AN

Y-

f—

Vehicle Routing: Methods and Studies
B.L. Golden and A.A. Assad (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1988 319

AN ADDITIVE APPROACH FOR THE OPTIMAL SOLUTION OF
THE PRIZE-COLLECTING TRAVELLING SALESMAN PROBLEM*

Matteo Fischetti and Paolo Toth
-D.E.ILS., University of Bologna, Italy

Consider the following generalization of the well-known Travelling Salesman Prob-
lem. Given a depot, at which a vehicle is stationed, and a set of cities, each having
an associated non-negative prize p;, let ¢;,; be the cost of routing city j just after
city ¢ and 4; be the cost of leaving city ¢ unrouted. The Prize-Collecting Travelling
Salesman Problem {PC-TSP) is to find a minimum-cost route for the vehicle, visit-
ing each city at most once and collecting a total prize not less than a given goal g.
Such a problem arises in several routing and scheduling applications and belongs to
the class of N P-hard problems. In this paper, we introduce several mathematical
models of the problem and point out its main substructures. Additive bounding
procedures are then designed yielding sequences of increasing lower bounds on the
optimum value of the problem. Extensive computational results on randomly gen-
erated test problems are reported, comparing the performances of the proposed
bounding procedures. A branch and bound algorithm for the optimal solution of
PC-TSPis ﬁnall); described and computationally analyzed.

1. Introduction

Consider the following routing problem, which generalizes the well-known Travelling
Salesman Problem (T SP). Given a depot at which a vehicle is stationed, and a set of cities,
each having an associated non-negative prize p;, let ¢;; be the cost of routing city 7 just
after city ¢ and 4; be the cost of leaving city ¢ unrouted. The Prize-Collecting Travelling
Salesman Problem (PC-TSP) is to find a minimum-cost route for the vehicle, visiting each
city at most once and collecting a total prize not less than a given goal ¢.

Such a problem arises, for instance, when a factory (located at city 1) needs a given
amount g of a product, which can be provided by a set of suppliers (located at cities 2,---,n).

* Work supported by the Ministero della Pubblica Istruzione, Italy

The Prize-Collecting Travelling Salesman Problem 321

vehicle has to collect the maximum possible prize p* through a route whose total cost does
not exceed a given bound ¢. Such a problem could be optimally solved through binary search
for the maximum feasible prize p*, exploiting the property that for each total prize p we have
p* > piff there exists a feasible solution to the instance of PC-TSP with goal ¢ = p, whose
cost does not exceed €. The existence of such a solution can be checked by optimally solving
the corresponding PC- TSP instance. Heuristic algorithms for the Orienteering Problem and
some generalizations have been proposed by Tsiligirides (1984), Golden, Levy and Vohra
(1985, 1987), Golden, Storchi and Levy' (1986) and Golden, Wang and Liu (1987), while
optimal methods are given in Laporte and Martello (1987).

In Section 2, integer linear programming models are given, pointing out different sub-
structures of the problem. In Section 3 we propose several lower bounds, and combine them
to obtain additive procedures yielding a combined bound which is generally superior to the
individual ones used to produce it. Section 4 experimentally analyzes the performances of
the proposed bounds on randomly generated test problems. A branch and bound algorithm

is then described and computationally evaluated in Section 5.

2. Mathematical models

Several integer linear programming models can be given for PC-TSP. For each 1,5 € V,
t # j, let z;; be a binary variable set to 1 if arc (¢,) is in the optimal solution, set to 0
otherwise. For each vertex 1 € V, let y; be a binary variable set to 1 if vertex ¢ is routed,

set to 0 otherwise. A first model is

(PC~TSP) o(PC~TSP)=min) Y eijzmi+ Y %(l - w) (1)
i€V jev\{s} icv
subject to

yi = Z Thyiy foreachi €V 2)

hev\{i}
Z Tip = E Zhi, foreacht €V (3)

hev\{i} heV\ {3}
Y opivi>g (4)

eV ,

E z 5> uh, for each h € V \ {1} and for each 5)

& ScV:1€8,heV\S

z;; € {0,1}, foreachi,jeV,i#£ 7
i <1, foreach1e€V)

The Prize-Collecting Travelling Salesman Problem 323

disjoint subtours (possibly visiting only one vertex) covering all the vertices. Constraints
(12) impose an upper bound on the total prize of the unrouted vertices (i.e., of the vertices
covered by loops in the AP solution), while constraints (13) ensure that the routed vertices

can be reached from vertex 1. An example of a feasible solution to model (9) — (14) is given

in Figure 1.
/——‘\
4 \
! \
H 1
\ ’
\‘ ’/
/,,--\\ &o,— e~
i \ 4 ; Ay
\) 1 1
\ J]
g’ “ag.”
o’
6 7 5

8
1
Figure 1. Feasible solution to model (9) — (14), assuming (p;)=(0,8,5,2,4,5,3,6), g = 22.

Y

It is also possible to point out the underlying arborescence problem substructure of -

PC-TSP by rearranging model (1) — (6) as follows. Let us consider an augmented complete
graph G' = (V' A’), where V' = vu {0}, and for each ¢ € V define 2o = 1 if vertex ¢ is
left unrouted, and zo; = O otherwise (i.e., zg; = 1 — y;). Consequently, for each § € V we
set co,s = i (the cost incurred if vertex ¢ is left unrouted). In addition, we set ¢io =0 for
each 1 € V' \ {1}, and ¢op = ¢1,0 = 00. PC-TSP can now be formulated as

(PC-TSP) o(PC-TSP)=min Y ¥ e zi; (15)
teV! jev/
subject to
Y zi=1, foreachieV’ (16)
heVv?
Y) my>1, forexchScV':leSs (17)
i€ES jeVAS
Z Zip = Z Zpi, foreachieV (18)
hev hev
D opizoi<Y pi-g (19)
(54 jev

z;; € {0,1}, foreach 5,5 € V'. (20)

The Prize-Collecting Travelling Salesman Problem 325
3.1. An additive lower bounding procedure

Let us suppose r bounding procedures £(1), £(2),... £(*) are available for PC-TSP,
each based on a different relaxation. Let I = [f, (&), (%), (7),§] be a given instance
of PC-TSP, defined through input data #, (&;;), (5:), (Ps), and §, and let v(f) be the
corresponding optimal solution value. Let us also suppose that, for A = 1,2,:--,r and for
any instance I, procedure [,(h)(i), when applied to I , returns a lower bound §(*) as well as
a residual instance I() = [n(h), (c‘(s.)), ('y,(h)), (pgh)),g(h)| such that:

i) o(I*) 2 0;

ii) 6 + o(I*) < o(D).
(For example, a residual instance I(*) associated with bound & (*) could be obtained by taking
n® =7, (p‘(h)) = ($:), g = §, and by conveniently “reducing” the input costs (¢i,5) and
(%) so as to produce non-negative residual costs (c,(z)) and ('y‘gh)) satisfying condition ii)).

The additive approach generates a sequence of instances of problem PC-TSP, each
obtained from the previous one by applying a different bounding procedure. A Pascal-like
outline of the approach follows.

ALGORITHM ADD-PCTSP:

1. input instance I = [n,(e;;), (%), (ps), gl
2. output lower bound §;

begin
3. initialize () := I, 6 := 0;
4. for h:=1 to r do
begin
5. apply L#)(I(A-1)), thus obtaining value §(*) and the residual instance I(*);
6. 6:=6+6(M
end
end.

