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Abstract

Embedding cuts into a Branch&Cut framework is a delicate task, the main so when the implemented
separation procedures are very successful and do produce a large set of violated cuts. In this case, it is
of crucial importance to balance between the benefits deriving from a tighter (but larger) LP relaxation,
and the overhead introduced for its solution.

In this paper we describe a separation heuristic for {0, 1
2
}-cuts, special cases of Chvátal-Gomory cuts

which play an important role in combinatorial problems formulated as Integer Linear Programming (ILP)
problems [4]. Our separation procedure is embedded within ILOG-Cplex 8.1, a widely-used commercial
MIP solver.

Computational results on a large testbed of ILP instances including satisfiability, max-satisfiability,
and linear ordering problems, are reported. On these problems, our first attempt of incorporating {0, 1

2
}-

cuts within the ILOG-Cplex framework produced a code which was not significantly faster than the
standard version, due to the excessive number of {0, 1

2
}-cuts generated—though these cuts appear to

be of better quality with respect to those found by other general-purpose methods, and sometimes turn
out to be facet defining for the underlying integer polytope. However, a more sophisticated cut-selection
strategy produced a considerable speedup on our testbed. This is particularly interesting in that our
separation procedure was used as black-box—all the improvements came from a more clever way to
exploit the violated cuts. In other words, our cut selection policy does not need a tight interaction with
the separation procedure. Therefore, we expect that a similar approach can be useful to deal with other
families of cuts, in particular those for which finding a violated member is easy, but finding a violated
member with specific properties (maximum violation, maximum depth, etc.) can be difficult.

1 Introduction

Embedding cuts into a Branch&Cut framework is a delicate task. Paradoxically, a difficult situation arises
when the implemented separation procedures are very successful and do produce a large set of violated cuts.
In this case, it is of crucial importance to balance between the benefits deriving from a tighter (but larger)
LP relaxation, and the overhead introduced for its solution. As a matter of fact, it may well be the case
that embedding the new cuts in a naive way does reduce the number of branching nodes, but the overall
computing time required increases in a significant way. This (often frustrating) situation is well known to
the designers of Branch&Cut methods, who often avoid at all the generation of the new cuts, or allow for
cut generation only at the root node of the branching tree according to the so-called Cut&Branch strategy.

In this paper we describe a separation heuristic for the family of {0, 1
2}-cuts, a subset of Chvátal-Gomory

cuts playing an important role in combinatorial problems formulated as Integer Linear Programming (ILP)
problems [4]. Our separation procedure is embedded within ILOG-Cplex 8.1, a widely-used and very effective
commercial MIP solver. Computational results on a large testbed of ILP instances including satisfiability,
max-satisfiability, and linear ordering problems, are reported. On these problems, our first attempt of
incorporating {0, 1

2}-cuts within the ILOG-Cplex framework produced a code which was not significantly
faster than the standard version. This was somehow unexpected, in that {0, 1

2}-cuts appear to be of better
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quality than those generated with other general-purpose methods, and sometimes turn out to be even facet
defining for the underlying integer polytope. However, a more sophisticated cut-selection strategy produced
a considerable speedup on our testbed. This is particularly interesting in that our separation procedure was
used as black-box—all the improvements came from a more clever way to exploit the violated cuts. In other
words, our cut selection policy does not need a tight interaction with the separation procedure. Therefore,
we expect that a similar approach can be useful to deal with other classes of cuts, in particular those for
which finding a violated member is (relatively) easy, but finding a violated member with specific properties
(maximum violation, maximum depth, etc.) can be difficult—as, e.g., for the classical Gomory cuts, or for
the cuts based on the theory of corner polyhedra and T-spaces that have been recently proposed by [10].

The paper is organized as follows. In Section 1 we review the theory of {0, 1
2}-cuts, whereas in Section 2 we

present our heuristic separation procedure. Section 3 describes the ILOG-Cplex 8.1 Branch&Cut framework
where the separation procedure is embedded, and the main call-back functions we designed for handling our
own implementation of the cut pool. In the same section we introduce the cut quality measures we used for
cut selection. Section 4 reports our computational experience and compares various cut-selection strategies
on a large testbed containing ILP instances with a strong combinatorial structure (taken from satisfiability,
max-satisfiability, and linear ordering problems). Finally, some conclusions are drawn in Section 5.

2 The theory of {0, 1
2}-cuts

In this section we briefly illustrate the theory of {0, 1
2}-cuts, which is needed to describe the separation

method used in our code. We follow the presentation in [4], to which the reader is referred for further
details.

For any given z ∈ Z and q ∈ Z+, let z mod q := z−bz/qc q. As customary, notation a ≡ b (mod q) stands
for a mod q = b mod q. For any integer matrix Q = (qij), let Q = (qij) := Q mod 2 denote the binary support
of Q, i.e., qij = 1 if qij is odd; qij = 0 otherwise. Moreover, given an undirected multigraph G = (V,E), let
δ(j) denote the set of edges incident with a node j ∈ V .

Given an m × n integer matrix A = (aij) and an m-dimensional integer vector b, let P := {x ∈ Rn :
Ax ≤ b}, PI := conv{x ∈ Zn : Ax ≤ b}, and assume PI 6= P . We assume without loss of generality that
each row of (A, b) contains relatively prime entries.

A Chvátal-Gomory (CG) cut [9, 6] is a valid inequality for PI of the form λT Ax ≤ bλT bc, where λ ∈ Rm
+

is such that λT A ∈ Zn, and b·c denotes lower integer part. It is known that undominated CG cuts only arise
for rational λ ∈ [0, 1)m.

