A Branch-and-Cut Algorithm for the
Multiple Depot Vehicle Scheduling Problem

Matteo Fischetti*, Andrea Lodi’, Paolo Toth®

* Dipartimento di Elettronica e Informatica, Universita di Padova, Italy
° Dipartimento di Elettronica, Informatica e Sistemistica, Universita di Bologna, Italy
E-mail: fisch@dei.unipd.it, {alodi,ptoth}@deis.unibo.it

Abstract

The Vehicle Scheduling Problem is an important combinatorial optimization prob-
lem arising in the management of transportation companies. It consists in assigning
a set of time-tabled trips to a set of vehicles so as to minimize a given objective
function. In particular, we consider the Multiple Depot version of the problem (MD-
VSP), in which one also has to assign vehicles to depots. This problem is known
to be NP-hard. In this paper we introduce two main classes of valid inequalities
for MD-VSP, and propose efficient separation algorithms along with effective heuris-
tic strategies to speed up cutting-plane convergence. These results are used within a
branch-and-cut scheme for the exact solution of the problem. The method uses a new
branching strategy based on the concept of “fractionality persistency”, a completely
general criterion that can be extended to other combinatorial problems. The perfor-
mance of the branch-and-cut scheme is evaluated through extensive computational
experiments on several classes of both random and real-world test instances.

1 Introduction

The Multiple-Depot Vehicle Scheduling Problem (MD-VSP) is an important combinatorial
optimization problem arising in the management of transportation companies. In this
problem we are given a set of n trips, T1,Ty,...,T,, each trip T; (j = 1,...,n) being
characterized by a starting time s; and an ending time e;, along with a set of m depots,
D.,D,,...,D,,, in the k-th of which r, < n wvehicles are available. All the vehicles are
supposed to be identical. In the following we assume m < n.

Let 7;; be the time needed for a vehicle to travel from the end location of trip 7; to
the starting location of trip 7. A pair of consecutive trips (7;,7}) is said to be feasible if
the same vehicle can cover T; right after 7;, a condition implying e; + 7;; < s;. For each
feasible pair of trips (7;,T;), let v;; > 0 be the cost associated with the execution, in the
duty of a vehicle, of trip 7} right after trip 7}, where 7;; = 400 if (7}, T}) is not feasible, or
if i = j. For each trip 7} and each depot Dy, let 7, (respectively, 7;.) be the non-negative
cost incurred when a vehicle of depot Dy, starts (resp., ends) its duty with 7;. The overall

cost of a duty (7;,,7;,,...,T;,) associated with a vehicle of depot Dy is then computed as

Viiy T Yivie T -+« + Yip_vip, T Vink-

MD-VSP consists of finding an assignment of trips to vehicles in such a way that:

i) each trip is assigned to exactly one vehicle;

ii) each vehicle in the solution covers a sequence of trips (duty) in which consecutive
trip pairs are feasible;

iii) each vehicle starts and ends its duty at the same depot;
iv) the number of vehicles used in each depot Dy does not exceed depot capacity ry;

v) the sum of the costs associated with the duty of the used vehicles is a minimum
(unused vehicles do not contribute to the overall cost).

Depending on the possible definition of the above costs, the objective of the optimization
is to minimize:

a) the number of vehicles used in the optimal solution, if 7,; = 1 and 7, = 0 for each
trip 7} and each depot Dy, and 7;; = 0 for each feasible pair (7}, 7});

b) the overall cost, if the values (vi;), (7x;) € (7;x) are the operational costs associated
with the vehicles, including penalities for dead-heading trips, idle times, etc.;

c¢) any combination of a) and b).

MD-VSP is NP-hard in the general case, whereas it is polynomially solvable if m = 1.
It was observed in Carpaneto, Dell’Amico, Fischetti and Toth [3] that the problem is also
polynomially solvable if the costs 7, and 7;; are independent of the depots.

Several exact algorithms for the solution of MD-VSP have been presented in the lit-
erature, which are based on different approaches. Carpaneto, Dell’Amico, Fischetti and
Toth [3] proposed a Branch-and-Bound algorithm based on additive lower bounds. Ribeiro
and Soumis [11] studied a column generation approach, whereas Forbes, Holt and Watts
[6] analyzed a three-index integer linear programming formulation. Bianco, Mingozzi and
Ricciardelli [1] introduced a more effective set-partitioning solution scheme based on the
explicit generation of a suitable subset of duties; although heuristic in nature, this approach
can provide a provably-optimal output in several cases. Heuristic algorithms have been
proposed, among others, by Dell’Amico, Fischetti and Toth [4]. Both exact and heuristic
approaches were recently proposed by Lobel [7, 8] for constrained versions of the problem.

In this paper we consider a branch-and-cut [9] approach to solve MD-VSP to proven
optimality, in view of the fact that branch-and-cut methodology proved very successful
for a wide range of combinatorial problems; see e.g. the recent annotated bibliography of
Caprara and Fischetti [2].

The paper is organized as follows. In Section 2 we discuss a graph theory and an
integer linear programming model for MD-VSP. In Section 3 we propose a basic class of
valid inequalities for the problem, and in Section 3.1 we address the associated separation
problem. A second class of inequalities is introduced in Section 4 along with a separation
heuristic. Our branch-and-cut algorithm is outlined in Section 5. In particular, we describe
an effective branching scheme in which the branching variable is chosen according to the
concept of “fractionality persistency”, a completely general criterion that can be extended
to other combinatorial problems. In Section 6 we report extensive computational exper-
iments on a test-bed made by 135 randomly generated and real-world test instances, all
of which are available on the web page http://www.or.deis.unibo.it/0ORinstances/.
Some conclusions are finally drawn in Section 7.

2 Models

We consider a directed graph G = (V, A) defined as follows. The set of vertices V =
{1,...,m + n} is partitioned into two subsets: the subset W = {1,...,m} containing a
vertex k for each depot Dy, and the subset N = {m +1,...,m + n} in which each vertex
m + j is associated with a different trip 7;. We assume that graph G is complete, i.e.,
A ={(i,j) :i,j € V}. Each arc (i,j) with 4,7 € N corresponds to a transition between
trips T, and Tj_,,, whereas arcs (i,j) with ¢ € W (respectively, j € W) correspond to
the start (resp., to the end) of a vehicle duty. Accordingly, the cost associated with each
arc (i, 7) is defined as:

Yi—m,j—m if 77] € N

Yij—m if ieW,jeN,;
Cij = ﬁifm,j if iGN,jE W,
0 it 4,5 €W, i=7;
+00 if i,j€W,i]j.

Note that arcs with infinite cost correspond to infeasible transitions, hence they could
be removed from the graph (we keep them in the arc set only to simplify the notation).
Moreover, the subgraph obtained from G by deleting the arcs with infinite costs along with
the vertices in W is acyclic.

By construction, each finite-cost subtour visiting (say) vertices k, vy, v, ..., vy, k, where
ke W and vq,...,v, € N, corresponds to a feasible duty for a vehicle located in depot Dy,
that covers consecutively trips Ty, _p, . .., Ty, —m, the subtour cost coinciding with the cost
of the associated duty. Finite-cost subtours visiting more than one vertex in W, instead,
correspond to infeasible duties starting and ending in different depots.

MD-VSP can then be formulated as the problem of finding a min-cost set of subtours,
each containing exactly one vertex in W, such that all the trip-vertices in N are visited
exactly once, whereas each depot-vertex k£ € W is visited at most r, times.

The above graph theory model can be reformulated as an integer linear programming
model as in Carpaneto, Dell’Amico, Fischetti and Toth [3]. Let decision variable z;; assume
value 1 if arc (i,7) € A is used in the optimal solution of MD-VSP, and value 0 otherwise.

3

o(MD —VSP) = mind_ Y ¢z (1)

i€V jev

Zl"ij = Ty, Jjev (2)

i€V
Z Tiyj = Ti, 1€V (3)

JjeV
ooz < |Pl-1, Pell (4)

(i,j)EP
z;; > 0 integer, i,jevVv (5)
where we have defined r; := 1 for each ¢ € N, and Il denotes the set of the inclusion-

minimal infeasible paths, i.e., the simple and finite-cost paths connecting two different
depot-vertices in WW.

The degree equations (2) and (3) impose that each vertex £ € V must be visited exactly
r, times. Notice that variables x, (k € W) act as slack variables for the constraints (2)-(3)
associated with k, i.e., zy; gives the number of unused vehicles in depot Dj.

Constraints (4) forbid infeasible subtours, i.e., subtours visiting more than one vertex
in W. Finally, constraints (5) state the nonnegativity and integrality conditions on the
variables; because of (2)-(3), they also imply z;; € {0,1} for each arc (4, j) incident with
at least one trip-vertex in V.