In order to show that each value § computed at step 6 is a valid lower bound for
PC-TSP, we prove by induction on h that

3760 4 o(1®) < o(1) (21)
=1

holds for h = 1,2,---,r. The basis, h = 1, is trivially true. Suppose now that inequality
(21) holds for h = h — 1. From conditions ii) on the residual instance, we have

h-1 -1
Z 60 4 F10] + I)(I(x)) < Z 0 4+ v(](ﬁ—l))
=1 =1

o

B
s
RS
o
i
g:w
Q
IR
S
PR .
|
[
; L?
R

,-/

The Prize-Collecting Travelling Salesman Problem 327

A=) "pi—g,
jev
&) =iy, fori,jeV,i#7,
&i(N) = ¢ii+ Api, forieV.

L()) can be efficiently computed by solving the instance of the assignment problem
AP(}) defined by cost matrix (&;;(})). As for the solution of LD-AP, the maximization of
L(}) over A > 0 is obtained in an effective way by applying an iterative subgradient opti-
mization technique specialized for the scalar multiplier case, yielding a sequence Ay, Az, ---
of multipliers. A “good” value for A, can be heuristically computed through the solution of

the following continuous Knapsack Problem:

n
minZa,'y,'
i=1
subject to
n
dorivizyg
=1
OS!hSl, fori:l,""n,

where a; = min{cp: h =1,---,n,h # {} ~ 7; is a lower bound on the extra cost incurred
for visiting vertex ¢ instead of leaving it unvisited (¢ = 1,---,n). Value), is set equal to
the optimal dual multiplier associated with constraint } 7, piys > g. k

Computing L(};) requires O(n®) time, e.g., through the Hungarian algorithm (see,
e.g., Lawler (1976)). Computation of L(A3), L(A3),- - - can be speeded-up through paramet-
ric techniques which take advantage of the fact that, at each subgradient iteration, only
coefficients &;;(A) over the main diagonal are affected by the change of A with respect to
the previous iteration. '

Let A* > 0 be an optimal (or near optimal) solution of LD-AP. Consider the assignment
problem AP()*) defined by cost matrix (&;,;(1*)), and let (u})—(v}) be the optimal solution
of the associated linear programming dual problem. It is well known that 3oy (uf + v})
gives the optimal solution value of AP(A*). Hence L(A*) = —A*A + Y,y (uf +v;) isa
valid lower bound for PC-AP and for PC-TSP as well. As for the corresponding residual
instance 7, we define I = [%, (:5), (7:), (P:) 9, where & = n, (7;) = (€i3), (7)) = (i), =9,
and

G =&,(A") —ui —v; >0, foreachi,jeV, (22)

i.e., the residual-cost matriz (€; ;) is given by the non-negative reduced-cost matriz associated
with the optimal solution to AP(A*). In fact, consider an optimal solution to instance I

and let (z; ;) be the corresponding incidence matrix in formulation (9) — (14). Because of

(10) and (11), we have:
L(A*) + Z Z Cij Tij =
i€V jev

r;
TR
< -
. N
I
P 1
2

The Prize-Collecting Travelling Salesman Problem 329

A second approach is to relax in a Lagrangean fashion the formulation of PC- TSP given
by (15) - (20) by imbedding constraints (18), with ¢ € V \ {1}, and (19) in the objective
function. The corresponding Lagrangean dual problem is

(LD — SSAP) (LD — SSAP) = max{L(\,u): X >0,u€ ®8" v, =0}

where
L,u)=-2A+min Y Y &;i(A u)zi; (24)
iev! jev
subject to (16), (17), (20) and
Y za=1 ’ (25)
heV?
with
A= z Pi—9,

jev
& (A u) =¢i5 +ui—uy, fori,yeV,
o,5(Au) =coj+ Ap;, forjev,

E;‘,O(A, u) =¢€i0, forieV’.

It is worth noting that u, is set to 0, since the corresponding constraint (18) (with ¢ = 1)
has not been removed, but transformed to (25) (recall ¢; 0 = co; = ©0). L(},u) can be
efficiently computed in O(n?) time by solving an equivalent instance of the shortest-spanning

1-arborescence on G' defined by cost matrix (¢} ;(A, u)), where

c:‘,j()"“) = Ei,j(xa u), fori,jeV,i#1,
cll.j(A1 "') = EIJ(A’ u’) +M, forjev’,

with M a sufficiently large positive number (so as to ensure out-degree one for vertex 1).

The maximization of L(A,u) can be obtained by applying standard subgradient opti-
mization techniques. Let A* > 0 and u* € R" be the optimal (or near optimal) solution of
LD-SSAP. Hence, L(A*,u*) is a valid lower bound for PC-TSP.

The corresponding residual instance I can be defined as follows. It is well known that
the problem given by (24), (16), (17), (25), and (20) is equivalent to its linear programming
relaxation (see Edmonds (1967) and Fulkerson (1974)). Let (v}), (4*(S)) and o* (= M)
be the optimal linear programming dual variables associated, respectively, with constraints
(16), (17), and (25), when A = A* and u = u*. Hence L(A*,u*) = —X* A + (T,e v} +
Y scvies #*(S) — a*). We can now define T = [#, (&), (7,), (), 7], where 7@ = n,
(%) = (%04)s (7:) = (pi), §= g, and

Ti=c(0e)—vi— Y w820, forieV'jeV.
seviaes,
-'ES.:'EV'\S‘

The Prize-Collecting Travelling Salesman Problem 331

is obtained as follows. Define @ = n, (5;) = (p), and § = g. Now let 7(1) =
=, (c(l)) (ﬁ'(l)) (P:), 9] be the residual instance associated with 6;(S4-) computed over
instance I{1)(S;.) as described in Subsection 3.2 (with c(l) = oo and 'y(‘) = oo for

i,j € V when Y ..o pi < g and hence §(Sp:) = o0). So, &(Su-) + v(f(l)) <
o(IM(Sh)). Define I = [, &), (7)), (7.9, where 3 = ~; for i € V, and
E‘(:-) = min{c;; + fi — fjs¢i,j — bi + b} for each i,5 € V. Values c() are non-negative
because of the definition of f; and by, as shortest path costs. Residual costs () and (7;) of
instance 7 can now be computed as: ¢;; = mm{cg),cg L= mm{'yfl) _(2)} fori,jeV.
In fact, v(T) > O clearly holds. To prove that §(Sx-) + v(I) < v(I), consider an optimal
solution o of instance I defined through arc set A(c) and the set of unrouted vertices U(o)
(hence v(I) = Y_(; ea(o) G T Liicv(o) W) If solution o routes only vertices in S, then
5(She) + v(D) < 61(Sh-) + v(f(l)) < o(I1)(83.)) = v(I). If at least one vertex k € V \ Sj-
is routed in solution o (i.e. k & U(0)), a more complex analysis is needed. Partition arc set
A(o) into arc sets A, and A, A; defining a path from vertex 1 to vertex k, and A; defining a
path from vertex k to vertex 1. We have Z(:,:)EAI (eij+fi~1f;) = fl"fH'Z(w)eAl ¢, and
E('J)GAn (cij—bit+b) =b -b;,+2(‘,‘,)e‘42 ¢,j, Where f1 = b; =0, and S+ b > 62(Sh-)
(since k € V' \ Sp+). Hence 6(Sh+) + v(I) < &(She) + i yea) € cm + Yiev(o) 7 <
frtbe+ Y ea, (005 + fi = £3) + X jyean (€65 — b+ 85) + Liev (o) % = Liyea, i +
E(.',,')GA, cij+ ZiGU(a) ¥ = v(I).