CG cuts can equivalently be obtained in the following way [5]. Let µ ∈ Zm
+ and q ∈ Z+ be such that

µT A ≡ 0 (mod q) and µT b = kq + r with k ∈ Z and r ∈ {1, . . . , q − 1}. Then the mod-q cut µT Ax ≤ kq is
a valid inequality for PI . This inequality can be written as µT (b − Ax) ≥ r, hence a given x∗ ∈ P violates
µT Ax ≤ kq if and only if µT (b−Ax∗) < r.

In [4], the important family of {0, 1
2}-cuts is investigated, corresponding to a CG cut with λ ∈ {0, 1

2}
m

(or, equivalently, to mod-2 cuts with µ := 2λ ∈ {0, 1}m).
The separation problem for {0, 1

2}-cuts, in its optimization version, can be stated as follows.

{0, 1
2}-SEP: Given x∗ ∈ P , compute s∗ := b−Ax∗ ≥ 0 and solve

z∗SEP := min{s∗T µ : µ ∈ F(A, b)} , where

F(A, b) := {µ ∈ {0, 1}m : b
T
µ ≡ 1 (mod 2), A

T
µ ≡ 0 (mod 2)}.

By construction, there exists a {0, 1
2}-cut violated by the given point x∗ if and only if z∗SEP < 1. In this

case, setting λ := µ/2 produces a {0, 1
2}-cut with violation (1− z∗SEP )/2.

{0, 1
2}-SEP is NP-complete in the general case [4], but there are important special cases for which a

polynomial separation algorithm can be derived. Among these cases, one that appears to have a main
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impact on several classes of combinatorial optimization problems arises when A has at most 2 odd entries
for each row. Though this is almost never the case in practice, in [4] it is shown how to relax the original
constraints so as to achieve this property. The resulting procedure is a general separation heuristic for
{0, 1

2}-cuts, that we outline next.
Let M := {1, . . . ,m} and N := {1, . . . , n} be the indices of the rows and columns of A, respectively, and

let
Oi := {j ∈ N : aij = 1}, for all i ∈ M.

The following result, proved in [4], is the key to our separation method, hence we also give a short proof
of constructive type.

Theorem 1 {0, 1
2}-SEP can be solved in polynomial time if |Oi| ≤ 2 for all i ∈ I.

Proof. Let G = (V,E) be an undirected multigraph having a node j for each column j of A, plus a special
node q. Graph G is weighted and labelled on its edges. There is an edge ei for each row i ∈ M , with weight
w(ei) := s∗i and labelled odd if bi = 1, even otherwise; this edge connects the two nodes h and k such that
Oi = {h, k} (if Oi = {h}, then let the edge connect node h to the special node q). A given E∗ ⊆ E is a
Eulerian cycle if each component of the subgraph induced by E∗ is Eulerian, i.e., |E∗ ∩ δ(j)| is even for all
j. E∗ is an odd Eulerian cycle if, in addition, it contains an odd number of odd edges. It is easy to see that
there is a one-to-one correspondence between the 0-1 vectors µ ∈ F(A, b) and the odd Eulerian cycles E∗ of
G, given by µi = 1 if and only if ei ∈ E∗. This correspondence guarantees that w(E∗) :=

∑
e∈E∗ w(e) equals

s∗T µ.
The above discussion shows that the optimization version of {0, 1

2}-SEP is equivalent to finding a
minimum-weight odd Eulerian cycle of G, say E∗. Because of the well-known theorem of Euler, E∗ can
be partitioned into a collection of simple cycles. Since E∗ is odd, at least one such cycle, say C∗, must be
odd, where w(C∗) ≤ w(E∗) holds as w(e) ≥ 0 for all e ∈ E.

A polynomial algorithm for the minimum-weight odd cycle problem is known from folklore (see, e.g.,
[11]). This algorithm is based on shortest path computations on an auxiliary graph, and runs in O(n3) time.
�

As already mentioned, the separation algorithm outlined in the proof of the previous theorem can be
applied to an arbitrary ILP, provided that the original system Ax ≤ b is relaxed into A′x ≤ b′ (say), with
the property that A′ has at most two odd entries per row—and therefore satisfies the conditions in Theorem
1. For example, in [4] the case where bound constraints of the type l ≤ x ≤ d are part of the system Ax ≤ b
is considered (possibly lj = −∞ and/or dj = +∞ for some j). Then a suitable relaxation A′x ≤ b′ can
readily be obtained from Ax ≤ b by replacing each inequality

∑
j aijxj ≤ bi with |Oi| ≥ 3, by its so-called

LU-weakenings

aihxh + aikxk +
∑
j 6∈Oi

aijxj +
∑
j∈L

(aij − 1)xj +
∑
j∈U

(aij + 1)xj ≤ bi +
∑
j∈U

dj −
∑
j∈L

lj (1)

for all h, k ∈ Oi, h < k, and for all partitions (L,U) of Oi \ {h, k}. These inequalities are obviously valid for
P , in that they are obtained by adding together

∑
j aijxj ≤ bi and the bound constraints −xj ≤ −lj (j ∈ L)

and xj ≤ dj (j ∈ U).
Although A′x ≤ b′ has, in general, an exponential number of rows, still the corresponding {0, 1

2}-SEP can
be solved in polynomial time. Indeed, for each triple (i, h, k) only two LU-weakenings are worth considering
for the given point x∗ to be separated, namely those with even and odd right-hand side having minimum
slack. These two weakenings can be computed, in O(|Oi|) time, through a simple dynamic programming
scheme (analogous to the one outlined in the next section) that considers, for each j ∈ Oi \ {h, k}, the two
possibilities j ∈ L and j ∈ U .

3 The {0, 1
2}–SEP heuristic

In this section we describe our implementation of the {0, 1
2}–SEP heuristic outlined in the previous section,

whose running time is O(
∑

i∈M |Oi|3 + n3) = O(mn3).
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Let x∗ ∈ P denote the fractional point to be separated, and let s∗ := b− Ax∗ ≥ 0 be the corresponding
slack vector. If successful, the separation heuristic produces a subset I∗ of M whose characteristic vector µ
produces a violated {0, 1

2}-cut with respect to x∗.
First of all, following [4] we apply the following preprocessing steps in the attempt to reduce the size of

the separation problem.

