on average, each dimension is retained 18.6% of the
times (8 queries), while the dimension retained most times is retained 86% (retained for 37 queries). Therefore, if we
retained 20% of the dimensions, each dimension would be chosen at least once. The same pattern also holds for all
the other retrieval systems and collections. The RB ‘04, which contains approximately 5 times the queries in the other
collections, exhibits narrower distributions, suggesting that, if we had more queries, we would observe that optimal
dimensions are distributed uniformly across queries. Notice that, on average, each dimension is retained 20% of the
time, further evidence of the underlying uniform distribution.

Retaining only 20% of the dimensions might be suboptimal: Figure 2 shows that often 20% dimensions do not provide
the best results, and a similar pattern is observed also in Figure 4. If we move further and consider retaining 50% of the
queries, we observe that, if we exclude a few outlier dimensions, each dimension is in the set of optimal queries for
20-40% of the queries. This highlights that no dimension can be removed without damaging 20-40% of the queries. Again,
the expectation is close to 0.5, and it reduces if we consider more queries (as for RB ‘04)—suggesting the underlying
uniform distribution of the dimensions.
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As a final analysis, we consider the optimal number of dimensions for each query (based on nDCG@10), reported in
Figure 5c. The dimension chosen for the least queries is chosen 7% of the time (3 queries). Excluding outliers, each
dimension is considered optimal for at least 10 to 20% of the queries. The width of the distribution on the RB ‘04 is
further reduced. Notice that the distribution for ANCE is shifted toward the top of the plot. This is in line with what is
observed in Figure 4: ANCE is optimized when many dimensions are considered, and therefore each dimension is likely
to be picked more times.

This empirically highlights that no dimension can be preemptively removed across all queries: each dimension is
important for at least 10% of the queries. Similarly, no dimension is important to all queries, with the most important
dimensions being such for approximately 50% of the queries, depending on the model.

4.9 On DIMEs Efficiency

Like other PRF or query rewriting and processing approaches, DIMEs introduces some computational overhead due to
the computation of the dimensions to be preserved. The extent of this overhead depends on the available information
and the specific type of DIME used. For instance, the LLM DIME requires generating a pseudo-relevant document in
response to the query, which can be particularly challenging in real-time scenarios. However, LLM generation will likely
become faster over time, and several commercial search engines—such as Bing7 and Google8—already use generated
content in their SERPs. Similarly, the Rel DIME relies on access to a relevant document in response to the query. Once
such a document is retrieved, the DIME derived from it can be cached and reused for similar queries. It is worth noting
that, once a representation of the relevant or pseudo-relevant information (whether a document or a set of query
variations) is available, the computation of the optimal dimensions is very efficient. This step typically involves only
linear operations, such as Hadamard products and vector summations.
Finally, we emphasise that DIMEs do not introduce significant efficiency overheads within vector search pipelines. Once
the relevant dimensions are identified, DIMEs can be seamlessly integrated into current indexing frameworks—such
as FAISS, Product Quantization (PQ), or Hierarchical Navigable Small World (HNSW)—by simply zeroing out the
“unimportant” dimensions in the query representation, leaving the rest of the retrieval process unaffected.
Two key research directions could further enhance the efficiency of DIMEs: (i) The identification of query-independent
DIMEs: if it becomes feasible to determine subsets of unimportant dimensions for clusters of documents, indexes could
be built that exclude these dimensions altogether, thus reducing both storage and computational costs during inference.
(ii) The design of new indexing pipelines: These would involve algorithmic optimisations to bypass operations (e.g.,
sums and products) involving unimportant dimensions. Both directions offer promising challenges for improving the
efficiency of DIMEs, and their investigation is open for future research.

5 CONCLUSION AND FUTUREWORK

This paper introduces the MC hypothesis for the latent space learned by dense IR neural models: “high-dimensional
representations of queries and documents relevant to them lie in a query-dependent lower-dimensional manifold
of the representation space”. According to this hypothesis, for a given query, there exists a subspace of the learned
representation space in which the representations of relevant documents cluster closely around the query. To empirically
validate our hypothesis, we restrict our investigation to linear subspaces—i.e., subspaces formed by zeroing out certain
dimensions of the original representation space—under the assumption of dimension independence. To address this

7https://www.microsoft.com/en-us/edge/features/the-new-bing
8https://developers.google.com/search/docs/appearance/ai-overviews
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task, we introduce the problem of Dimension Importance Estimation. Given a dense IR model and a query, the goal
is to determine which dimensions in the query and document representations are most important for producing an
optimal ranking. In doing so, we also introduce a novel class of Dimension IMportance Estimators (DIMEs). We propose
an oracle DIME that demonstrates how selecting optimal dimensions can improve retrieval performance by up to 184%
(from 0.123 to 0.351 in nDCG@10). While this oracle supports the validity of the MC hypothesis, it requires access
to relevant documents and is thus impractical for real-world use. While the oracle DIME effectively highlights that
the MC hypothesis has ground in reality, it relies on the availability of relevant documents and cannot be used in
practice. To enable practical application, we propose several DIMEs based on different heuristics: the magnitude of
query representation dimensions, pseudo-relevant feedback documents, and documents generated by an LLM. These
heuristics yield strong results, with improvements of up to +11.6%—increasing nDCG@10 from 0.674 to 0.752. Finally,
we introduce an active-feedback DIME that uses a single relevant document to significantly boost retrieval performance.
This approach achieves improvements of up to +49.6% in AP (from 0.236 to 0.353) and +55.9% in nDCG@10 (from
0.376 to 0.586). A key advantage of DIME models is their compatibility with existing dense IR pipelines, whether for
ranking or re-ranking. Using a DIME model to identify the most relevant dimensions per query can lead to substantial
performance gains.

In future work, we aim to automate the selection of the optimal number of dimensions to retain. We also in-
tend to explore DIMEs informed by additional signals—such as prior utterances in conversational search or query
reformulations—and to develop models that leverage linear combinations of dimensions.
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