8.5. Instance transformation

In this subsection we introduce a technique to transform an instance I =
[n (€5,5)s (%) (pi), 9] of PC-TSP to a residual one, obtaining a lower bound of value 0,
but allowing the following procedures of the additive scheme to produce better bounds. Let
81,82, ,Sm be a partition of V with 1 € S; and Ejes. p; < g. A “residual” instance
1=1[m,(%:),(7:), (B;), 3] of PC-TSP, defined on a reduced complete graph G = (V, 4) with
[V| = # = m, can be built up as follows. Vertices 1,2,---,7 of V correspond, in graph G,
to subsets Sy, Sz, +,Sm, respectively. We define g =g, p; = }_,cq, 7 30d F; = L5, V5
for i =1,2,---,7. The residual costs &; ; (i,5 € V) are obtained in two steps.

Step 1 (Shrinking): define ¢} ; = min{chx : h € Si,k € S;} fors,5 € V,i#3;
Step 2 (Compression): let L = {i € V : |S;| > 2}, and define ¢;; = cost of the shortest

path from vertex & to vertex j, computed with respect to costs c’ and allowing as
intermediate vertices only those in L, for 5,5 € V, ¢ # 5.

Step 1 requires O(n?) time, while step 2 requires O(%? |L|) time through a straightforward

The Prize-Collecting Travelling Salesman Problem

Figure 3a. A feasible solution ¢ of instance I.

Figure 3b. Solutions & (in continuous line) and 7 (in dotted line) of instance T.

333

The Prize-Collecting Travelling Salesman Problem 335
G
Figure 4a. Current instance 7 and the corresponding partition Sy,--+, Sy, (with m =
g+ t+r=3+4+5=12); only arcs having zero residual-cost are drawn.
(o)

n

Figure 4b. Transformed instance (only arcs having zero residual-cost are drawn).

A

o~

?
:; r. ‘4‘ I\1} 1
o P
| I
RN

¢ Y
3
¢
“
"
0
| T
! -

(n =20,40,60,80,100) have been considered. Note that wher a = 1.0, PC-TSP reduces

to TSP.

B are not given since they are equivalent to those of class A). Each table gives, for each
bounding procedure, the average values (computed over five instances) of the ratios (lower
bound)/(lower bound computed by LB1), and of the computing times (in VAX 11/780

Tables 1 and 2 compare bounding procedures LB1, LB2, LB3, LB4 and LB5 on test

problems of classes A and C, respectively (results corresponding to test problems of class

The Prize-Collecting Travelling Salesman Problem

337

seconds).
Table 1
Class A (pure asymmetric cost matrices)
Lower bounds comparison (time is given in VAX 11/780 seconds)

o | n LB1 LB2 LB3 LB4 LB5
ratio | time | ratio | time | ratio | time | ratio | time | ratio | time
20 | 1.000 | 0.05 | 0.949 | 0.49 | 1.345 | 0.03 | 1.137 | 0.09 | 1.142 | 0.08
40 | 1.000 | 0.20 | 0.985 | 1.32 | 1.160 | 0.15 | 1.125 0.38 1.109 | 0.27
0.2 60 | 1.000 ; 0.37 | 0.899 | 2.58 { 1.033 | 0.52 | 1.007 | 0.55 | 1.020 | 0.51
80 | 1.000 | 1.00 | 0.853 | 4.43 | 1.002 | 2.59 | 1.021 | 1.63 | 1.018 | 1.25
100 | 1.000 | 1.65 | 0.850 | 6.89 | 0.982 | 3.44 | 1.015 | 3.36 | 1.009 | 2.07
20 | 1.000 | 0.06 | 1.022 | 0.49 | 1.110 | 0.07 | 1.097 | 0.11 | 1.076 | 0.08
40 | 1.000 | 0.25 | 0.983 | 1.32 | 0.854 | 0.32 | 1.053 | 0.34 | 1.034 | 0.35
0.5 60 | 1.000 | 0.67 | 0.954 | 2.88 | 0.619 | 0.68 1006 0.79 | 1.001 | 0.89
80 | 1.000 | 1.32 | 0.928 | 4.70 | 0.518 | 1.31 | 1.005 | 1.91 | 1.004 | 1.62
100 | 1.000 | 2.56 | 0.942 | 6.90 | 0.430 | 2.20 | 1.006 | 3.37 | 1.001 | 3.49
20 | 1.000 | 0.06 | 1.027 | 0.54 | 0.736 | 0.05 | 1.049 | 0.12 | 1.049 | 0.09
40 | 1.000 | 0.31 | 0.987 | 1.34 | 0.491 | 0.18 | 1.013 | 0.41 | 1.011 | 0.42
0.8 60 | 1.000 | 0.88 | 0.977 | 3.00 | 0.294 | 0.60 | 1.004 | 1.11 | 1.001 | 1.20
80 | 1.000 | 1.89 | 0.982 | 5.01 | 0.258 | 1.43 | 1.005 | 2.67 | 1.001 | 2.47
100 | 1.000 | 3.02 | 0.977 | 7.05 | 0.204 | 1.98 | 1.003 | 3.90 | 1.001 | 3.82
20 | 1.000 | 0.02 | 0.938 | 0.67 | 0.382 | 0.02 { 1.002 | 0.04 | 1.002 | 0.03
40 | 1.000 | 0.06 | 0.941 | 1.68 { 0.255 | 0.04 | 1.000 | 0.11 | 1.000 | 0.10
1.0 60 | 1.000 | 0.19 | 0.942 | 3.36 | 0.153 | 0.08 | 1.000 | 0.26 | 1.000 | 0.26
80 | 1.000 | 045 | 0.972 | 5.46 | 0.141 | 0.14 | 1.001 | 0.63 | 1.001 | 0.59
100 | 1.000 | 0.74 | 0.924 | 7.82 | 0.102 | 0.21 | 1.000 | 0.93 | 1.000 | 0.93

The computing times of procedure LB1, and hence those of LB3, LB4 and LB5, are

considerably shorter when a = 1.0 since, in this case, no unidimensional subgradient

iteration is required (the optimal value of A being co).

T

Gy

L)

The Prize-Collecting Travelling Salesman Problem 339

improvement given by LB4 and LB5 decreases when « tends to 1. This is mainly due to the
decrease of the gap between the optimal solution value and the bound computed by LB1
(see Table 3 of Section 5). In addition, procedures LB4 and LB5 have been designed for
PC-TSP , rather than for the pure TSP (more effective additive bounding procedures for
both the Asymmetric and the Symmetric TSP have been proposed by Fischetti and Toth
(1987a) and Carpaneto, Fischetti and Toth (1987), respectively).

According to the computational results above, a good overall bounding procedure to be
imbedded within a branch and bound algorithm can be obtained by applying LB5 for small
values of both n and the ratio g/ Y"1, p;, and LB4 otherwise.