• R1. We scale the coefficients of all rows of (A, b) to relatively prime integers.

• R2. Every row i of Ax ≤ b with s∗i ≥ 1 is removed, in that the choice µi = 1 implies s∗T µ ≥ 1, hence
it cannot lead to a violated {0, 1

2}-cut.

• R3. For j = 1, . . . , n, we consider the (possibly empty) set

Sj := {i ∈ M : aik = 1 iff k = j} (2)

These rows include variable lower/upper bound constraints of the form −xj ≤ lj or xj ≤ dj , if present.
If there is a row i ∈ Sj with s∗i = 0 (i.e., if the corresponding constraint is tight for x∗), we can easily
get rid off of variable xj . Indeed, assuming for notational convenience i = m and j = n, the input
(A, b, s∗) for {0, 1

2}-SEP has the form:

A =
[

M
0 · · · 0

∣∣∣∣d1
]

, b =
[

β

bm

]
, and s∗ =

[
σ∗

0

]
.

Observe that any feasible solution µ ∈ {0, 1}m of {0, 1
2}-SEP has µm ≡

∑m−1
i=1 µidi (mod 2). We then

define a reduced instance of {0, 1
2}-SEP, whose input is given by (M,f, σ∗), where f := β if bm = 0,

f := (β +d) mod 2 otherwise. It is easy to verify that there is a one-to-one correspondence between the
feasible solutions µ ∈ {0, 1}m and ν ∈ {0, 1}m−1 to the original and reduced {0, 1

2}-SEP, respectively,
where µk = νk for k = 1, . . . ,m− 1, and µm ≡ dT ν (mod 2).

In particular, the above reduction applies to the case where x∗j = 0 and xj ≥ 0 is part of the inequality
system (in which case xj is simply removed along with the corresponding column of A), or x∗j = 1 and
xj ≤ 1 (in which case xj is first complemented and then removed along with the corresponding column
of A). This typically allows for a quite substantial size reduction of the separation instance.

Reduction R3 is iterated until no further variable can be removed. Then we construct the separation
multigraph G = (V,E) as in the proof of Theorem 1. Recall that V contains a node j for each variable xj ,
plus a special node q used to deal with the constraints with just one odd coefficient. Clearly, for each pair
of nodes h, k in G only the odd and even edges with minimum weight have to be stored. Let odd(h, k) and
even(h, k) denote these minimum weights. For each odd and even edge between (h, k) of G, we also store
the index i of the constraint in the original system Ax ≤ b that produced weight odd(h, k) and even(h, k),
respectively, so as to be able to reconstruct the output set I∗.

Initially, we set odd(h, k) := +∞ and even(h, k) := +∞ for h, k ∈ V \ {q}. For each j ∈ V we then
compute

δp
j := min{s∗i : i ∈ Sj , bi = p} for p = 0, 1

(δp
j = +∞ if no suitable i exists), and we set odd(j, q) := δ1

j and even(j, q) := δ0
j .

Afterwards, for each i ∈ M with |Oi| = 2, say Oi = {h, k}, and bi = 1 (resp., bi = 0), we set odd(h, k) :=
min{odd(h, k), s∗i } (resp., even(h, k) := min{even(h, k), s∗i }).

Finally, we address the “complicated” constraints i with |Oi| ≥ 3, and consider each of the O(|O2
i |)

pairs h, k ∈ Oi. For each triple (i, h, k), we update odd(h, k) := min{odd(h, k), best1} and even(h, k) :=
min{even(h, k), best0}, where values best1 and best0 take into account the minimum-slack odd and even
(respectively) combination between the i-th row and the rows in Sj for all j ∈ Oi \ {h, k}. They are
computed, by dynamic programming, by initializing best0 := best1 := s∗i and then by computing, for each
j ∈ Oi \ {h, k} (in any sequence)
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old bestp := bestp for p = 0, 1

bestp := min{old bestp + δ0
j , old best1−p + δ1

j } for p = 0, 1

(of course, this computation can be be aborted as soon as min{best0, best1} ≥ 1).
After having defined the weights of the edges in G, we find a minimum-weight odd cycle of G in a standard

way (see, e.g., [11]). To be specific, we define the auxiliary graph H = (V1∪V2, F ) that contains two vertices
h1 ∈ V1, h2 ∈ V2 for each node h ∈ V . For each even edge in G joining nodes h, k, having weight even(h, k),
H contains edges h1, k1 and h2, k2 of weight even(h, k). Moreover, for each odd edge in G joining nodes
h, k, having weight odd(h, k), H contains edges h1, k2 and h2, k1 of weight odd(h, k). The shortest odd cycle
visiting each node h in G corresponds to the shortest path joining h1 to h2 in H.

In our implementation, for each node h ∈ V , we compute by Dijkstra’s algorithm the shortest path
arborescence rooted in h1 for graph H (representing the shortest paths from h1 to each other node). By
symmetry, this also provides the shortest path anti-arborescence rooted in h2 (representing the shortest
paths from each other node to h2). With this information, we consider each node k ∈ V \{h} along with the
shortest paths from h1 to k1 and from k1 to h2 in H. As mentioned above, concatenation of these two paths
yields a shortest path in H from h1 to h2 visiting k1, that is easily checked to correspond to the shortest
odd cycle in G visiting nodes h, k.