In the single-depot case (m = 1), set 1T is empty and model (1)-(5) reduces to the
well-known Transportation Problem (TP), hence it is solvable in O(n?) time.

3 Path Elimination Constraints (PECs)

The exact solution of MD-VSP can be obtained through enumerative techniques whose
effectiveness strongly depends on the possibility of computing, in an efficient way, tight
lower bounds on the optimal solution value. Unfortunately, the continuous relaxation of
model (1)-(5) typically yields poor lower bounds. In this section we introduce a new class of
constraints for MD-VSP, called Path Elimination Constraints, which are meant to replace
the weak constraints (4) forbidding infeasible subtours.

Let us consider any nonempty @ C W, and define Q := W \ Q. Given any finite-cost
integer solution z* of model (1)-(5), let

A" = {(i,j) € A xj; #0}

denote the multiset of the arcs associated with the solution, in which each arc (k, k) with
k € W appears z7, times. As already observed, A* defines a collection of }_}" ; rx subtours
of G, >3-, =}, of which are loops and correspond to unused vehicles.

Now suppose removing from G (and then from A*) all the vertices in @, thus breaking
a certain number of subtours in A*. The removal, however, cannot affect any subtour

visiting the vertices k € @, hence A* still contains 3>,) subtours through the vertices
k € Q. This property leads to the following Path Elimination Constraints (PECs):

> > x>, foreach SCN, S#0. (6)

i€SUQ je(N\S)UQ keQ

Note that the variables associated with the arcs incident in @) do not appear in the con-
straint.

By subtracting constraint (6) from the sum of the equations (3) for each i € QU S, we
obtain the following equivalent formulation of the path elimination constraints:

szij+zzxij+zzxij§|5|, foreach S C N, S#0, (7)

1€Q jES 1€S jES 1€S jeQ

where we have omitted the left-hand-side term 3=, Zjea xi; as it involves only infinite-
cost arcs. This latter formulation generally contains less nonzero entries than the original
one in the coefficient matrix, hence it is preferable for computation.

Constraints (7) state that a feasible solution cannot contain any path starting from a
vertex @ € (Q and ending in a vertex b € Q. This condition is then related to the one
expressed by constraints (4). However, PEC constraints (7) dominate the weak constraints
(4). Indeed, consider any infeasible path P = {(a,v1), (v1,v2), ..., (vs_1,v;), (v, b)}, where
a,b € W, a#b,and S := {vy,...,v,} C N. Let @ be any subset of W such that a € @
and b € (). The constraint (4) corresponding to path P has the same right-hand side value
as in the PEC associated with sets S and @) (as |P| =t+1 and |S| = t), but each left-hand
side coefficient in (4) is less or equal to the corresponding coefficient in the PEC.

We finally observe that, for any given pair of sets S and @, the corresponding PEC
does not change by replacing S with S := N\ S and @ with Q := W \ Q. Indeed, the
PEC for pair (S, Q) can be obtained from the PEC associated with (S, Q) by subtracting
equations (2) for each j € SU @, and by adding to the result equations (3) for i € S U Q.
As a result, it is always possible to halve the number of relevant PECs by imposing, e.g.,

1e.

3.1 PEC Separation Algorithms

Given a family F of valid MD-VSP constraints and a (usually fractional) solution z* > 0,
the separation problem for F aims at determining a member of F which is violated by
x*. The exact or heuristic solution of this problem is of crucial importance for the use of
the constraints of family F within a branch-and-cut scheme. In practice, the separation
algorithm tries to determine a large number of violated constraints, chosen from among
those with large degree of violation. This usually accelerates the convergence of the overall
scheme.

In the following we denote by G* = (V, A*) the support graph of z*, where A* :=

{(i,j) € A: a3 # 0},

Next we deal with the separation problem for the PEC family. Suppose, first, that the
subset () C W in the PEC has been fixed. The separation problem then amounts to finding
a subset S C N maximizing the violation of PEC (6) associated with the pair (S, Q). We
construct a flow network obtained from G* as follows:

1. for each w € W, we add to G* a new vertex w', and we let W' := {w' : w € W};

2. we replace each arc (i,w) € A* entering a vertex w € W with the arc (i,w’), and
define z7,, := 2, and zj, := 0;

*

3. we define the capacity of each arc (i, j) € A* as };;

4. we add two new vertices, s (source) and d (sink);

5. for each w € @, we add two arcs with very large capacity, namely (s, w) and (w', d).
By construction:

e the flow network is acyclic;
e no arc enters vertices w €) := W \ @, and no arc leaves vertices w' € W',

e for each w € W, the network contains an arc (w,w') with capacity =%

‘ww*

e the network depends on the chosen @) only for the arcs incident with s and d (steps
1 4 being independent of Q).

One can easily verify that a minimum-capacity cut in the network with shore (say)
{s} UQ U S corresponds to the most violated PEC (6) (among those for the given Q).
Therefore, such a highly violated PEC cut can be determined, in O(n?*) time, through an
algorithm that computes a maximum flow from the source s to the sink d in the network.
In practice, the computing time needed to solve such a problem is much less than in the
worst, case, as A* is typically very sparse and contains only O(n) arcs.

As to the choice of the set @), one possibility is to enumerate all the — 1 proper
subsets of W that contain vertex 1. In that way, the separation algorithm requires, in
the worst case, O(2™ 'n3) time, hence it is still polynomial for any fixed m. In practice,
the computing time is acceptable for values of m not larger than 5. For a greater number
of depots, a possible heuristic choice consists of enumerating only the subsets of W with
|W| < u, where parameter p is set e.g. to 5.

Once a PEC is detected, we refine it by fixing its trip-node set S and by re-computing
(through a simple greedy scheme) the depot-vertex set () so as to maximize the degree of
violation.

Preliminary computational experiments showed that the lower bounds obtained through
the separation algorithm described are very tight, but often require a large computing
time because the number of PECs generated at each iteration is too small. It is then very

2m71

important to be able to identify a relevant number of violated PECs at each round of
separation.

PEC decomposition

A careful analysis of the PECs generated through the max-flow algorithm showed that
they often “merge” several violated PECs defined on certain subsets of S. A natural idea
is therefore to decompose a violated PEC into a series of PECs with smaller support.

To this end, let S and @) be the two subsets corresponding to a most-violated PEC
(e.g., the one obtained through the max-flow algorithm). Consider first the easiest case
in which z* is integer, and contains a collection of ¢ > 2 paths P, ... P, starting from
a vertex in (Q, visiting some vertices in S, and ending in a vertex in (). Now, consider
the subsets Si,...,5, C S containing the vertices in S visited by the paths Py,..., P,
respectively. It is easy to see that all the ¢ PECs associated to the subsets Si,...,S, are
violated (assuming that S is inclusion minimal, and letting) be unchanged). Even if it
is not possible to establish a general dominance relation between the new PECs and the
original PEC, our computational results showed that this refining procedure guarantees a
faster convergence of the branch-and-cut algorithm.

When z* is fractional the refining of the original PEC is obtained in a similar way,
by defining Si,...,S, as the connected components of the undirected counterpart of the

subgraph of G* induced by the vertex set S.

Infeasible path enumeration

A second method to increase the number of violated PECs found by the separation
scheme consists in enumerating the paths contained in G* so as to identify infeasible paths
of the form P = {(a,v1), (v1,v2), ..., (v_1,v), (vs,b)} with a,b € W, a # b, and such
that the corresponding constraint (7) is violated for S := {v1,..., v} € N and @ := {a}.
Since the graph G* is typically very sparse, this enumeration usually needs acceptable
computing times. According to our computational experience, enumeration is indeed very
fast, although it is unlike to identify violated PECs for highly fractional solutions.

PECs with nested support

The above separation procedures are intended to identify a number of violated PEC
chosen on the basis of their individual degree of violation, rather than on an estimate of
their combined effect. However, it is a common observation in cutting plane methods that
the effectiveness of a set of cuts belonging to a certain family depends heavily on their
overall action, an improved performance being gained if the separation generates certain
highly-effective patterns of cuts.

A known example of this behavior is the travelling salesman problem (TSP), for which
commonly-applied separation schemes based on vertex shrinking, besides reducing the
computational effort spent in each separation, have the important advantage of producing
at each call a noncrossing family of violated subtour elimination constraints.

A careful analysis of the PECs having a nonzero dual variable in the optimal solution of
the LP relaxation of our model showed that highly-effective patterns of PECs are typically
associated with sets S defining an almost nested family, i.e., only a few pairs S cross each
other. We therefore implemented the following heuristic “shrinking” mechanism to force
the separation to produce violated PECs with nested sets S.