5. A branch and bound algorithm

We now describe a simple branch and bound algorithm for the optimal solution of PC-
TSP, based on bounding procedures LB4 and LB5 (see Section 4). As for branching, we
do not propose an “ad hoc” scheme, but use a straightforward adaptation of the subtour
elimination scheme for the Asymmetric TSP, as implemented by Carpaneto and Toth
(1980).

At each node v of the branch decision tree, arcs in I*) and F(*) are, respectively,
imposed and forbidden in the current solution. For each arc (i,j) € F®), cost ¢; g 18 set
to oo; for each arc (3,5) € I), costs c;p for h € V \ {5}, enj for h € V \ {i}, v and ~;
are set to co. We apply bounding procedure LB5 if ¢ <0.3)."_, p; and n < 50, bounding
procedure LB4 otherwise. Let 0* be the solution of the assignment problem AP()*) (see
Subsection 3.2), found by LB1 if procedure LBS is applied, or by the first execution of Step 1
of ADD1 if procedure LB4 is applied. If the subtour of 0* passing through vertex 1 collects
a total prize not less than g, we evaluate (using the original costs (¢;,;) and (v;)) the cost of
the corresponding feasible solution to PC-TSP and possibly update the incumbent optimal
solution. In any case, we compare the current lower bound 6§, with the cost of the incumbent
optimal solution z*. If §, > 2*, node v is fathomed and a backtracking step is performed.
Otherwise, we choose in o* a subtour (vy,vs,:--,vs), with A > 2, having the minimum

number of non-imposed- arcs, and generate h descendent nodes v4,v,, -+ -, v}, defined by:

) = I(")u{gv,,uz),---,(w-nw)} i=1..h
F) — FO U {(v;,041)} S

where vh41 = v1. Nodes u; for which I(*) 0 F(%) # @ are clearly not generated.

The branch and bound algorithm has been implemented in FORTRAN ANSI, and run
on a Digital VAX 11/780 by considering the test problems of Section 4. Table 3 gives the
average values {computed over five instances) of the global computing time, of the number

S
|-
I
@
o
N
‘ 44
=
Z
i
E ¥
B
|
<
o

o

P

The Prize-Collecting Travelling Salesman Problem) 341

based branch and bound algorithms.

Additional computational experience has been performed, for large-size instances of
class A, on the Digital VAX 8650 computer of the Carnegie Mellon University of Pittsburgh
(this computer turned out to be about 6 times faster than Digital VAX 11/780). For each
goal (@ = 0.2,0.5,0.8), 3 different values of n (n = 120,160,200) have been considered.

Table 4 gives the average results computed over 5 problems.

Table 4
Branch and bound algorithm (time is given in VAX 8650 seconds)

Large-size instances of class A

a=0.2 a=05 a=0.8

time | nodes | ratio | time | nodes | ratio | time | nodes | ratio
120 27.8 125 | 1.076 93.9 739 | 1.023 80.6 567 | 1.023
160 | 132.6 365 | 1.077 | 616.1 1994 | 1.020 | 309.9 1147 | 1011
200 | 408.9 489 | 1.061 | 794.1 1531 | 1.023 | 664.5 1347 | 1.006

The performance of the branch and bound algorithm could be improved upon consider-
ably, mainly for instances of classes B and C, by designing an “ad hoc” branching scheme
and introducing dominance criteria to deal with almost-equivalent solutions, and reduction

procedures to impose or exclude subsets of vertices from the optimal solution.

Acknowledgment

We thank the Graduate School of Industrial Administration of the Carnegie Mellon
University, Pittsburgh, for the use of Digital VAX 8650.

References

E. Balas (1987), “The Prize-Collecting Traveling Salesman Problem”, Research Report No.
MSRR-539, GSIA, Carnegie Mellon University, Pittsburgh.

E. Balas and G. Martin (1985), “ROLL-A-ROUND: Software Package for Scheduling the
Rounds of a Rolling Mill”, Copyright Balas and Martin Associates, 104 Maple Heights Road,
Pittsburgh.

P

5

The Prize-Collecting Travelling Salesman Problem 343

Problem”, forthcoming in Naval Research Logistics.

G. Laporte and S. Martello (1987), “The Selective Travelling Salesman Problem”, Working
Paper, EHEC, Université de Montreal, Quebec, Canada (presented at the ORSA/TIMS
Meeting, New Orleans, May 1987).

E.L. Lawler (1976), Combinatorial Optimszation: Networks and Matroids, Holt, Rinehart
and Winston, New York.

T. Tsiligirides (1984), “Heuristic Methods Applied to Orienteering”, Journal of the Opera-
tional Research Society 35, 797-809.

S. Warshall (1962), “A Theorem on Boolean Matrices”, Journal of ACM 9, 11-12.

342 M, Fischetti and P. Toth

G. Carpaneto, M. Dell’Amico, M. Fischetti and P. Toth (1987), “A Branch and Bound
Algorithm for the Multiple Depot Vehicle Scheduling Problem”, Working Paper OR/87/2,
DEIS, University of Bologna, Italy.

G. Carpaneto, M. Fischetti and P. Toth (1987), “New Lower Bounds for the Symmetric
Travelling Salesman Problem”, Working Paper OR/87/7, DEIS, University of Bologna, Italy.

G. Carpaneto, S. Martello and P. Toth (1987), “Algorithms and Codes for the Assignment
Problem”, forthcoming in G. Gallo, F. Maffioli, S. Pallottino, B. Simeone and P. Toth, eds.,
Fortran Codes for Network Oplimization, Annals of Operational Research, J.C. Baltzer AG,

Basel.

G. Carpaneto and P. Toth (1980), “Some New Branching and Bounding Criteria for the
Asymmetric Travelling Salesman Problem”, Management Science 26, 736-743.

N. Christofides (1972), “Bounds for the Traveling Salesman Problem”, Operations Research,
20, 1044-1055.

J. Edmonds (1967), “Optimum Branchings”, Journal of Research of the National Bureau of
Standards-B.Mathematies and Mathematical Physics T1B, 233-240.

M. Fischetti and P. Toth (1986), “An Additive Bounding Procedure for Combinatorial
Optimization Problems”, Working Paper OR/86/4, DEIS, University of Bologna, Italy,
forthcoming in Operations Research.

M. Fischetti and P. Toth (1987a), “An Additive Bounding Procedure for the Asymmetric
Travelling Salesman Problem”, Working Paper OR/87/5, DEIS, University of Bologna, Italy.

M. Fischetti and P. Toth (1987b), “An Efficient Algorithm for the Min-sum Arborescence
Problem”, Working Paper OR/87/6, DEIS, University of Bologna, Italy.

R.W. Floyd (1962), “Algorithm 97: Shortest Path”, Communications of ACM, 5, 345.
D.R. Fulkerson (1974), “Packing Rooted Cuts in a Weighted Directed Graph”, Mathematical
Programming 6, 1-13.

B. Golden, L. Levy and R. Vohra (1985), “Some Heuristics for the Generalized Traveling
Salesman Problem”, Proceedings of 1985 Southeast TIMS Conference (J. Hammesfahr, ed.},
Myrtle Beach, 168-170.