If this shortest odd cycle C∗ has weight z(C∗) < 1, then the {0, 1
2}-cut obtained by the combination of

the weakened inequalities corresponding to the edges in the cycle, is certainly violated by x∗. Even in case
z(C∗) is (slightly) larger than 1, however, there is the hope that a {0, 1

2}-cut obtained by combining the
inequalities of the original system be violated. Indeed, let I∗ denote the inequalities in the original system
corresponding to the edges of the minimum-weight odd cycle, and observe that

∑
i∈I∗ s∗i ≤ z(C∗). However,

in order to get a valid {0, 1
2}-cut we still need to perform a cut post-processing. Indeed, the determination of

I∗ considered a weakened version of the original inequalities, hence summing together only the inequalities
in I∗ (without the inequalities in Sj used in the edge-weight definition) would produce an inequality βx ≤ β0

(say) for which some of the left-hand side coefficients may be odd. In other words, setting µi := 1 only
for i ∈ I∗ does not necessarily yield µ ∈ F(A, b). In order to have a valid (and hopefully violated) {0, 1

2}-
cut, we therefore apply the same dynamic programming method outlined above, modified so as to find the
minimum-slack weakening of βx ≤ β0 with all even left-hand side coefficients, and odd right-hand side. It is
easy to see that the violation of the resulting inequality is at least as large as the one corresponding to the
weakened system, i.e., not smaller than (1− z(C∗))/2.

For problems with a strong combinatorial structure such as those in our testbed (see Section 5), the cuts
found by this heuristic tend to be of “good” quality, in the sense that they are generally sparse and with
relatively small coefficients, but still are violated by a relatively large amount. In some cases, we could verify
that the cuts produced were facet defining for the underlying integer polyhedron PI .

4 The overall Branch&Cut algorithm

Our work is aimed at analyzing the benefits deriving from the use of {0, 1
2}-cuts within an existing Branch&Cut

algorithm, without modifying other important features of the algorithm such as primal heuristics, branching
variable selection, next node selection, etc. ILOG-Cplex 8.1 [7] was selected as the external framework to
work with. ILOG-Cplex is a widely-used Branch&Cut MIP software; since its release 7.0, this code allows one
to customize the main features of the algorithm, including cut generation. To this end, a cut callback shell
was implemented so as to embed our separator for {0, 1

2}-cuts within the existing Branch&Cut algorithm.
As explained below, the shell also handles an internal cut pool, whose interaction with the current LP is
governed by a clever cut selection procedure—as shown in the computational section, cut handling is of
crucial importance.

All procedures we used in our study have been written in C++ (except the {0, 1
2}-cut separator, which

is written in C) and are available, on request, from the authors.
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4.1 Cut quality measures

On problems with a strong combinatorial structure, our {0, 1
2}-separator may add to the cut pool a huge list

of violated cuts. Adding all these cuts to the original formulation is therefore likely to increase the LP size
in an excessive way, leading to higher and higher node solution times. So, it is essential to select in a very
careful way the pool cuts to be added to the formulation. Our selection rules are based on the following cut
quality measures, analogous to those proposed in [1].

Given a cut αx ≤ α0 and a point x∗, the Euclidean distance between x∗ and the hyperplane induced by
αx = α0 can be computed as

dist(x∗, α, α0) :=
|αT x∗ − α0|

‖α‖
(3)

Following geometrical intuition, it is quite natural to consider this distance as a first-order measure of
the expected efficacy of a cut αx ≤ α0 violated by the fractional point x∗, the larger the distance the better
the cut [1].

One could argue that this measure has some drawbacks. In particular, assume that we have αj > 0 for
a certain variable with x∗j = 0. Clearly, the numerator of (3) is not affected by component αj , hence the
presence of the norm of α at the denominator implies that setting αj = 0 would produce a violated (and
valid) cut with increased depth, whereas this inequality is mathematically dominated by the original one.
We implemented and tested some variants of (3), but we could not find a version producing consistently
better results: in spite of its drawbacks, the Euclidean distance seems to be an easily-computable and quite
reliable measure of the cut efficacy. Therefore, our first quality measure is the cut efficacy computed as:

eff(x∗, α, α0) :=
αT x∗ − α0

‖α‖
(4)

Notice that, with this definition, efficacy is positive for violated cuts. As a heuristic rule, only the pool cuts
with

eff(x∗, α, α0) ≥ min eff (5)

qualify as candidates to be inserted into the LP formulation, where min eff is a threshold defined in an
adaptive way (as explained in the sequel).

Once the pool has been ordered by non-increasing efficacy, we need to face the issue of preventing
“similar” cuts from being added together to the LP. We consider two cuts αx ≤ α0 and βx ≤ β0 to be
similar if they have (almost) the same efficacy and their defining hyperplanes are (almost) parallel, the
maximum dissimilarity arising when the two hyperplanes are orthogonal, i.e., when αT β = 0. Accordingly,
we choose a minimum threshold max par ∈ [0, 1) and require that all cuts to be added to the LP formulation
verify (pairwise) the maximum parallelism condition:

par(α, β) :=
|αT β|
‖α‖ ‖β‖

≤ max par (6)

In particular, the choice max par = 0 forces the cuts to be orthogonal, i.e. with disjoint support. Lift-and-
project cuts in [1] are selected in the same way, but using max par = 0.999 in condition (6) so as to just
avoid adding duplicate cuts; no computational results for other values of max par are reported.

4.2 The ILOG-Cplex 8.1 framework

Implanting a piece of software within a sophisticated code such as ILOG-Cplex requires some knowledge of
the main strategies therein used, so as to avoid “rejection” of the host code with respect to the guest one.

Looking at ILOG-Cplex 8.1 documentation (and trying to reconstruct its strategies from the log files), we
found that this code has been designed to be somehow “conservative” with respect to the addition of new
cuts.

First of all, ILOG-Cplex does not implement a cut pool: once a (globally valid) cut has been generated
at run time, it is added statically to the LP formulation and never removed. An important consequence is
that only a few, strong cuts can be added during the whole run. An important exception (not exploited in
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our code) arises for locally-valid cuts, which are automatically removed from the formulation the first time
they are no longer guaranteed to be valid (because of a backtracking step); removed cuts are not saved.