For each given depot subset (), we first find a minimum-capacity cut in which the shore
of the cut containing the source node, say {s} U Q U S;, is minimal with respect to set
inclusion. If violated, we store the PEC associated with S, and continue in the attempt at
determining, for the same depot subset (), additional violated PECs associated with sets S
strictly containing S;. This is achieved by increasing to a very large value the capacity of
all network arcs having both terminal vertices in QU .Sy, and by re-applying the separation
procedure in the resulting network (for the same @) so as to hopefully produce a sequence
of violated PECs associated with nested sets S; C Sy--- C S;.

In order to avoid stalling on the same cut, at each iteration we increase slightly (in a
random way) the capacity of the arcs leaving the shore {s} U QU S; of the current cut. In
some (rare) cases, this random perturbation step needs to be iterated in order to force the
max-flow computation to find a new cut.

As shown in the computational section, the simple scheme above proved very successful
in speeding up the convergence of the cutting-plane phase.

4 Lifted Path Inequalities (LPIs)

The final solution x* that we obtain after separating all the PECs can often be expressed
as a linear combination of the characteristic vectors of feasible subtours of G. As an illus-
tration, suppose that z* can be obtained as the linear combination, with 1/2 coefficients,
of the characteristic vectors of the following three feasible subtours (among others):

Cl = {(a’vil)a (ila i2)> (i27 a)}a
Cy = (a’vi1)a (i1ai3)’ (7:3v (I,)},
C’3 = {(bviQ)’ (7:2a 7:3), (7:3, b)}a

where a,b € W, a # b, and i, io and i3 are three distinct vertices in N (see Figure 1).
Notice that, because of the degree equations on the trip-nodes, only one of the above
three subtours can actually be selected in a feasible solution.
The solution z* of our arc-variable formulation then has: z};, >1/2+1/2=1, 27, >

2119

1/2, xj,;, > 1/2, x;,;, > 1/2, xj,, > 1/2, hence it violates the following valid inequality,

Lioig il
obtained as a reinforcement of the obvious constraint forbidding the path (a, i), (i1, 2),

(7:2’ 7:3)3 (7:3a b)

Taiy T Tiviy T Tigiy + Tigh + 2244, < 3. (8)

13

Figure 1: A possible fractional point 2* with z}; = 1/2 for each drawn arc.

The example shows that constraints of type (8) can indeed improve the linear model
that includes all degree equations and PECs. As a result, the lower bound achievable by
means of (8) can be strictly better than those obtainable through the set-partitioning or
the 3-index formulations from the literature [1, 6, 11].

Constraints (8) can be improved and generalized, thus obtaining a more general family
of constraints that we call Lifted Path Inequalities (LPIs):

Yoo wmp Ty D wmpt Y D wyt Y dowg+2), Y wyt

1€Qq JELN1UI3 i€l jeELUQy i€ly jeIUI3 i€l3 jEQy i€l jeUI3
23 S ay <3 42001 D+ (L 1)+ 205 1),)
1el3 jel3

where (Q,,Qp) is any proper partition of W, whereas I, Iy and I3 are three pairwise
disjoint and nonempty subsets of .

Validity of LPIs follows from the fact that they are rank-1 Chvatal-Gomory cuts ob-
tained by combining the following valid MD-VSP inequalities:

1/3 times PEC(I; UL, U I3,Q,),
2/3 times PEC(I; U I3,Q,),
1/3 times L),

2),
1/3 times SEC(I3),

BC(
2/3 times SEC([

2/3 times CUT-OUT(I),
2/3 times CUT—IN(]g),

where PEC(S, Q) is the inequality (7) associated to the sets S C N and Q C W, whereas for
each S C N we denote by SEC(S), CUT-OUT(S) and CUT-IN(S) the following obviously
valid (though dominated) constraints:

SEC(S) + > > wy <I[S| -1

1€S jES

€S jeV\S
CUT-IN(S) :+ > > xi; <|S]

i€V\S jeSs

A separation algorithm for the “basic” LPIs (9) having |I,| = || = |I3] = 1 is ob-
tained by enumerating all the possible triples of trip-vertices, and by choosing the partition
(Qa, Qp) that maximizes the degree of violation of the corresponding LPI. In practice, the
computing time needed for this enumeration is rather short, provided that simple tests
are implemented to avoid generating triples that obviously cannot correspond to violated
constraints.

For the more general family, we have implemented a shrinking procedure that contracts
into a single vertex all paths made by arcs (4, j) with i, 7 ¢ W and x7; = 1, and then applies
to the shrunk graph the above enumeration scheme for basic LPIs.

5 A Branch-and-Cut Algorithm

In this section we present an exact branch-and-cut algorithm for MD-VSP, which follows
the general framework proposed by Padberg and Rinaldi [9]; see Caprara and Fischetti [2]
for a recent annotated bibliography.

The algorithm is a lowest-first enumerative procedure in which lower bounds are com-
puted by means of an LP relaxation that is tightened, at run time, by the addition of cuts
belonging to the classes discussed in the previous sections.

5.1 Lower Bound Computation

At each node of the branching tree, we initialize the LP relaxation by taking all the
constraints present in the last LLP solved at the father node. For the root node, instead,
only the degree equations (2)-(3) are taken, and an optimal LP basis is obtained through
an efficient code for the min-sum Transportation Problem.

After each LP solution we call, in sequence, the separation procedures described in the
previous section that try to generate violated cuts. At each round of separation, we check
both LPIs and PECs for violation. The constraint pool is instead checked only when no
new violated cut is found. In any case, we never add more than NEWCUTS = 15 new
cuts to the current LP.

10

Each detected PEC is first refined, and then added to the current LP (if violated) in
its < form (7), with pair (S, Q) complemented if this produces a smaller support. In order
to avoid adding the same cut twice we use a hashing-table mechanism.

A number of tailing-off and node-pausing criteria are used. In particular we abort the
current node and branch if the current LP solution is fractional, and one (at least) of the
following conditions hold:

1. we have applied the pricing procedure more than 50 times at the root node, or more
than 10 times at the other nodes.

2. the (rounded) lower bound did not improve in the last 10 iterations;

3. the current lower bound exceeds by more than 10 units (a hard-wired parameter) the
best lower bound associated with an active branch-decision node; in this situation,
the current node is suspended and re-inserted (with its current lower bound) in the
branching queue.

According to our computational experience, a significant speed-up in the convergence
of the cutting plane phase is achieved at each branching node by using an “aggressive”
cutting policy consisting in replacing the extreme fractional solution x* to be separated by
a new point y* obtained by moving z* towards the interior of the polytope associated to
the current LP relaxation; see Figure 2 for an illustration. A similar idea was proposed by
Reinelt [10].

conv(MD — VSP)

AN

current relaxation

Figure 2: Moving the fractional point z* towards the integer hull conv(M D — V SP).

11

In our implementation, the point y* is obtained as follows. Let 2"t and 22 denote
the incidence vector of the best and second-best feasible MD-VSP found, respectively. We
first define the point

y* =0.12"+0.9 (a2 4 27)/2

and give it on input to the separation procedures in order to find cuts which are violated
by y*. If the number of generated cuts is less than NEWCUT'S, we re-define y* as

y* =052 +05 (a7 4 272)/2

and re-apply the separation procedures. If again we did not obtain a total of NEWCUTS
valid cuts, the classical separation with respect to z* is applied.

5.2 Pricing

We use a pricing/fixing scheme akin to the one proposed in Fischetti and Toth [5] to deal
with highly degenerated primal problems. A related method, called Lagrangian pricing,
was proposed independently by Lébel [7, 8.

The scheme computes the reduced costs associated with the current LLP optimal dual
solution. In the case of negative reduced costs, the classical pricing approach consists of
adding to the LP some of the negative entries, chosen according to their individual values.
For highly-degenerated LP’s, this strategy may either result in a long series of useless
pricings, or in the addition of a very large number of new variables to the LLP; see Fischetti
and Toth [5] for a discussion of this behavior.

The new pricing scheme, instead, uses a more clever and “global” selection policy, con-
sisting of solving on the reduced-cost matrix the Transportation Problem (TP) relaxation
of MD-VSP. Only the variables belonging to the optimal TP solution are then added to the
LP, along with the variables associated with an optimal TP basis and some of the variables
having zero reduced-cost after the TP solution; see [5] for details.

Important by-products of the new separation scheme are the availability of a valid lower
bound even in the case of negative reduced costs, and an improved criterion for variable
fixing.

In order to save computing time, the Transportation Problem is not solved if the number
of negative reduced-cost arcs does not exceed max{50,n}, in which case all the negative
reduced-cost arcs are added to the current LP.