B. Golden, L. Levy and R. Vohra (1987), “The Orienteering Problem”, Naval Research
Logistics 34 (3), 307-318.

B. Golden, G. Storchi and L. Levy (1986), “A Time-Relaxed Version of the Orienteering
Problem”, Proceedings of 1986 Southeast TIMS Conference (J.A. Pope and A. Ardalar, eds.),
Myrtle Beach, 35-37. -

B. Golden, Q. Wang and L. Liu (1987), “A Multi-Faceted Heuristic for the Orienteering

o

I

=

340 M, Fischetti and P. Toth

of nodes generated in the branch decision tree, and of the ratio (optimum value)/(lower
bound computed by LB1 at the root node). Instances of class C with n > 60 have not been

tried because of excessive computing time.

Table 3
Branch and bound algorithm (time is given in VAX 11/780 seconds)

o n Class A Class B Class C
time | nodes | ratio time | nodes | ratio time | nodes | ratio
20 0.4 7 | 1.360 0.9 17 | 1.362 5.2 75 | 2.969
40 3.6 25 | 1.300 21.8 144 | 1.300 166.0 645 | 3.589

02| 60 8.5 39 | 1.140 69.7 238 | 1.140 — — —
80 | 44.9 77 | 1.102 | 267.5 386 | 1.098 — — —

100 | 94.6 75 | 1.073 | 256.8 217 | 1.073 — — —

20 1.7 38 | 1.303 9.4 214 | 1.237 88.0 773 | 2.245

40 17.7 154 | 1.122 116.6 1116 | 1.120 | 1377.1 2237 | 2.291

05| 60| 674 365 | 1.059 | 485.1 2148 | 1.051 — — -
80 | 174.3 412 | 1.032 | 677.7 1318 | 1.028 —_ — —

100 | 283.7 461 | 1.040 | 753.0 897 | 1.034 — — —

20 3.6 115 | 1.153 22.6 859 | 1.109 | 216.1 2429 | 1.697

40 | 404 457 | 1.057 | 102.6 | 1533 | 1.037 | 1193.6 | 2971 | 1.597
08 | 60 | 164.6 { 1060 | 1.036 | 795.7 | 5045 | 1.024 — — —_—

80 | 307.2 855 | 1.028 | 1079.8 | 5583 | 1.023 — — —_
100 § 253.8 468 | 1.015 | 9323 | 2149 | 1.014 — — —

20 0.4 16 | 1.057 0.3 9 | 1.028 31.6 803 | 1.277

40 3.7 65 | 1.017 2.2 30 | 1.015 | 463.8 } 2420 | 1.278

1.0} 60 7.0 76 | 1.012 1.2 10 | 1.002 — — —
80 7.7 20 | 1.009 1.7 4 | 1.004 — — —_

100 | 413 138 | 1.006 5.7 12 | 1.001 — —_ —

Problems of class A can be solved within small computing times even for large instances.
The computational effort increases with a, except for @ = 1.0 (the pure T'SP case).

Problems of class B are harder than those of class A, although the gap between the
optimal solution value and the lower bound at the root node is almost the same. This
behaviour can be explained by considering that many solutions exist for these instances,
with approximately the same cost, and that the branching rule used is not effective in
dealing with such situations.

Problems of class C can be solved only for small values of n, due to the well-known
difficulty of solving symmetricba.nd Euclidean travelling salesman problems through AP-

=

e

338 M. Fischetti and P. Toth

Table 2
Class C (Euclidean symmetric cost matrices)
Lower bounds comparison (time is given in VAX 11/780 seconds)

o n LB1 LB2 LB3 LB4 LB5
ratio | time | ratio | time | ratio | time | ratio | time | ratio | time
20 | 1.000 | 004 | 1.101 | 0.35 | 2.368 | 0.03 | 2,133 | 0.18 | 2.250 | 0.05
40 | 1.000 | 0.08 | 1.181 1.50 | 2.421 | 0.07 | 2.859 094 2.523 | 0.14
0.2 60 | 1.000 | 0.16 | 1.250 3.05 | 3.517 | 0.15 | 4.267 | 2.13 | 3.665 | 0.32
80 [1.000 | 0.29 | 1.136 | 5.53 | 1.966 | 0.29 | 2.669 | 4.18 | 2.186 | 0.55
100 | 1.000 | 0.43 | 1.253 | 9.18 | 1.669 | 0.42 | 2.498 | T7.44 | 1.893 | 0.82
20 | 1.000 | 0.04 | 1.148 | 0.55 | 1.603 | 0.05 | 1.772 | 0.18 | 1.707 | 0.07
40 | 1.000 | 0.11 | 1.285 1.63 | 1.388 | 0.16 | 2.010 | 0.59 | 1.576 | 0.21
05| 60 |1.000 | 0.23 | 1.343 | 342 | 1.424 | 050 | 2.119 { 1.32 | 1.743 | 0.50
80 | 1.000 | 0.41 | 1.263 583 | 1.146 | 0.96 | 1.948 | 2.63 | 1.462 | 0.84
100 | 1.000 | 0.63 | 1.184 | 10.73 | 1.046 | 1.56 | 1.788 | 4.29 | 1.301 | 1.25
20 | 1.000 | 0.05 | 1.150 | 0.70 | 1.198 | 0.07 | 1.433 | 0.14 | 1.322 | 0.08
40 |1 1.000 | 0.13 | 1.209 | 1.90 | 0.840 | 0.14 | 1.446 | 0.37 | 1.288 | 0.23
0.8 60 | 1.000 | 0.29 | 1.280 | 4.13 | 0.880 | 0.41 | 1.510 | 0.90 | 1.274 | 0.60
80 { 1000 | 0.52 | 1.239 | 6.92 | 0.611 | 0.54 | 1.470 | 1.70 | 1.191 |. 1.02
100 | 1.000 | 0.84 | 1.255 | 9.78 | 0.568 | 0.86 | 1.480 | 3.05 | 1.148 | 1.7T1
20 | 1.000 | 0.02 | 1.039 | 0.93 | 0.637 | 0.02 | 1.188 | 0.06 | 1.116 | 0.03
40 | 1.000 | 0.04 | 1.204 293 | 0.462 | 0.04 | 1.190 | 0.18 | 1.107 | 0.09
1.0 60 | 1.000 | 0.11 | 1.199 | 6.57 | 0.433 | 0.08 | 1.167 | 0.40 | 1.084 | 0.21
80 | 1.000 | 0.17 | 1.211 | 10.33 | 0.326 | 0.14 | 1.184 | 0.79 | 1.082 | 0.35
100 | 1.000 | 0.29 | 1.238 | 15.89 | 0.296 | 0.21 | 1.204 | 1.45 | 1.065 | 0.56

Procedure LB2 provides lower bound values worse than those of LB4, with higher
computing times.

Procedure LB3 shows good performance for problems with small values of a and n, but
gives poor results in the other cases. This behavior can be explained by considering that
shortest paths give a reliable approximation of the optimal tour only when both & and n
are small.

Procedures LB4 and LB5 exhibit the best performances. In particular, LB4 requires
longer computing times but provides tighter bounds, mainly for problems of class C.

] Note that the improvements on the value of the bound obtained through procedures

LB4 and LBS, with respect to LB1, are remarkable for problems of class C, mainly for small
values of a. On the other hand, for problems of classes A and B, the extra computational
effort with respect to LB1 is generally small (about 2 to 1 in the worst case). The bound

336 M. Fischetti and P. Toth

compression steps to produce an instance leading to an increase of the bound. A main
difference is the relaxation used, at each iteration, to compute the extra bound (LD-AP
instead of AP). In addition, the proof of correctness given by Christofides cannot be
straightforwardly extended to prove the correctness of procedure ADD1 which, instead,
immediately follows from the general additive approach.