Second, cuts are not generated at each branching node. We inferred from the ILOG-Cplex log files that an
intense attempt of generating new cuts is only made at the root node, and then a moderate separation effort
is spent after each backtracking step. This choice is motivated by the overall ILOG-Cplex tree exploration
strategy, a sort of “cut and dive” scheme where diving continues until both the current node and its brother
are fathomed, and new cuts are generated only after a backtracking step.

This strategy was designed and tuned by ILOG-Cplex ’s designers, and proved successful on a vast collec-
tion of hard MIP instances. Therefore we had no reason to try to alter it; rather, we followed ILOG-Cplex ’s
vision and implemented the cut callback procedure described in Algorithm 1, where LP denotes the set of
constraints of the current LP relaxation.

Some comments follow.

• At the root node the separation procedure is called only a limited number of times (5, in our implemen-
tation). In addition, as in [1] we found that better overall results are typically obtained if separation
is only invoked at each k-th backtracking (we choose k = 4 in our implementation).

• As already mentioned, ILOG-Cplex does not implement an internal cut pool. (Actually, ILOG-Cplex
does allow some constraints of the initial formulation to be stored in a cut pool rather than in the LP,
but this pool cannot be extended at run time, as required in our application.) Hence, we implemented
our own POOL data-structure to store (in a C-like manner) the {0, 1

2}-cuts.

• A possible issue in handling the interaction between the current LP and our internal pool is the
impossibility of removing a (globally valid) cut from the current LP. This makes it impossible to purge
the current LP by removing some of its constraints. A possible work-around is to define the {0, 1

2}-cuts
as local (as opposed to global) cuts, so that they are automatically removed from time to time from the
LP. Our C++ classes do support this feature, that works reasonably well in practice. However, in the
present computational testing we decided not to activate any LP purging procedure, and followed the
ILOG-Cplex strategy of adding cuts statically to the LP. Of course, this implies the use of conservative
cut-selection criteria so as not to overload the LP.

• If the pool contains more than max pool cuts, after it has been ordered by efficacy, the least efficacious
cuts are removed. In our experience, sorting the whole pool typically requires a negligible fraction of
the separation time; in case the pool contained a huge number of cuts, a more efficient priority queue
could be preferable.

• The maximum parallelism constraint (6), controlled by parameter max par, is applied only with respect
to cuts added in the current node, and not to the whole set of cuts generated during the optimization.
This ensures that new and efficacious cuts can be added even if they are parallel to old cuts.

• The minimum efficacy in (5) is not fixed a priori. At the first successful cut generation, this value
is set to the minimum between ub min eff , which is a parameter of our algorithm, and 70% of the
efficacy of the best cut generated. During the run, we count the number of times the pool does not
contain efficacious cuts, and every 20 failures the bound is reduced. This compensates for the fact that
the tighter the LP relaxation, the harder to build deep cuts.

• The parameter cut factor imposes an upper bound on the number of cuts that we add to the LP
during the whole optimization. In particular, the number of cuts added to the LP can never exceed
cut factor times the number of constraints in the initial LP formulation.

• Our {0, 1
2}-cut separation heuristic works on the current LP formulation, i.e., on the initial LP amended

by the cuts added in the previous iterations. We found that this approach produces typically better
results than the one of deriving only rank-1 cuts based on the initial LP formulation. For testing
purposes, however, we introduced a flag, called recomb, to instruct the separator to generate {0, 1

2}-cuts
by combining constraints of the initial formulation (recomb = off) or of the current one (recomb = on).
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Algorithm 1 Separation strategy
1: if this is the first attempt to generate cuts then
2: /* define some global counters */
3: added cuts := 0
4: max added cuts := cut factor ∗ (number of LP rows)
5: end if
6: if (the number of backtrackings is not a multiple of 4) or (added cuts ≥ max added cuts) then
7: return
8: end if
9: add to POOL all the {0, 1

2}-cuts violated by x∗ found by the heuristic separation procedure
10: sort POOL by decreasing efficacy, POOL[0] containing the cut with largest efficacy
11: if |POOL| > max pool then
12: remove the last |POOL| −max pool cuts from POOL
13: end if
14: if this is the first attempt to generate cuts then
15: /* define the global variable min eff */
16: min eff := min{ub min eff, 0.7 ∗ eff(POOL[0])}
17: end if
18: miss := 0
19: if eff(POOL[0]) < min eff then
20: miss := miss + 1
21: if miss = 20 then
22: miss := 0
23: min eff := min eff − 0.03
24: end if
25: return
26: end if
27: S := ∅
28: i := 0
29: while (i ≤ |POOL|) and (eff(POOL[i]) ≥ min eff) do
30: if par(c, POOL[i]) ≤ max par for all cuts c ∈ S then
31: add POOL[i] to the current LP
32: S := S ∪ {POOL[i]}
33: added cuts := added cuts + 1
34: if added cuts ≥ max added cuts then
35: return
36: end if
37: end if
38: i := i + 1
39: end while
40: return

5 Computational experiments

Like for many other classes of widely-used MIP cuts (notably, cover and clique inequalities), there is no
guarantee that the family of {0, 1

2}-cuts contains a member that cuts any given fractional extreme point of
any ILP. In addition, due to its heuristic nature, our separation algorithm can fail to generate a violated
{0, 1

2}-cut even if one exists. So, we cannot claim {0, 1
2}-cuts are useful for the solution of any ILP, but we

have to content ourselves to find classes of ILP’s which can benefit from the use of our {0, 1
2}-cut separator.