As to the pricing frequency, we start by applying our pricing procedure after each LP
solution. Whenever no variables are added to the current LP, we skip the next 9 pricing
calls. In this way we alternate dynamically between a pricing frequency of 1 and 10. Of
course, pricing is always applied before leaving the current branching node.

12

5.3 Branching

Branching strategies play an important role in enumerative methods. After extensive com-
putational testing, we decided to use a classical “branch-on-variables” scheme, and adopted
the following branching criteria to select the arc (a,b) corresponding to the fractional vari-
able z7, of the LP solution to branch with. The criteria are listed in decreasing priority
order, i.e., the criteria are applied in sequence so as to filter the list of the arcs that are
candidates for branching.

1. Degree of fractionality: Select, if possibile, an arc (a,b) such that 0.4 < 7, < 0.6.

2. Fractionality persistency: Select an arc (a,b) whose associated x%, was persistently
fractional in the last optimal LP solutions. The implementation of this criterion
requires initializing f;; = 0 for all arcs (i, j), where f;; counts the number of consec-

utive optimal LP solutions for which z7; is fractional. After each LP solution, we sef

fij = fij + 1 for all fractional z};’s, and set f;; = 0 for all integer variables. When
branching has to take place, we compute fpq, = max f;;, and select a branching

variable (a, b) such that fu; > 0.9f00.

3. 1-paths from a depot. Select, if possible, an arc (a,b) such that vertex a can be
reached from a depot by means of a 1-path, i.e, of a path only made by arcs (i, j)

4. 1-paths to a depot. Select, if possible, an arc (a,b) such that vertex b can reach a
depot by means of a 1-path.

5. Heuristic recurrence: Select an arc (a, b) that is often chosen in the heuristic solutions
found during the search. The implementation of this mechanism is similar to that
used for fractionality persistency. We initialize h;; = 0 for all arcs (i, j), where h;;
counts the number of times arc (4, j) belongs to an improving heuristic solution. Each
time a new heuristic solution improving the current upper bound is found, we set
h;j = hi; + 1 for each arc (7,7) belonging to the new incumbent solution. When
branching has to take place, we select a branching variable (a,b) such that h,, is a
maximum.

5.4 Upper Bound Computation

An important ingredient of our branch-and-cut algorithm is an effective heuristic to detect
almost-optimal solutions very early during the computation. This is very important for
large instances, since in practical applications the user may need to stop code execution
before a provably-optimal solution is found. In addition, the success of our “aggressive”
cutting plane policy depends heavily on the early availability of good heuristic solutions
M and 22

13

We used the MD-VSP heuristic framework proposed by Dell’Amico, Fischetti and Toth
[4], which consists of a constructive heuristic based on shortest-path computations on
suitably-defined arc costs, followed by a number of refining procedures.

The heuristic is applied after each call of the pricing procedure, even if new variables
have been added to the current LP. In order to exploit the primal and the dual information
available after each LP/pricing call, we drive the heuristic by giving on input to it certain
modified arc costs ¢; obtained from the original costs as follows:

Cii = Cij — 100 z3;

J
where ¢; are the (LP or TP) reduced costs defined within the pricing procedure, and z*
is the optimal LP solution of the current LP. Variables fixed to zero during the branching
correspond to very large arc costs cj;. Of course, the modified costs ¢;; are used only during
the constructive part of the heuristlc whereas the refining procedures always deal with the

original costs ¢;;.

6 Computational Experiments

The overall algorithm has been coded in FORTRAN 77 and run on a Digital Alpha 533
MHz. We used the CPLEX 6.0 package to solve the LP relaxations of the problem.

The algorithm has been tested on both randomly generated problems from the literature
and real-world instances.

In particular, we have considered test problems randomly generated so as to simulate
real-world public transport instances, as proposed in [3] and considered in [1, 4, 11]. All the
times are expressed in minutes. Let p,---, p, be the v relief points (i.e., the points where
trips can start or finish) of the transport network. We have generated them as uniformly
random points in a (60 x 60) square and computed the corresponding travel times 6, as
the Euclidean distance (rounded to the nearest integer) between relief points a and b. As
for the trip generation, we have generated for each trip 7; (j = 1,---,n) the starting and
ending relief points, p; and p respectively, as uniformly random integers in (1,v). Hence
we have 7;; = Hpupz for each pair of trips 7; and 7). The starting and ending times, s; and
e; respectively, of trip T; have been generated by considering two classes of trips: short
trips (with probability 40%) and long trips (with probability 60%).

(i) Short trips: s; as uniformly random integer in (420, 480) with probability 15%, in
(480, 1020) with probability 70%, and in (1020, 1080) with probability 15%, e; as
uniformly random integer in (s; + O 0 45,85 4 b0 + 40);

(ii) Long trips: s; as uniformly random integer in (300, 1200) and e; as uniformly random
integer in (s; + 180, s; + 300). In addition, for each long trip 7; we impose P = pj.

As for the depots, we have considered three values of m, m € {2,3,5}. With m = 2,
depots D; and D, are located at the opposite corners of the (60 x 60) square. With
m = 3, D; and Dy are in the opposite corners while D3 is randomly located in the (60 x

14

60) square. Finally, with m = 5, Dy, Dy, D3 and D, are in the four corners whereas Dj

is located randomly in the (60 x 60) square. The number rj of vehicles stationed at each

depot Dy, has been generated as a uniformly random integer in (3 +n/(3m),3 +n/(2m)).
The costs have been obtained as follows:

(i) vi; = [107; + 2(s; — e; — 735)], for all compatible pairs (T}, T;);
(ii) 7); = [10 (Euclidean distance between Dy and p)] + 5000, for all Dy and Tj;
(iii) 4j& = [10 (Euclidean distance between p} and Dy)| + 5000, for all T; and Dj.

The addition of a big value of 5000 to the cost of both the arcs starting and ending
at a depot (cases (ii) and (iii) above) copes with the aim of considering as an objective of
the optimization the minimization of both the number of used vehicles and the sum of the
operational costs (see Section 1).

Five values of n, n € {100,200, 300,400,500}, have been considered, and the corre-
sponding value of v is a uniformly random integer in (n/3,n/2).

In Table 1, we consider the case of 2 depots (m = 2). 50 instances have been solved, 10
for each value of n € {100,200, 300, 400,500}. For each instance, we report the instance
identifier (ID, built as m-n-NumberOfTheInstance, see Appendix A), the percentage gap of
both the Transportation Problem (LB0) and the improved (Root) lower bounds, computed
at the root node with respect to the optimal solution value, the number of nodes (nd)
and the number of PEC (PEC) and LPI (LPI) inequalities generated along the whole
branch-decision tree. The next four columns in Table 1 concern the heuristic part of
the algorithm: the first and the third give the percentage gaps of the initial upper bound
(UBO0) with respect to the initial lower bound (LB0) and the optimal solution value (OPT),
respectively; the second and the fourth columns, instead, give the computing times needed
to close to 1% the gaps between the current upper bound (UB) with respect to the current
lower bound (LB) and OPT, respectively. In other words, from each pair of columns in this
part of the table we obtain an indication of the behavior of the branch-and-cut if it is used
as a heuristic: for the first pair the gap is computed on line by comparing the decreasing
upper bound (UB) with the increasing lower bound (LB), whereas for the second pair the
computation is off line with respect to the optimal solution value. Finally, the last three
columns in Table 1 refer to the optimal solution value (OPT), to the number of vehicles
used in the optimal solution (nv), and to the overall computing time (time), respectively.
Moreover, for each pair (m,n) the results of the 10 reported instances are summarized in
the table by an additional row with the average values of the above-mentioned entries.

Note that the percentage gaps reported in this table and in the following ones are
obtained by purging the solution values of the additional costs of the vehicles (2 times
5000, for each used vehicle) in order to have more significant values.

Tables 2 and 3 report the same information for the cases of 3 and 5 depots, respectively.
In particular, 40 instances are shown in Table 2, which correspond to four values of n €
{100, 200, 300,400}, whereas in Table 3 we consider 30 instances corresponding to three
values of n € {100,200, 300}.

15

Table 1: Randomly generated instances with m = 2; computing times are in Digital Alpha
533 MHz seconds.