4. An experimental analysis of lower bounds

The lower bounds proposed in the previous section have been computationally evaluated
on different classes of randomly generated test problems.
We report an analysis of the following bounding procedures:
LB1, computing the lower bound based on the assignment problem substructure (see
Subsection 3.2);
LB2, computing the lower bound based on the arborescence problem substructure (see
Subsection 3.3), and imposing at most 30 subgradient iterations;
LB3, computing the lower bound based on disjunction (see Subsection 3.4);
LB4, computing the lower bound based on instance transformation (see procedure ADD1
of Subsection 3.6);
LB5, applying in sequence procedures LB1 and L.B3 according to the additive approach.
Analysis of other possible sequences of bounding procedures is not reported, since the
higher computing times are generally not rewarded by significant improvements in the bound
quality. All procedures have been implemented in FORTRAN ANSI, and run on a Digital
VAX 11/780. Solution of the assignment problems has been obtained through procedure
APC given in Carpaneto, Martello and Toth (1987), while solution of the arborescence
problems was accomplished via the procedure given in Fischetti and Toth (1987b).
Test problems have been randomly generated according to the following distributions:
pi = uniformly random integer in range (1,100) for i = 2,-:-,n;
g = laY ", p:] (with a =0.2, 0.5, 0.8, 1.0).
We have considered «; = 0 for ¢ = 2,---,n, as in several practical applications.
Three different generations have been considered for costs ¢; ; (1,7 =1,---,n;¢ # j):
Class A (pure asymmetric): ¢;; = uniformly random integer in range (1,1000);
Class B (triangularized asymmetric): ¢;; = shortest path cost from ¢ to j with respect to
a pure asymmetric cost matrix; .
Class C (Euclidean symmetric): ¢;; = |v/(zi — ;)% + (vi — v;)2}, with (z:), (%) uni-
formly random integers in range (1,100).
For each class (A,B,C) and each goal (@ =0.2, 0.5, 0.8, 1.0), 5 different values of n

v

Q3

334 M. Fischetti and P. Toth

Procedure ADD1:

1. input instance I = [n,(c;;), (%), (Ps), 9l;
2. output lower bound 51, residual instance I = [%, (¢; ;), (7,), (P:), 3;

begin

3. initialize T := I, 61 := 0;

repeat

4. (comment step 1: LD-AP solution)

5. solve LD-AP over instance I, thus obtaining lower bound L()*), the new
residual instance T and the optimal solution o* of AP(A*) (see Subsection 3.2);

6. 81 := 61+ L(2*);

7. let Ry, Ry, -+, Ry (with 1 € Ry and |Ry| > 2 for h=1,2,:--,q) be the
subtours in solution ¢* found at step 5, and let 1, vy,---,v; be the vertices visited
by subtour R;, and 7 = p; + E;:l Pv, be the total prize collected by Ry;

8. if (¢>1) or (x<g) then

9. begin (comment step 2: instance transformation)

10. let uy,---,u, be the vertices not visited by any subtour R, (A =1,---,q);
11. if ¢>1 then
define Sy := {1}; Sk := {vertices in Ry} for k=2, --,¢; Sqti 1= {vs}
for k=1,---,t; Sqpepr={wa}fork=1,---,r;mi=q+t+r
12. else define S; := { vertices in R;}; Si4i == {ug} fork=1,---,r;
m:=r+1;
13. apply the instance transformation on T with respect to partition
S1,+*,Sm, obtaining the new residual instance T
end
14. until (¢g=1) and (x> g}

end.

Lines 9 to 13 define an appropriate partition S;,S5z,---,S, of the vertex set of the
current instance I (see Figure 4a) and the corresponding transformed instance (see Figure
4b). Each subtour Ry is collapsed into a single vertex, for which both the extra costs to route
it and to leave it unrouted are generally greater than zero. However, this transformation
leads to a “loss of information” both because of the shrinking step (degree one constraint
is neglected for the vertices in Rj) and the compression step (costs are decreased). Hence
we choose not to collapse subtour R, (if possible) so as to avoid a loss of information in the
“neighbourhood” of vertex 1 (which probably contains the optimal solution).

Execution of step 5 can be accelerated through parametric techniques exploiting the
closeness between two consecutive residual instances.

The approach can be viewed as a generalization of thatbproposed by Christofides (1972)
for the Asymmetric Travelling Salesman Problem, both approaches using the shrinking and

[

332 M. Fischetti and P. Toth

modification of the Floyd-Warshall shortest-path algorithm (see Floyd (1962) and Warshall
(1962)).

Residual costs @;,; satisfy the triangle inequality & + €x; > ©i; for each ¢,j € v,
i # 7, and for each k € L.

We now prove that T is a valid residual instance associated with lower bound 6 = 0.
Condition v(I} > 0 trivially follows from hypotheses ¢; . = 0 and «; > 0 for each i; jev,
which imply ©;,; > 0 and 7; > O for each 1,j € V. As for condition v(T) < v(I), it is enough
to show that any feasible solution o of instance I corresponds to a feasible solution & of
instance I such that the cost of & does not exceed the cost of ¢. Feasible solution & can be
obtained in two steps as follows. First, an intermediate solution & of instance I is built up,
containing an arc (1, 7) € A for each arc (h,k) ino with h € 5;, k € S; and © # j (see Figure
3). Because of the definition of (P;), the sum of the prizes of the vertices in V visited (one or
more times) by solution & is not less than § = g. Note however that solution & is generally
infeasible, since some vertices could be visited more than once. The cost of solution & is
less or equal to the cost of solution o, because of the definition of (F;) and (; ;) (recall that
Tij <l jforeachi,je V; see the compression step). A feasible solution & of instance 1
is then obtained from solution & by using shortcuts, i.e., by replacing the pair of arcs (i, k)
and (k,7) of & with arc (i,5) so as to avoid visiting vertex k¥ more than once (see Figure
3b). Because of the compression step, the cost of & does not exceed the cost of &, and hence
that of 0.

3.6. An additive bounding procedure based on instance transformation

We now combine the bound based on the assignment problem substructure (Subsection
3.2) with the instance transformation of the previous subsection to obtain a first additive
bounding procedure.

LD-AP is first solved, obtaining a residual instance I in which a family of zero-cost
subtours exists. A further solution of LD-AP on I is clearly useless, since no increase of
the bound can occur. However, applying the instance transformation (with an appropriate
partition of the vertex set) on I generally yields a residual instance T in which no family
of zero-cost subtours collecting the goal exists. So, the solution of LD-AP on instance b
generally leads to an increase of the lower bound. The two steps (LD-AP solution — instance
transformation) can be iterated until the assignment problem solution found on the current
instance contains only one subtour collecting the goal, thus solving the current PC-TSP.
The corresponding bounding procedure is given below.

-

330 M. Fischetti and P. Toth

So the residual-cost matrix (g;,;) is given by the non-negative reduced-cost matrix associated
with the optimal solution of the instance of the shortest-spanning 1-arborescence defined by
cost matrix (¢} ;(A*,u*)). This reduced cost matrix can be computed in O(n?) time (see
Fischetti and Toth (1987b)). The proof of correctness, based on standard LP manipulations

of the objective function, is similar to that of the previous subsection and is hence omitted.