As a matter of fact, as our computational experiments show, there are important classes of combinatorial
ILP’s for which the usual cover and clique separation procedures are completely ineffective, whereas {0, 1

2}-
cuts are quite useful and allow for a considerable speedup (if dealt with in a proper way).
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5.1 The testbed

We considered the following classes of combinatorial problems, which produce notoriously hard-to-solve
ILP’s. All instances are available, on request, from the authors.

5.1.1 Satisfiability Problems (SAT)

A boolean variable x is a variable whose feasible values are true and false (usually represented with numbers
1 and 0, respectively). A boolean formula is a combination of boolean variables using the logical connectives
not (x̄), or (∨), and (∧). A literal is a variable or a negation of a variable, and a disjunction of literals is a
clause. Given a set of clauses C1, C2, . . . , Cm on the boolean variables x1, x2, . . . , xn, the SAT problem is to
find an assignment of values to the variables that satisfies the formula C1 ∧ C2 ∧ . . . ∧ Cm.

A SAT instance is easily formulated as an ILP with a binary variable for each of the boolean variables
of the SAT, while the clauses Ck are converted to linear constraints of the form

∑
i xi +

∑
j(1 − xj) ≥ 1.

The objective function is not specified, and a constant value is usually taken. However, we found useful
to generate a random objective function given by the sum of a random subset of the left hand sides of the
constraints (each constraint is in the subset with probability 0.5). Of course, the optimization is stopped as
soon as an integer solution is found.

The SAT instances we considered were downloaded from the web page of the second DIMACS Challenge
[8]; see [12] for more information.

5.1.2 Maximum Satisfiability Problems (MAXSAT)

The MAXSAT problem is only slightly different from SAT. Given a set of clauses, MAXSAT asks calls for
an assignment of values to the variables that maximizes the number of satisfied clauses.

An ILP formulation of MAXSAT is simply obtained from the SAT one: for each clause Ck, we introduce
a slack binary variable zk and replace the right-hand side value 1 by zk in the corresponding constraint. The
objective function is then max

∑
k zk.

We solved the MAXSAT version of every SAT instance considered.

5.1.3 Linear Ordering Problems (LINORD)

The linear ordering problem is defined as follows. We are given a set of n items {1, . . . , n} and a cost matrix
cij , i, j ∈ {1, . . . , n}. Each entry cij represents the cost of placing item i before item j in a permutation of
the n items, the goal being to find a minimum-cost such permutation.

The variables of a standard ILP formulation are xij for 1 ≤ i < j ≤ n, where xij = 0 if i precedes j in
the permutation, xij = 0 otherwise. The objective function then reads

n−1∑
i=1

n∑
j=i+1

(cijxij + cji(1− xij))

whereas the consistency of a binary solution x is enforced by the following triangle inequalities (all of which
are put explicitly in the model):{

xij + xjk − xik ≤ 1
−xij − xjk + xik ≤ 0

1 ≤ i < j < k ≤ n

We found that the instances from the public LOLIB library tend to have a negligible integrality gap at the
root node, hence they can be solved quite easily. For other known classes of large-size instances, instead, the
main difficulty is the solution of the initial LP, hence our cuts cannot help their solution. The instances we
considered in our testbed were therefore generated according to the following random procedure suggested
by G. Reinelt [13], which is intended to produce medium-size instances with a significant integrality gap
at the root node of the initial formulation. We considered case n = 30 and defined each entry cij to be
either 0 (with probability prob), or a random integer number in range [0, Cmax] (with probability 1− prob).
Our instances where then obtained by generating about 10 instances for each of the following combinations
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of parameters (prob, Cmax): (0.5, 4), (0.5, 10), (0.2, 10), (0.3, 10), (0.1, 10), (0.05, 10), (0.5, 1e6). As already
mentioned, for benchmarking purposes our LINORD instances are available, on request, from the authors.

5.2 Speedup evaluation

Our algorithm was tested and compared to a reference ILOG-Cplex configuration, proceeding in the same
way as ILOG does in order to validate its own new releases, as described in [3].

In each table presented in the sequel, we compare two different codes. Comparison is made either on all
instances in the testbed or on a subset of them. Depending on the results of the two codes on the instances
considered, these are subdivided in the following disjoint sets:

1. easy instances, solved by both codes in less than 5 CPU seconds on a AMD Athlon XP 2,400+;

2. regular instances, solved by both codes in less than 1,800 CPU seconds on the same PC (excluding
those in the previous set);

3. hard instances, solved by one code in less than 1,800 CPU seconds, but not by the other;

4. impossible instances, solved by neither code in less than 1,800 CPU seconds.

In the tables we report the total number of instances (“count”), the number of instances of each class,
and the number of (hard) instances solved by one code and not by the other.

As in [3], the relative code effectiveness is evaluated, on the regular instances, as the geometric mean of
the speedups, where the speedup ρi

AB of code A versus code B for instance i is the inverse of the ratio of

their running times, and the geometric mean over instances 1, . . . , k is computed as
(∏k

i=1 ρi
AB

) 1
k

. For the
hard instances the speedup is calculated in a similar way, but we favor the slower code by assuming that it
terminates right after the time limit (1,800 CPU seconds).

A final comment is in order. If some instances are discarded because they are too easy or too hard,
they should be too easy or too hard for both codes, as it may be unfair to mark as “too easy” the instances
solved in less than a few seconds by just one of the two codes, in that this will put the slower code in an
advantageous position.

5.3 Parameter tuning

In this section, we compare various versions of our algorithm to a reference ILOG-Cplex version, with the
aim of setting its main parameters in an appropriate way.

The reference code is default ILOG-Cplex 8.1 version, called Cplex in the sequel, with a dummy cut
callback that does nothing. This choice is motivated by that fact that the presence of a cut callback forces
ILOG-Cplex not to apply irreversible transformations to the model, so it seems to be fair to deactivate these
irreversible transformations for all codes under comparisons. (Acually, we found that the dummy cut callbak
improves slightly the default ILOG-Cplex performance in most of instances in our testbed.) Internal cut
generation is enabled as in the default ILOG-Cplex setting.