% Gap LB % Gap |timeto 1% | % Gap |[timeto 1%

ID| LBO Root|nd PEC LPT|UBOLBO| UB_LB |UBO_OPT | UBOPT | OPT | ny | time
2-100-01 | 0.2444 0.0000 1 102 9 1.69 0.05 1.44 0.03| 279463 25 0.35
2-100-02 | 0.9400 0.0000 1 120 11 1.30 0.29 0.35 0.02| 301808 27 0.38
2-100-03 1 0.9198 0.0000 1 126 9 2.91 0.32 1.96 0.22| 341528 31 0.45
2-100-04 | 1.7379 0.0000 1 170 19 3.23 0.34 1.44 0.32| 289864 26 0.67
2-100-05|2.5750 0.0000 1 277 26 4.04 1.14 1.36 0.09| 328815 30 1.45
2-100-06 | 0.8830 0.0000 1 68 8 0.96 0.01 0.07 0.00| 360466 33 0.28
2-100-07 | 0.5411 0.0000 1 102 7 1.51 0.01 0.97 0.00 | 290865 26 0.42
2-100-08 | 1.0636 0.0000 1 118 13 3.61 0.40 2.51 0.22| 337923 31 0.50
2-100-09 [0.6601 0.0000 1 223 20 2.26 0.59 1.59 0.07| 270452 24 0.90
2-100-10 | 0.4427 0.0000 1 170 15 0.89 0.01 0.45 0.00| 291400 26 0.63
Average [1.0008 0.0000|1.0 147.6 13.7 2.24 0.32 1.21 0.10 27.9 0.60
2-200-01 | 0.5599 0.0000 1 392 30 0.94 0.09 0.38 0.08 | 545188 49 5.23
2-200-02 [0.8168 0.0000 3 668 22 2.03 3.80 1.20 1.03| 617417 56 13.58
2-200-03|1.4321 0.0123| 14 839 41 2.22 4.23 0.75 0.10| 666698 61 26.73
2-200-04 | 0.2559 0.0000 1 319 38 1.29 0.34 1.03 0.14| 599404 54 4.17
2-200-05 | 0.6807 0.0045 3 1354 49 1.46 4.20 0.77 0.07| 626991 56 27.73
2-200-06 | 0.6262 0.0000 1 312 30 1.60 3.08 0.96 0.10| 592535 54 5.15
2-200-07 | 0.8525 0.0441 7 3467 79 1.28 3.34 0.42 0.07]| 611231 55 77.43
2-200-08 |1 0.7922 0.0231 4 2595 61 1.87 4.68 1.06 2.00| 586297 53 61.02
2-200-09 | 0.4396 0.0000 1 634 32 1.53 2.03 1.09 1.40 | 596192 54 9.10
2-200-10 | 0.4629 0.0000 1 261 29 0.84 0.06 0.37 0.05| 618328 56 2.88
Average [0.6919 0.0084|3.6 1084.1 41.1 1.51 2.59 0.80 0.50 54.8 23.30
2-300-01|1.0487 0.0169| 23 4778 71 2.75 22.19 1.67 8.62 | 907049 83| 349.38
2-300-02 | 0.6277 0.0025 3 1306 74 1.44 9.13 0.81 0.48 | 789658 71 46.30
2-300-03]0.2890 0.0123| 19 1234 67 1.31 3.61 1.02 0.66 | 813357 74 61.12
2-300-04 | 0.6514 0.0000 1 1312 51 1.37 12.91 0.71 0.33| 777526 70 51.37
2-300-05|0.4559 0.0000 1 557 46 1.61 9.75 1.15 7.47| 840724 76 19.25
2-300-06 | 0.5946 0.0205 5 1499 50 1.24 6.18 0.64 0.23 | 828200 75 66.55
2-300-07]0.4223 0.0090 3 1200 49 1.14 4.30 0.72 0.12| 817914 74 30.67
2-300-08 | 0.5443 0.0000 1 880 60 1.53 1.08 0.97 0.15| 858820 78 33.02
2-300-09 | 0.6855 0.0073 3 1902 68 1.57 11.54 0.88 0.27 | 902568 82 77.20
2-300-10 | 0.8440 0.0142 3 2580 55 1.70 14.00 0.84 0.55| 797371 72| 106.72
Average [0.6163 0.0083 6.2 1724.8 59.1 1.57 9.47 0.94 1.89 — 75.5 84.16
2-400-01|0.4177 0.0058 7 5559 95 1.26 12.34 0.84 1.02 | 1084141 98 | 431.27
2-400-02 | 0.6690 0.0000 1 3153 81 1.76 24.42 1.08 6.75 | 1028509 93| 171.45
2-400-03 | 0.8149 0.0000 1 2530 127 1.85 31.27 1.02 1.47 | 1152954 105| 137.85
2-400-04 |1 0.7740 0.0107 5 5593 86 1.89 20.16 1.10 5.71 1112589 101 | 412.78
2-400-05]0.7163 0.0306 9 7743 89 1.46 19.61 0.73 0.78 | 1141217 104 | 670.77
2-400-06 | 0.3347 0.0000 1 1270 79 1.19 5.12 0.85 0.77 11100988 100 61.57
2-400-07 | 1.3563 0.0000 1 4175 111 2.67 76.70 1.28 6.13 | 1237205 113 398.30
2-400-08 | 0.5709 0.0000 1 2569 74 1.46 25.05 0.88 0.43 1111077 101 | 158.92
2-400-09 | 0.8082 0.0000 1 4286 90 2.34 79.45 1.51 13.95 | 1104559 100 | 410.67
2-400-10|0.6185 0.0021 3 2444 72 1.84 27.33 1.21 4.70 1086040 99| 125.85
Average [0.7081 0.0049|3.0 3932.2 90.4 1.77 32.15 1.05 417 — 101.4| 297.94
2-500-01 {0.5132 0.0051 5 10994 112 2.26 58.38 1.74 26.06 | 1296920 118 |1222.15
2-500-02 | 0.5425 0.0115| 22 19595 126 0.84 0.99 0.29 0.98 | 1490681 136 | 2667.48
2-500-03 | 0.6780 0.0059 5 7540 151 2.10 77.52 1.41 35.77 | 1328290 121 854.77
2-500-04 | 0.4815 0.0032 3 12196 185 1.47 67.62 0.98 0.70 | 1373993 125 1351.38
2-500-05]0.4315 0.0008 5 7928 143 1.29 26.53 0.85 1.38 | 1315829 119| 807.68
2-500-06 | 0.6797 0.0017 | 14 11265 113 1.61 57.39 0.92 0.92 | 1358140 124 |1 1155.47
2-500-07 | 0.8368 0.0063 3 5175 103 2.53 141.60 1.67 66.40 | 1436202 131]1025.73
2-500-08 [0.5110 0.0000 1 2941 64 1.59 52.30 1.07 2.09 1279768 116 | 356.93
2-500-09 | 0.6671 0.0000 1 5331 163 1.47 74.96 0.79 2.98 | 1462176 134 | 588.92
2-500-10 | 0.7041 0.0008 3 8085 95 1.96 86.75 1.24 13.28 | 1390435 127 1576.82
Average | 0.6045 0.0035|6.2 9105.0 125.5 1.71 64.40 1.10 15.06 — 125.1|1160.73

16

Table 2: Randomly generated instances with m = 3; computing times are in Digital Alpha
533 MHz seconds.