3.4. A bound based on disjunction

Let us consider instance I = [n,{c:), (%), (pi), g] of PC-TSP, and let 0 be any feasible

solution to I. For each vertex subset S C V with 1 € S, two cases can occur:

1) solution o routes only vertices in S;

2) solution o routes at least one vertex in V' \ S.
A valid lower bound §(S) for instance I is then given by the minimum between the lower
bounds associated with the two problems, say P, and P, obtained by imposing condition
1) or 2). '

A lower bound &;(S) for problem P; can be obtained by defining instance I(1)(5)
derived from I by setting ¢;,; = o0 if i €V \ S or § € V'\ S, with i # j (thus imposing as
unrouted all the vertices in V \ S}, and by solving the corresponding LD-AP, as described
in Section 3.2 (obviously, §;(S) = oo if }_,c5p: < 9)-

As for problem P;, let fi (resp. bp) be the cost of the shortest path from vertex 1 to
vertex h (resp. from vertex h to vertex 1), for each k € V. A lower bound 6,(S) for P, is
then given by:

8(S) =min{fs + b :hecV\S}.

In order to obtain the best lower bound 4, one has to choose subset S so as to maximize
6(S) = min{6,(5),62(S)}. To this end, we note that for any vertex subset S’ with 1 € 5’
and S’ C 8, conditions 6,(S’) > 6,(S) and 8;(S’) < 6;(S) hold. Now, for any given subset
S define 8' = {F €V : f; + b; < 8(5)}. Clearly, 6;(5') = 65(S) (from the definition of S'),
while S’ C S (since no vertex 5 € V\ S can have f; +b; < 82(S)), and then §,(S’) > 8:(S).
It follows that §(S5’) > &(S), and therefore the maximization of §(S) requires that we
explicitly consider only subsets S2,83,-+-,8s, With Sy = {7 € V : f; + b; < fu + b4}
for h = 2,3,---,n (since §;(S) can attain only values f2 + b3, fa + b3, -+, fn + bn). Let
Sie (2 < h* < n) be the subset maximizing §(S)). Since Sz C S3 C -« C Sy, we have
61(S3) > 61(Ss) = +++ > 61(S,) and 83(S2) < 62(Ss) < --- < 62(Sn). Index h* can then be
determined through binary search by exploiting the property that, for each h (2 < k < n),
h* > b if 6,(Sh) > 8(Sh), while h* < h if 6,(Sa) < 82(Sh).

A residual instance T = [, (¢;), (F;), (7;), 3] corresponding to lower bound &(Sk-)

7 : ('
3
s
- &]
I
i
] I
L
o 3
S
VFK‘
! i
‘. L
e ('
¢
3
5 -)
J§ ‘]
e

~ - - . '

328 M. Fischetti and P. Toth

=-MA+Y (u+e)+Y Y (e — i — o)zt

{514 €V jEV\(i}
Z(Ci,‘i + A pi —uf — i)z =
iev
=00 pizii—A)+ Y w1t =Y i)+ Y v (-)i+
eV eV jev jev iev
YN iz =X Qo mimi - A+ YD iy
ievijev eV i€V jev

Hence, because of (12) and since A* >0,

LA} + Z Z Cij%ij < Z z i Tij (23)

€V jev €V jevV

holds. Since (z;;) is clearly feasible for reduced instance I, we have

LAY +oM <L)+ YD sz <Y cigzig=v(l).
iV jev i€V jev

In addition, v(I) > O follows from (22), so both conditions i) and ii) on the residual instance
T are satisfied.

It is worth noting that, from (23), residual costs ¢; ; and 7; = €;; give a lower bound
on the extra cost incurred if, respectively, arc (i, j) is included in the solution and vertex i
is left unrouted (7; can be greater than 0 even when ~; = 0 in the original instance).

Also note that the solution of AP(A*) is generally infeasible for PC-TSP both because
it can contain more than one subtour of cardinality greater than one, and because the total
prize “collected” can be less than g.

3.3. A bound based on the arborescence problem substructure

Let us consider instance I = [n,(¢;;), (), (p:), g] and the formulation of PC-TSP given
by (15) ~ {20). Removing equilibrium constraints (18) produces a relaxed problem in which
one calls for a shortest spanning 1-arborescence in the augmented graph G’ such that the
sum of the prizes of vertices j for which arc (0,7) is not in the solution, is greater or equal
to goal g. Such a problem is N P-hard, since the 0-1 Knapsack Problem easily transforms
to it. Note that the relaxed problem cannot be viewed as a Prize-Collecting 1- Arborescence
Problem, since removing artificial vertex 0 could produce a solution given by a family of
disconnected branchings. Due to the lack of reachability from vertex 1 of the vertices whose
prize has been “collected”, this problem generally leads to a poor lower bound.

326 M. Fischetti and P. Toth

so inequality (21) holds for h = & as well.

Each value § computed at step 6 is then a valid lower bound for PC- TSP since, because
of condition i), v(I(*)) > 0. The sequence of values § is non-decreasing, since increments
§(®) are clearly non-negative for h =2,---,r.

More details on the additive approach are given in Fischetti and Toth (1986). Ap-
plications to the Asymmetric Travelling Salesman Problem, the Multiple Depot Vehicle
Scheduling Problem and the Symmetric Travelling Salesman Problem are reported, respec-
tively, in Fischetti and Toth (1987a), Carpaneto, Dell’Amico, Fisclietti and Toth (1987),
and Carpaneto, Fischetti and Toth (1987).

Algorithm ADD-PCTSP requires the computation of valid residual instances corre-
sponding to all the available lower bounds, except the last (since residual instance I(") is
not used to increase the final value of §). In the following, we propose different relaxations of
PC-TSP, and describe how to obtain the corresponding lower bounds and residual instances.

3.2. A bound based on the assignment problem substructure

Let us consider instance I = [n,(ci), (i), (ps), 9], and the formulation of PC-TSP
given by (9) — (14). Removing connectivity constraints (13) produces a relaxed problem
in which one calls for a minimum cost collection of subtours covering all the vertices and
such that the sum of the prizes of the vertices not covered by loops is not less than goal
g. Such a Prize-Collecting Assignment Problem (PC-AP) turns out to be N P-hard, since it
contains the 0-1 Knapsack Problem (formulated as a minimization problem) as a particular
case, arising when ¢; ; = b; (for §,5 € V,i # j), ¢, = 0 (for 5 € V' \ {1}), ¢1,1 = o0, where
b; >0 (for j € V\{1}), and b, =0.

A lower bound for PC-AP, and hence for PC-TSP, could be obtained by solving its
continuous relaxation, PC-AP, given by (9) — (12) and

zij >0, foreachi,j €V.