Our algorithm, called 012 in the sequel, is obtained from Cplex (the reference ILOG-Cplex version) by
just replacing the dummy cut callback by the {0, 1

2}-cut separation procedure illustrated in the previous
sections.

For the purpose of tuning, we decided to work with a reduced subset instances, and disregarded some
instances that appeared extremely easy or extremely hard to solve.

Table 1 compares Cplex with a naive version of 012, where we apply no clever cut selection policy. The
table shows that this version of 012 is only slightly better than Cplex: the number of instances solved by
the two codes is the same, and 012 is only marginally faster.

A first attempt to improve the 012 performance is to simply limit the number of cuts that are added at
each branching node, by setting parameter cut factor to a smaller value. After appropriate tuning of this
parameter, we obtained the improvement reported in Table 2: 7 more instances were solved, and the average
speedup on the hard instances raised to 20.
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Table 1: Naive cut selection policy. Speedup w.r.t. Cplex. Parameter values: ub min eff = +∞ ,
max par = 1, cut factor = 10, recomb = off .

LINORD SAT Global

count 69 74 143
too easy 11 1 12
regular 58 41 99
hard 0 18 18
impossible 0 14 14
solved by both 69 42 111
not solved by 012 0 23 23
not solved by Cplex 0 23 23
solved only by 012 0 9 9
solved only by Cplex 0 9 9
speedup on regular 1.03 1.37 1.16
speedup on hard – 1.71 1.71
speedup on the whole 1.03 1.36 1.19
CPU hours 012 1.11 14.48 15.59
CPU hours Cplex 0.86 15.35 16.21

Table 2: Limiting the number of cuts. Speedup w.r.t. Cplex. Parameter values: ub min eff = +∞,
max par = 1, cut factor = 0.3, recomb = off .

LINORD SAT Global

count 69 74 143
too easy 11 2 13
regular 58 48 106
hard 0 9 9
impossible 0 15 15
solved by both 69 50 119
not solved by 012 0 16 16
not solved by Cplex 0 23 23
solved only by 012 0 8 8
solved only by Cplex 0 1 1
speedup on regular 1.01 1.67 1.27
speedup on hard – 19.84 19.84
speedup on the whole 1.00 2.00 1.43
CPU hours 012 1.14 11.56 12.70
CPU hours Cplex 0.86 15.35 16.21

An approximate tuning of the remaining parameters leads to the results in Table 3: 012 can now solve 9
more instances, and has a speedup of 3 over the whole testbed.

Strangely enough, the speedup over the hard instances in Table 3 is lower than the one reported in Table
1. This is explained by the fact that the number of hard instances in the two tables is different, in that
several “impossible” instances became “hard” as they were solved by 012 (but not by Cplex) in less than
1,800 CPU seconds. Therefore a straight comparison of the speedups may be misleading.

At this point, we investigated the deterioration in the performance of 012+ (i.e., code 012 with the “good
tuning” parameter setting of Table 3), when one of its parameters is disabled by setting it to a dummy value.
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Table 3: Good-tuned 012 version (namely, 012+). Speedup w.r.t. Cplex. Parameter values: ub min eff =
0.02, max par = 0.1, cut factor = 0.3, recomb = on

LINORD SAT Global

count 69 74 143
too easy 12 1 13
regular 57 44 101
hard 0 28 28
impossible 0 1 1
solved by both 69 45 114
not solved by 012+ 0 7 7
not solved by Cplex 0 23 23
solved only by 012+ 0 22 22
solved only by Cplex 0 6 6
speedup on regular 1.42 4.89 2.44
speedup on hard – 12.10 12.10
speedup on the whole 1.34 7.00 3.06
CPU hours 012+ 0.67 6.66 7.33
CPU hours Cplex 0.86 15.35 16.21

Tables 4, 5, and 6 illustrate the results obtained by disabling, respectively, the minimum efficacy re-
quirement, the maximum parallelism requirement, and the possibility of considering previously-generated
{0, 1

2}-cuts as inequalities to be combined in the separation procedure. In all cases, the results are no-
tably worse for what concerns both the number of instances solved and the running times. This shows the
important role played by these three parameters.

Table 4: Efficacy disabled. Speedup w.r.t. 012+. Parameter values: ub min eff = +∞, max par = 0.1,
cut factor = 0.3, recomb = on.

LINORD SAT Global

count 69 74 143
too easy 12 15 27
regular 57 41 98
hard 0 14 14
impossible 0 4 4
solved by both 69 56 125
not solved by 012 0 15 15
not solved by 012+ 0 7 7
solved only by 012 0 3 3
solved only by 012+ 0 11 11
speedup on regular 0.80 0.81 0.81
speedup on hard – 0.11 0.11
speedup on the whole 0.86 0.58 0.69
CPU hours 012 0.83 10.30 11.13
CPU hours 012+ 0.67 6.66 7.33

Finally, Table 7 illustrates the behavior of the variant of 012+ in which the number of cuts added to the
model is essentially unbounded. Quite surprisingly, the set of instances solved is unchanged, but running
times are significantly smaller. This shows that, as long as only “good” cuts (according to the efficacy and
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Table 5: Parallelism bound disabled. Speedup w.r.t. 012+. Parameter values: ub min eff = 0.02,
max par = 1, cut factor = 0.3, recomb = on.