% Gap LB % Gap |timeto 1% | % Gap |time to 1%

ID| LBO Root| nd PEC LpI|YB0ZLBO| UB_LBE |UBO_OPT | UB_OPT | OpT | nv | time
3-100-01 | 1.4330 0.0938] 11 867 12 3.60 2.14 2.12 1.35] 307705] 28| 9.22
3-100-02 [1.1900 0.0000| 1 222 12 1.50 0.97 0.30 0.02| 300505| 27| 1.05
3-100-03 | 1.2729 0.0000| 1 441 14 1.78 0.80 0.48 0.02| 316867 | 29| 2.22
3-100-04 | 2.3361 0.0000| 1 468 13 2.72 1.05 0.32 0.02| 336026| 31| 237
3-100-05 | 0.5087 0.0000| 1 223 12 2.32 0.10 1.80 0.10| 278896 | 25| 1.25
3-100-06 | 2.4235 0.0035| 3 419 19 2.91 1.35 0.42 0.02| 368925| 34| 235
3-100-07 | 1.5778 0.0000| 1 368 14 2.80 2.48 1.18 0.08| 287190 | 26| 2.78
3-100-08 | 2.4476 0.0000| 1 436 10 4.61 1.53 2.05 0.66 | 338436| 31| 3.55
3-100-09 | 1.3260 0.0000| 1 270 9 1.34 0.42 0.00 0.02| 275943 | 25| 1.13
3-100-10 | 2.8307 0.0000| 1 306 12 4.98 1.95 2.01 1.02| 285930 26| 2.03
Average | 1.7346_0.0097 | 2.2 402.0 12.7 2.86 1.28 1.07 0.33 282 280
3-200-010.9718 0.0832| 14 4108 49 2.69 10.86 1.69 3.60| 551657 | 50| 151.05
3-200-02 | 1.1254 0.0502| 25 3943 59 2.39 3.68 1.24 0.35| 543805 | 50| 124.93
3-200-03 | 1.2151 0.0000| 1 290 15 2.63 3.68 1.38 341 615675| 57| 7.18
3-200-04 | 2.2455 0.0169| 3 2752 34 4.62 16.40 2.27 512 557339 | 51| 112.22
3-200-05|1.1319 0.0000| 1 1692 33 2.03 6.49 0.88 0.22| 626364| 57| 55.12
3-200-06 | 0.9749 0.0000| 1 405 12 2.40 3.60 1.40 1.32| 558414| 51| 6.65
3-200-07|1.5283 0.0044| 3 1053 24 3.75 7.80 2.16 2.45 | 595605 | 55| 33.48
3-200-08 [1.2196 0.0000| 1 779 24 1.99 6.65 0.74 0.08| 562311 | 51| 15.22
3-200-09|1.7184 0.0549| 11 4553 19 2.91 13.31 1.14 5.51| 671037 | 62| 196.08
3-200-10|1.1409 0.0000| 1 1308 43 3.30 6.73 2.12 2.23 | 565053 | 52| 25.50
Average | 1.3272_0.0210| 6.1 20883 31.2 2.87 7.92 150 243 - [536] 7274
3-300-010.9527 0.0047| 7 1778 32 2.21 23.63 123 1.35| 834240| 77| 87.43
3-300-02|1.0743 0.0185| 20 10943 77 2.94 30.31 1.84 9.60 | 830089 | 76| 706.75
3-300-03 |1.9330 0.0117| 3 3358 44 4.55 34.40 2.53 8.95| 799803 | 74| 286.57
3-300-04 | 1.2872 0.0042| 3 2260 44 2.90 46.55 1.58 14.59 | 850929 | 78| 166.17
3-300-05|1.0288 0.0222| 5 5264 26 2.97 55.72 1.92 10.77| 837460| 77| 576.20
3-300-06 | 0.9292 0.0000| 1 2758 33 2.63 21.13 1.67 10.37| 795110| 73| 142.05
3-300-07 | 0.5823 0.0013| 3 2276 43 2.03 21.72 1.43 1.34| 774873| 70| 138.10
3-300-08 | 1.2559 0.0045| 3 2739 26 3.51 76.69 2.21 20.62| 916484 | 85| 261.42
3-300-09 | 1.3253 0.0282| 9 6254 36 3.25 32.35 1.88 10.48 | 830364 | 77| 560.77
3-300-10 | 1.0055 0.0199 | 21 8900 96 2.21 19.15 1.19 5.37| 850515| 78| 472.95
Average | 1.1374_0.0115| 7.5 4653.0 45.7 2.92 36.17 1.75 934 - |765] 339.84
3-400-011.5358 0.0074| 5 10679 65 3.83 211.20 2.24 102.55 | 1141067 | 106 | 3188.92
3-400-02 | 0.4626 0.0167| 13 21240 97 1.18 7.83 0.71 0.60 [1059717 | 97 |1617.23
3-400-03 | 0.6149 0.0053 | 8 14811 79 1.30 50.25 0.68 1.37(1124169 | 103 | 2205.48
3-400-04 | 1.1152 0.0246 | 35 24730 74 2.68 66.53 1.53 25.66 | 1091238 | 101 |5142.95
3-400-05 | 0.7706 0.0000| 1 4548 65 2.11 61.78 1.33 3.47 (1159027 | 107| 429.15
3-400-06 | 1.2421 0.0195| 21 26217 139 2.97 117.21 1.69 17.11(1042121 | 96 | 4476.55
3-400-07 |1.0737 0.0255| 21 25868 111 2.16 83.86 1.06 14.51| 1104156 | 101 [4144.12
3-400-08 | 0.9852 0.0398 | 43 32159 102 2.21 91.88 1.21 11.98 1050490 | 97 [5480.95
3-400-09 | 1.1130 0.0000| 1 5732 57 2.69 58.85 1.54 38.39 | 1007810 | 93| 775.32
3-400-10 | 0.5863 0.0203 | 32 34646 130 1.48 34.92 0.89 1.10 | 1063571 | 98 | 4315.67
Average | 0.9499 0.0159 | 18.0_20063.0_91.9 2.26 78.43 129 2167 - [99.9]3177.63

17

Table 3: Randomly generated instances with m = 5; computing times are in Digital Alpha
533 MHz seconds.

% Gap LB % Gap |timeto 1% | % Gap |time to 1%

ID| LBO Root| nd PEC LPrI|UBLBO| UB-LBE |UBO-OPT | UB_OPT | OPT | nv | time
5-100-01 | 3.3840 0.0000| 1 738 5 6.28 3.25 2.68 0.68[365501 | 34| 6.87
5-100-02 | 2.1433 0.0000 | 1 454 3 4.00 1.64 1.77 0.74 295568 | 27| 2.95
5-100-03 | 4.6979 0.1824 | 21 3240 10 7.53 9.60 2.48 9.16 314117 | 29| 58.02
5-100-04 | 1.5884 0.0552| 13 1516 5 2.63 3.17 1.00 0.07[340785 | 31| 25.18
5-100-05 | 0.9784 0.0000 | 1 245 1 2.27 0.55 1.27 0.44 306369 | 28| 1.25
5100-06 |4.0112 0.1091 2 1012 5 6.38 3.42 2.11 1.30 333833 | 31| 11.32
5-100-07 | 3.2928 0.0895| 11 1871 8 6.66 6.30 3.15 1.50 | 296816 | 27| 30.07
5-100-08 | 2.6971 0.1091| 14 1862 14 5.99 6.85 3.13 6.85 355657 | 33| 34.18
5-100-09 | 1.5456 0.0075 | 3 581 2 3.20 1.46 1.61 0.88]306721 | 28| 4.58
5-100-104.3193 0.2840 | 24 3499 8 6.19 3.90 1.60 0.60 291832 | 27| 50.48
Average | 2.8658 0.0837| 9.1 1501.8 6.1 5.11 4.01 2.08 2.22 295 22.49
52000124575 0.1190| 13 8467 8 6.10 83.42 3.49 74.33 619511 58| 603.50
5-200-02 | 2.4653 0.0463| 6 2971 3 5.53 19.05 2.93 14.73 601049 | 56| 123.45
5-200-03 | 1.9709 0.0435| 5 4452 4 6.40 44.23 4.30 32.41|623685 | 58| 247.73
5-200-04 | 5.5508 0.1391 | 31 12267 14 10.05 82.40 3.94 35.05 | 622408 | 58| 883.22
5-200-05|2.1769 0.0000 | 1 4681 2 4.87 45.24 2.59 6.42| 597086 | 55| 221.12
5-200-06 | 1.9155 0.0253| 4 3938 1 2.90 28.09 0.93 0.37 479571 | 44| 160.57
5-200-07 | 2.4430 0.0000 | 1 2624 2 4.83 27.24 2.27 26.72 | 553880 | 51| 128.22
5-200-08 | 1.6582 0.0574 | 11 6393 0 3.33 70.28 1.62 43.35|595291 | 55| 594.38
5-200-09 | 1.4916 0.0000 [1 3991 0 4.33 45.66 2.77 34.16 | 588537 | 54| 220.32
5200-10|1.1019 0.0207| 9 4869 16 2.10 14.03 0.97 0.43 593183 | 54| 231.77
Average | 2.3232 0.0451| 8.2 5465.3 5.0 5.04 45.96 2.58 26.80 54.3| 341.43
530001 |1.3620 0.0139| 7 10383 7 3.09 153.03 1.68 9.77 784685 | 72 |2006.65
5-300-02 | 2.1725 0.0426| 13 11445 16 4.55 188.02 2.28 129.37 | 856341 | 80| 1899.32
5-300-03|2.6642 0.0233 6 14724 5 5.42 319.76 2.61 148.86 | 900205 | 84 {3040.72
5-300-04 | 2.1696 0.0072| 3 6277 1 4.04 111.28 1.78 109.95 | 815586 | 76| 847.63
5-300-05 | 1.9572 0.0393 | 21 20860 14 4.23 153.60 2.19 153.60 | 868503 | 81| 4506.17
5-300-06 | 1.9015 0.0561| 9 21257 20 5.17 278.69 3.17 166.24 | 787059 | 73 | 4863.87
5-300-07 | 1.5106 0.0131 | 13 13876 5 4.25 129.78 2.67 11.70 | 811301 | 75| 2799.87
5-300-08 | 1.8754 0.0576 | 12 25377 9 4.73 307.65 2.77 67.12| 780788 | 72 |5796.38
5-300-09 | 1.9037 0.0098 | 6 13507 0 3.79 168.88 1.81 24.00 | 850934 | 79 | 3148.93
5-300-102.2229 0.0220| 15 15177 8 5.53 179.31 3.19 65.81 | 819068 | 76 | 2395.40
Average | 1.9740 0.0285 [10.5_15288.3 8.5 4.48 199.00 2.42 88.64 76.8 [3130.49

As expected, the larger the number of depots the harder the instance for our branch-
and-cut approach, both in terms of computing times and the number of cuts that need to
be generated. The number of branching nodes, instead, increases only slightly with m.