A different approach (leading to the same value of the lower bound as PC-AP) is to
relax PC-AP in a Lagrangean fashion by imbedding constraint (12) in the objective function
{9),,and to solve the corresponding Lagrangean dual problem:

(LD - AP) vo(LD- AP)= %L(A)
where .
L) = —AA+min Y > & (V=i
€V jev
subject to (10), (11) and (14),

with

PV S

324 M. Fischetti and P. Toth

Constraints (16), (17), and (20) — with objective function (15) — give the well-known
Shortest Spanning 1-Arborescence Problem (1-SSAP). Any solution to 1-SSAP is a collection
of |V'| —1 arcs defining a directed spanning tree rooted at vertex 1, plus an arc entering
vertex 1. Constraints (18) ensure that each vertex { € V' is either unrouted (when zo; = 1
and hence, from (16),),y %4, = 0) or routed once. Constraint (19) imposes an upper

bound on the total prize of the unrouted vertices. An example of a feasible solution to model

(15) - (20) is given in Figure 2.

" Figure 2. Feasible solution to model (15) - (20), assuming (p;)= (0,8,5,2,4,5,3,6), g = 22.

5

3. Lower bounds

Different lower bounds for PC-TSP can be obtained by exploiting different relaxations of
the problem as, for example, those based on the assignment problem or on the arborescence
problem substructures pointed out in the previous section. Since none of these bounds
dominates the others, a possible way to obtain a strengthened bound is to compute the
maximum among them. In this way, however, only-one substructure is taken into account,
while all the others are completely lost. To partially overcome this drawback and to exploit
the complementarity of the available bounds, we use the additive approach proposed by
Fischetti and Toth (1986), leading to a sequence of increasing lower bounds.

e

-

N

322 M. Fischettiand P. Toth

Constraints (2), (3) and (6) ensure that each vertex i is either unrouted (in which case
no arc enters or leaves vertex s) or routed once. Constraints (4) ensure that the sum of
the prizes of the routed vertices is not less than goal g. Any feasible solution satisfying
constraints (2), (3),(4) and (6) can be viewed as a family of disjoint subtours (each of
cardinality at least 2) visiting a subset of vertices whose total prize is at least g. Constraints
(5) ensure the “connectivity” of the solution, in the sense that each routed vertex h can be
reached from vertex 1.

Constraints (5) can be replaced by the “subtour elimination” constraints

> Y #i<IS|-1, foreahScV:1eV\S)
€S jeS\{i}
forbidding subtours not visiting vertex 1.
A tighter formulation of the problem could be obtained by replacing constraint (4) with

constraints

Z Z zi; <|S| -1, foreachSCV:lES,Zp,—<g (8)
i€s jes\{s) jes
which eliminate subtours visiting vertex 1 but not collecting a sufficient prize. On the
assumption that ~; = 0 for § € V' \ {1}, constraints (5) (or (7)) become redundant, and then
(1), (2), (3), (6) and (8) give a valid formulation of PC-TSP.

Model (1) - (6) can be rearranged so as to point out the assignment problem substruc-
ture of PC-TSP. To this end, for each £ € V we define z;; = 1 if vertex 1 is left unrouted,
and z;; = O otherwise (i.e., z;; = 1 —y;). Consequently, for each { € V we set ¢; ; = ; (the
cost incurred if vertex 1 is left unrouted). With these definitions, a valid formulation of the
problem is

(PC-TSP) v(PC—-TSP)=min) Y ci;jzi; (9
iev jev
subject to .
Ez.-_,-=l, foreach j€V (10)
iev .
E’:‘J=1’ foreacht €V (11)
jEV
Z PiZii < 2 pi—9g (12)
iev jev
for each h.€ V \ {1} and for each
IDMETESLENY or5cv-1e\§'iaenvfrs (13)
$EV jEV\S : ’
z;j€{0,1}, foreachi,jeV. (14)

Constraints (10}, (11), and (14) — with objective function (9) — define the well-known
Linear Min-sum Assignment Problem (AP) Any feasible solution to AP gives a family of

320 M. Fischetti and P. Toth

Let p; be the (indivisible) amount supplied at city i, 8; the corresponding cost (7 = 2,:-+,n),
and c;,; the transportation cost from city 1 to city 5 (¢,5 = 1,--- ,n). Assuming that only
one trip is required, such a problem can be formulated as an instance of PC-TSP in which
v = —f; is the saving from city ¢ not supplying the product (the total cost being Yo, Bit
optimal value of the PC-TSP instance).

The problem also arises in several scheduling problems. Balas and Martin (1985)
introduced PC-TSP as a model for scheduling the daily operation of a steel rolling mill.
A rolling mill produces steel sheets from slabs by hot or cold rolling. Let ¢; 7 be the “cost”
of processing order j just after order s, and p; the-weight of the slab assigned to order i.
Scheduling the daily operation consists of selecting a subset of orders that satisfies a given
lower bound g on the total weight, and of sequencing them so as to minimize the global cost.

PC-TSP can be formulated through a graph theory model as follows. Let G = (V, A) be
a directed complete graph, where V = {1,2,:-+,n} is the vertex set (vertex 1 corresponding
to the depot) and A the arc set. For each (1,5) € A let ¢;; be the cost of arc (3, 5) (with
¢i;; = oo for each i € V) and, for each § € V, let +; and p; be respectively the cost and the
prize associated with vertex ¢ (with 4; = co and p; =0). A vertex subset S C V is feasible
iff },copi 2 gand 1 € S. The PC-TSP is to find a Hamiltonian circuit in the subgraph
induced by a feasible vertex subset S, so as to minimize the sum of the costs of the arcs in
the circuit plus the sum of the costs associated with vertices in V \ S.

PC-TSP contains as a particular case the TSP obtained when Y iev Pi = g (or when
i = oo for each ¢ € V), and hence it belongs to the class of N P-hard problems (in the
strong sense).

PC-TSP can also be viewed as a generalization of the minimization form of the 0-1
Single Knapsack Problem, arising when -y; = 0 for each ¢ € V \ {1}, and when all the arcs
entering the same vertex have the same cost.

Without loss of generality we assume:
¢i; >0 foreach (i,j) € A, and 4, >0 foreachi€V.

In fact, for each ¢ € V the addition of any constant a; to +; and ¢, ; (7 € V) does not alter
the relative ranking among the feasible solutions to PC-T'SP. We also assume the feasibility
condition } .y p: > g.

We do not assume that the triangle inequality (cix + cxj > ciy for 1,5,k € V and
i # j) holds. If, however, the triangle inequality applies and 4; = 0 for i € V \ {1}, as in
several practical applications, we can also assume that p; > 0 for ¢ € V' \ {1}, since vertices
with zero prize are not worth routing; for the same reason, only minimal (with respect to
deletion of one element) feasible vertex subsets S can lead to optimal solutions.

To our knowledge, no optimal algorithm has been proposed for PC-TSP. Heuristic
methods and structural properties have been discussed in Balas and Martin (1985) and in
Balas (1987), respectively. A related problem is the Orienteering Problem, in which the

PN

B2

The Prize-Collecting Travelling Salesman Problem 343

Problem”, forthcoming in Naval Research Logistics.

G. Laporte and S. Martello (1987), “The Selective Travelling Salesman Problem”, Working
Paper, EHEC, Universit¢ de Montreal, Quebec, Canada (presented at the ORSA/TIMS
Meeting, New Orleans, May 1987).

E.L. Lawler (1976), Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston, New York.

T. Tsiligirides (1984), “Heuristic Methods Applied to Orienteering”, Journal of the Opera-
tional Research Society 35, 797-809.

8. Warshall (1962), “A Theorem on Boolean Matrices”, Journal of ACM9, 11-12.

Dol

e