LINORD SAT Global

count 69 74 143
too easy 11 13 24
regular 58 33 91
hard 0 27 27
impossible 0 1 1
solved by both 69 46 115
not solved by 012 0 22 22
not solved by 012+ 0 7 7
solved only by 012 0 6 6
solved only by 012+ 0 21 21
speedup on regular 0.88 0.50 0.71
speedup on hard – 0.12 0.12
speedup on the whole 0.89 0.34 0.54
CPU hours 012 0.89 14.74 15.63
CPU hours 012+ 0.67 6.66 7.33

Table 6: Only rank-1 cuts (cut recombination disabled). Speedup w.r.t. 012+. Parameter values:
ub min eff = 0.02, max par = 0.1, cut factor = 0.3, recomb = off

LINORD SAT Global

count 69 74 143
too easy 13 13 26
regular 56 41 97
hard 0 17 17
impossible 0 3 3
solved by both 69 54 123
not solved by 012 0 16 16
not solved by 012+ 0 7 7
solved only by 012 0 4 4
solved only by 012+ 0 13 13
speedup on regular 1.01 0.59 0.80
speedup on hard – 0.09 0.09
speedup on the whole 1.00 0.43 0.65
CPU hours 012 0.67 11.39 12.06
CPU hours 012+ 0.67 6.66 7.33

parallelism requirement) are selected, it is not essential to limit the number of cuts to be added.
As outcome of the above tests, we decided that the version of 012 with the parameter setting as in Table

7 represents the best-tuned version of our code. This version will be called 012* in the sequel.

5.4 Results on the whole testbed

Table 8 presents a comparison of Cplex (the reference versions of ILOG-Cplex ) and 012* (our code based on
{0, 1

2}-cuts) on the whole testbed. The table shows that 012* was able to solve a significantly larger number

13



Table 7: Best-tuned 012 version (namely, 012*). Speedup w.r.t. 012+. Best parameter values: ub min eff =
0.02 , max par = 0.1, cut factor = 10, recomb = on.

LINORD SAT Global

count 69 74 143
too easy 13 25 38
regular 56 42 98
hard 0 0 0
impossible 0 7 7
solved by both 69 67 136
not solved by 012* 0 7 7
not solved by 012+ 0 7 7
solved only by 012* 0 0 0
solved only by 012+ 0 0 0
speedup on regular 1.00 1.81 1.29
speedup on hard – – –
speedup on the whole 1.00 1.40 1.19
CPU hours 012* 0.67 5.49 6.16
CPU hours 012+ 0.67 6.66 7.33

of instances that Cplex—several instances that Cplex could not solve in 1,800 CPU seconds, are solved by
012* in just a few minutes. LINORD instances turn out to be relatively easy to solve by both codes. On the
other hand, for SAT and MAXSAT instances the performance of 012* is much better than that of Cplex,
with a speedup of about 20 on the hard ones. This confirms the important role played by {0, 1

2}-cuts for
this kind of problems, as well as the effectiveness of our cut-selection policy.

Table 8: Final computational results: 012* vs Cplex. Speedup w.r.t. Cplex.

LINORD MAXSAT SAT Global

count 69 222 222 513
too easy 12 60 120 192
regular 57 87 45 189
hard 0 37 34 71
impossible 0 38 23 61
solved by both 69 147 165 381
not solved by 012* 0 45 30 75
not solved by Cplex 0 68 50 118
solved only by 012* 0 30 27 57
solved only by Cplex 0 7 7 14
speedup on regular 1.43 1.77 4.54 2.07
speedup on hard – 15.53 20.20 17.61
speedup on the whole 1.34 1.97 2.15 1.95
CPU hours 012* 0.67 28.94 17.64 47.25
CPU hours Cplex 0.86 41.24 29.03 71.13
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6 Conclusions

Branch&Cut designers often have to face an Hamletic question—to cut or not to cut? In this paper we
have discussed our own experience on how to exploit as effectively as possible a specific class of cuts. We
addressed the family of {0, 1

2}-cuts introduced in [4], and implemented a quite successful heuristic separator.
This was however just the beginning of our work. We learned that cut-selection criteria are at least as

important as cut separation methods. As a matter of fact, as shown in our computational study, different
cut-selection criteria used on top of a same cut separator can lead to quite different speedups on a same
testbed. Moreover, the cut-selection criteria cannot be independent of the Branch&Cut implementation
they are embedded into. In particular, the widely-used ILOG-Cplex framework seems to suggest conservative
cut-selection policies.

A future direction of research should address other families of cuts which can be generated in a large
number and with little effort—though imposing specific properties such as maximum violation or maximum
depth, is difficult. A familiar example is made by the classical Gomory cuts: they can be generated in
copious way from the fractional rows of the LP tableau, but finding a most-violated Gomory cut is a hard
problem. Potential candidates are also the cuts based on the theory of corner polyhedra and T-spaces that
have been recently proposed by [10].

We conjecture that the strategy of having very large cut pools feeded up in a generous way by fast
separation heuristics (if coupled with a rigorous cut-selection policy) can compare favorably with the opposite
cut handling policy—spend a significant portion of the overall computing time in separating just a few deep
cuts. The working hypothesis here is that the larger freedom in choosing cuts from a very large pool can
compensate from the poorer average quality of the pool cuts. If confirmed, this hypothesis can give an
additional explanation for the empirical evidence reported, e.g., in [3], according to which the most effective
cuts in practice seem to be those that can be derived easily from the LP tableau—notably, mixed-integer
Gomory cuts: besides their inherent strength, these cuts have the advantage of being generated easily and
in large bunches at each separation call.

Another direction of research is the study of alternative separation procedures for {0, 1
2}-cuts or, more

generally, for mod-k cuts. A very preliminary computational experience showed that alternative separation
procedures based on local search or on the solution of a suitable system of linear equations over GF (k) [5],
tend to produce a large number of violated cuts as well, that however appear to be less effective than those
found by the heuristic illustrated in the present paper. It would be interesting to see if this drawback can
be overcome either by improving these separation procedures, or by an appropriate post-processing of the
cuts obtained.
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