The behavior of the algorithm as a heuristic is quite satisfactory, in that short comput-
ing time is needed to reduce to 1% the gap between the heuristic value UB and the optimal
solution value. For the case of 2 depots, this is not surprising as the initial heuristic of
Dell’Amico, Fischetti and Toth [4] is already very tight; for the other cases (m € {3,5}),
the information available during the cutting-plane phase proved very important to drive
the heuristic. The overall scheme also exhibits a good behavior as far as the speed of
improvement of the lower bound is concerned, which is important to provide an on-line
performance guaranteed of the heuristic quality.

In Table 4, the instances of the previous tables are aggregated in classes given by the
pair (m,n), and the average computing times in Tables 1-3 are decomposed by considering
the main parts of the branch-and-cut algorithm. In particular, we consider the time spent

18

for solving the linear programming relaxations (LP), the pricing time (PRI), the separation
time (SEP), the time spent at the root node (ROOT) and the time spent for the heuris-
tic part of the algorithm (HEUR). Finally, the last two columns compare the computing
times obtained by our branch-and-cut algorithm with those reported in Bianco, Mingozzi
and Ricciardelli [1] for their set-partitioning approach (algorithms B&C and BMR, respec-
tively). As a rough estimate, our Digital Alpha 533 MHz is about 50 times faster than the
PC 80486/33 Mhz used in [1].

Table 4: Randomly generated instances: average computing times over 10 instances; CPU
seconds on a Digital Alpha 533 MHz.

Partial Computing Times Overall

m n LP PRI SEP ROOT HEUR| B&C BMR
100 0.25 0.10 0.10 0.60 0.07 0.60 81
2000 14.04 236 297 13.34 0.90| 23.30 647"

2 300| 5242 1091 7.39 46.56 3.83| 84.16 755"
400| 195.86 29.08 30.65 225.28 9.42) 29794 -
500| 787.99 100.59 106.97 712.47 35.96|1160.73 —
100 1.69 022 0.33 2.30 0.20 2.80 109
200| 53.03 5.10 5.33 39.80 1.96| 72.74 835"

3 300| 254.41 21.65 22.07 213.68 9.30| 339.84 1472*
40012549.43 151.46 160.82 1187.70 44.94|3177.63
100] 16.00 1.06 2.29 9.31 0.63] 2249 186

5 200| 271.52 10.75 24.45 189.98 8.00| 341.43 1287*
300|2645.93 68.97 133.37 1562.15 45.23|3130.49 1028*

* Average values over 4 instances ([1]; BMR computing times are CPU seconds on a PC

80486/33).

A direct comparison between algorithms B&C and BMR in Table 4 is not immediate,
since the instances considered in the two studies are not the same. Moreover, for n > 200
the set-partitioning approach was tested by its authors on only 4 (as opposed to 10)
instances, and no instance with m = 2 and n > 400 nor with m > 3 and n > 400
was considered by BMR. More importantly, the set-partitioning solution scheme adopted
by BMR is heuristic in nature, in that it generates explicitly only a subset of the possible
feasible duties, chosen as those having a reduced cost below a given threshold. Therefore
its capability of proving the optimality of the set-partitioning solution with respect to the
overall (exponential) set of columns depends heavily on the number of columns fitting the
threshold criterion, a figure that can be impractically large in some cases.

Table 5 presents the results obtained on a subset of the instances (chosen as the
largest ones), by disabling in turn one of the following branch-and-cut mechanisms: the
fractionality-persistency criterion within the branching rule (“without FP”), the convex
combination of heuristic solutions when cutting the fractional point (“without CC”), the

19

generation of nested cuts within PEC separation (“without NC”). Finally, the last two
columns in Table 5 give the results obtained by using a basic branch-and-cut algorithm
(“basic B&C”) that incorporates none of the above tools. In the table, the first two columns
identify, as usual, the class of instances considered. For each version of the algorithm two
columns are given, which report averages (over the 10 instances) on the number of nodes
and the computing time, respectively. A time limit of 10,000 CPU seconds has been im-
posed for each instance. The number of possibly unsolved instances within the time limit
is given in brackets. The number of nodes and the computing time considered for un-
solved instances are those reached at the time limit, i.e., averages are always computed
over 10 instances so as to give a lower bound on the worsening of the branch-and-cut algo-
rithm without the considered tools (a larger time limit would have produced even greater
worsenings).

Table 5: Randomly generated instances: different versions of the branch-and-cut algorithm.
Average computing times over 10 instances; CPU seconds on a Digital Alpha 533 MHz.

B&C without FP without CC without NC basic B&C

m n| nd time nd time nd time nd time nd time

300 6.2 &4.16| 7.8 96.01 7.1 94.07 5.3 105.55 9.2 141.69

2 400 3.0 297.94 9.1 466.32 4.5 325.90 8.4 519.42 31.3 1239.70
500| 6.2 1160.73| 17.5 1691.56 8.1 1238.22 10.3 1389.99 60.3 6171.15 (3)

3 300 7.5 339.84| 10.5 422.39 8.7 380.73 86 562.11 17.6 509.06
400|18.0 3177.63|196.3 5281.56 (4)|188.5 5010.50 (2)|125.1 4395.07 (2)|326.1 6385.34 (6)

5 200| 8.2 341.43| 16.0 457.92 11.5 615.87 15.8 562.11 20.4 810.90
300(10.5 3130.49| 24.8 4011.97 (1)|640.9 7716.95 (6)| 10.8 3611.57 415.3 7745.74 (5)

The results of Table 5 prove the effectiveness of the improvements we proposed in
speeding up the branch-and-cut convergence. This is particuarly interesting in view of
the fact that these rules are quite general and can be applied/extended easily to other
problems.

In Figure 3 we give an example of how, at the root node, the speed of convergence
of the lower bound depends on the different versions of the branch-and-cut algorithm
considered in the previous table (except for the version without fractionality-persistency
in the branching rule, that of course does not differ from B&C at the root node). The
instance 2-500-01 is considered: the final lower bound at the root node is obtained in 800
CPU seconds by B&C, in 1100 CPU seconds when the nested cuts are not generated, in
1400 CPU seconds when the convex combination is disabled, and in 2300 CPU seconds by
the basic B&C.

Finally, Table 6 reports the results obtained by the branch-and-cut algorithm on a set of
5 real-world instances (with n € {184, 285,352,463, 580}) that we obtained from an Italian
bus company. The bus company currently has m = 3 bus depots to cover the area under
consideration, and was interested in simulating the consequences of adding/removing some
depots. This “what-if” analysis resulted in 3 instances for each set of trips, each associated

20

0.100 -
0.090 -
0.080 - B&C

0.070 - —=— without CC

0.060 + —e—without NC

0.050 -

——DbasicB&C

0.040 -

0.030 -

0.020 -

% LB Gap (w.r.t. the optimal solution value)

0.010 -

0.000\\\\\\\\\\\\\\\\
R N N

Computing Time (CPU seconds)

Figure 3: Instance 2-500-01: lower bound convergence at the root node for different
versions of the cutting plane generation.

with a different pattern of depots (i.e., m € {2,3,5}). As for the randomly generated
instances, a big value of 5000 is added to the cost of each arc visiting a depot.

The entries in the table are the same as in Tables 1-3. In addition, as in Table 4, we
report the computing times of the main components of the algorithm.

The real-world instances appear considerably easier to solve for our branch-and-cut al-
gorithm than those considered in the randomly-generated test bed. Indeed, the computing
times reported in Table 6 are significantly smaller than those corresponding to random
instances, and the number of branching nodes is always very small. In our view, this is
mainly due to the increased average number of trips covered by the duty of each vehicle:
in the real-world instances of Table 6, each duty covers on average 7-9 trips, whereas for
random instances this figure drops to the (somehow unrealistic) value of 3-4 trips per duty.
This improved performance is an important feature of our approach, in that set-partitioning
solution approaches are known to exhibit the opposite behavior, and run into trouble when
the number of nonzero entries of each set-partitioning “column” (duty) increases.

21

Table 6: Real-world instances: computing times in Digital Alpha 533 Mhz seconds.

% Gap LB % Gap |time to 1%| % Gap |[time to 1% Computing Times

ID| LBO Root|nd PEC LPI\YBLLBOI UB_LB |UBLOPT| UB-OFT | OpPT |nv| LP PRI SEP ROOT HEUR B&C
2-184-00(0.2471 0.0000f 1 175 18 1.26 2.23 1.01 0.16| 320304 |26 04 4.5 0.3 6.0 0.4 6.00
3-184-00 (1.1120 0.0000| 1 1272 17 2.88 10.62 1.73 6.69| 318904 | 26 9.9 8.7 3.0 28.2 2.4 28.20
5-184-00 (1.7884 0.0428| 4 2972 4 5.01 85.78 3.13 85.78| 316083 | 26| 48.3 122.1 129 135.6 8.8 209.30
2-285-00 [0.1859 0.0000| 1 1243 120 0.86 0.38 0.67 0.38 | 488767 |40| 14.8 7.2 6.4 38.4 3.7 38.43
3-285-00 {0.5990 0.0127| 7 4948 97 2.66 37.45 2.04 34.89| 486315 |40| 109.2 60.2 23.6 153.1 19.9 258.48
5-285-00 [0.9542 0.0160| 9 15089 23 4.53 146.29 3.53 114.05| 481113 40| 556.1 187.0 108.4 536.3 79.5 1135.70
2-352-00 [0.1080 0.0000| 1 1865 76 0.95 0.57 0.84 0.57| 541814 |44| 30.5 13.8 12.2 77.9 8.6 77.88
3-352-00(0.3195 0.0000| 1 3483 86 1.82 50.05 1.50 26.47| 539221 44| 107.8 354 254 243.3 38.8 243.35
5-352-00 [0.6884 0.0118 |21 13705 20 3.27 250.27 2.56 199.75| 533404 |44(1066.2 427.1 137.3 1189.8 1944 2138.83
2-463-00 {0.0420 0.0000| 8 11353 498 0.73 0.98 0.69 0.98| 660839 | 53| 394.1 79.0 189.0 574.3 41.8 920.93
3-463-00 [0.1262 0.0024| 7 16614 148 1.49 87.09 1.36 58.05| 6575565 | 53(1233.5 165.2 205.6 1179.4 120.5 1974.92
5-463-00 [0.2691 0.0033 | 15 35272 35 2.18 1041.57 1.91 812.77| 650382 | 53|5300.8 650.2 788.7 5719.9 1049.4 8874.92
2-580-00 0.0195 0.0000] 1 8508 556 0.30 1.42 0.28 1.42| 838643 | 68| 393.4 86.2 223.6 924.8 51.9 924.80
3-580-00 (0.0273 0.0000| 1 8256 114 0.76 3.52 0.73 3.52| 834031 | 68| 618.5 115.5 1644 11399 1374 1139.95
5-580-00 [0.1386 0.0209| 1 30578 2 1.38 5978.79 1.24 510.60 | 823549°|68|4200.2 519.7 1554.9 10000.0 3125.2 10000.00

¢ Best solution found within the time limit of 10,000 seconds, lower bound value 823519.

22

7 Conclusions

Vehicle scheduling is a fundamental issue in the management of transportation companies.
In this paper we have considered the multiple-depot version of the problem, which belongs
to the class of the NP-hard problems.

We argued that a “natural” ILP formulation based on arc variables has some advantages
over the classical “set partitionig” or “multi-commodity flow” formulations, commonly used
in the literature, mainly for the cases in which only few depots are present.

We addressed a basic ILP formulation based on variables associated with trip tran-
sitions, whose LP relaxation is known to produce rather weak lower bounds. We then
enhanced substantially the basic model by introducing new families of valid inequalities,
for which exact and heuristic separation procedures have been proposed. These results
are imbedded into an exact branch-and-cut algorithm, which also incorporates efficient
heuristic procedures and new branching and cutting criteria.

The performance of the method was evaluated through extensive computational testing
on a test-bed containing 135 random and real-life instances, all of which are made publicly
available for future benchmarking.

The outcome of the computational study is that our branch-and-cut method is com-
petitive with the best published algorithms in the literature when 2-3 depots are specified,
a situation of practical relevance for medium-size bus companies. As expected, when sev-
eral depots are present the performance of the method deteriorates due to the very large
number of cuts that need to be generated.

The performance of our branch-and-cut method turned out to be greatly improved for
real-world instances in which each vehicle duty covers, on average, 7-9 trips (as opposed
to the 3-4 trips per duty in the random problems). Evidently, the increased number of
trip combinations leading to a feasible vehicle duty has a positive effect on the quality of
our model and on the number of cuts that need to be generated explicitly. This behavior
is particularly important in practice, in that the performance of set-partitioning methods
is known to deteriorate in those cases where each set-partitioning “column” (duty) tends
to contain more than 3-5 nonzero entries. Hence our methods can profitably be used to
address the cases which are “hard” for set-partitioning approaches.

We have also shown experimentally the benefits deriving from the use of simple cut
selection policies (nested cuts and deeper fractional points) and branching criteria (frac-
tionality persistency) on the overall branch-and-cut algorithm performance.

Finally, significant quality improvements of the heuristic solutions provided by the
method of Dell’Amico, Fischetti and Toth [4] have been obtained by exploiting the primal
and dual information available at early stages of our branch-and-cut code.

Future directions of work include the incorporation in the model of some of the ad-
ditional constraints arising in practical contexts, including “trip-objections” that make it
impossible for some trips to be covered by vehicles of certain pre-specified types or depots.

23

Acnowledgements

Work supported by C.N.R., “Progetto Finalizzato Trasporti 117, Italy.

References

1]

L. Bianco, A. Mingozzi and S. Ricciardelli. “A Set Partitioning Approach to the
Multiple Depot Vehicle Scheduling Problem”. Optimization Methods and Software 3,
163-194, 1994.

A. Caprara, M. Fischetti. “Branch-and-Cut Algorithms”. In M. Dell’Amico, F. Maffi-
oli, and S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization,
pages 45 63. John Wiley & Sons, Chichester, 1997.

G. Carpaneto, M. Dell’Amico, M. Fischetti, P. Toth. “A Branch and Bound Algorithm
for the Multiple Depot Vehicle Scheduling Problem”. Networks 19, 531-548, 1989.

M. Dell’Amico, M. Fischetti, P. Toth. “Heuristic Algorithms for the Multiple Depot
Vehicle Scheduling Problem”. Management Science 39(1), 115-125, 1993.

M. Fischetti, P. Toth, “A Polyhedral Approach to the Asymmetric Traveling Salesman
Problem”, Management Science 43, 11, 1520-1536, 1997.

M.A. Forbes, J.N. Holt, A.M. Watts. “An Exact Algorithm for the Multiple Depot
Bus Scheduling Problem”. European Journal of Operational Research 72(1), 115-124,
1994.

A. Lobel. “Optimal Vehicle Schedule in Public Transport”. PhD dissertation, 1998.

A. Lébel. “Vehicle Scheduling in Public Transit and Lagrangean Pricing”, Manage-
ment Science 44, 12, 1637 1649, 1999.

M. Padberg, G. Rinaldi. “A Branch-and-cut Algorithm for the resolution of a Large-
scale Symmetric Traveling Salesman Problems”. SIAM Review 33, 60 100, 1991.

G. Reinelt. Oral communication, 1999.

C. Ribeiro, F. Soumis. “A Column Generation Approach to the Multiple Depot Vehicle
Scheduling Problem”. Operations Research 42(1), 41-52, 1994.

Appendix A: Format of the instances in the test-bed

The instances on which we tested our algorithm are made publicly available for bench-
marking.

24

The data set is composed by 120 random instances generated as in [3] (see Section 6),
and by 15 real-world instances. Each instance is associated with a unique identifier, which
is a string of the form m—-n-NumberOfTheInstance. E. g., ID = 3-200-05 corresponds to
the 5-th instance with 3 depots and 200 trips. For real-world instances, the identifier has
instead the form ID = m-n-00.

For each instance ID we distribute two files, namely ID.cst and ID.tim, containing
the cost matriz and the starting and ending time vectors of instance ID, respectively.

The first line of each ID.cst file contains the m + 2 entries m, n, and nov(i) for i =
1,...,m (where nv(i) is the number of vehicles available at depot D;), whereas the next
lines give the complete (n+m)x (n-+m) cost matrix, whose entries are listed row-wise. Each
file of type ID.tim contains the n trip starting-times followed by the n trip ending-times,
all expressed in minutes from midnight.

25

