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Abstract. How difficult is, in practice, to optimize exactly over the first Chvátal closure of a
generic ILP? Which fraction of the integrality gap can be closed this way, e.g., for some hard
problems in the MIPLIB library? Does it pay to insist on rank-1 Chvátal-Gomory inequalities
until no such inequality is violated, or one should better follow the usual strategy of generating
(mixed-integer) Gomory cuts of any rank from the optimal tableau rows? How effective is
this general-purpose approach for solving matching problems, where the first Chvátal closure
coincides with the integer hull? Can this approach be useful as a research (off-line) tool to guess
the structure of some relevant classes of inequalities, when a specific combinatorial problem is
addressed? In this paper we give, for the first time, concrete answers to the above questions,
based on an extensive computational analysis. Our approach is to model the rank-1 Chvátal-
Gomory separation problem, which is known to be NP-hard, through a MIP model, which is
then solved through a general-purpose MIP solver. As far as we know, this approach was never
implemented and evaluated computationally by previous authors, though it gives a very useful
separation tool for general ILP problems. We report the optimal value over the first Chvátal
closure for a set of ILP problems from MIPLIB 3.0. We also report, for the first time, the
optimal solution of a very hard instance from MIPIB 2003, namely nsrand-ipx, obtained by
using our cut separation procedure to preprocess the original ILP model. Finally, we describe
a new class of ATSP facets found with the help of our separation procedure.

Key words: integer programs, separation problems, Chvátal-Gomory cuts, com-
putational analysis.

1. Introduction

We consider the Integer Linear Program (ILP) problem

min{cT x : Ax ≤ b, x ≥ 0 integer} (1)

where A is a m× n matrix, b ∈ IRm, and c ∈ IRn, along with the two associated
polyhedra:

P := {x ∈ IRn
+ : Ax ≤ b} (2)

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn) (3)
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Unless explicitly stated, we assume that (A, b) is an integer matrix. Moreover,
we assume that PI is strictly contained in P , i.e., that P has fractional vertices.

A Chvátal-Gomory (CG) cut [12,7] is a valid inequality for PI of the form

buT Acx ≤ buT bc , (4)

where u ∈ Rm
+ is called the CG multiplier vector, and b·c denotes lower integer

part. Note that CG cuts depend on P and not directly on PI , i.e., different
formulations Ax ≤ b, x ≥ 0 of the same integer problem can produce different
CG cuts. Inequality (4) is said of rank 1 with respect to formulation Ax ≤ b,
x ≥ 0; CG cuts of rank h ≥ 2 are obtained in a similar way, starting with an
enlarged system containing all CG cuts of rank less than h. It is known [16]
that undominated CG cuts only arise for rational CG multipliers ui ∈ [0, 1)m,
provided that (A, b) is integer.

The first Chvátal closure of P is defined as

P1 := {x ≥ 0 : Ax ≤ b, buT Acx ≤ buT bc for all u ∈ IRm
+ } (5)

A basic result, due to Chvátal [7], is that P1 is indeed a polyhedron, i.e., a finite
number of CG cuts suffice to define it.

Clearly, PI ⊆ P1 ⊆ P . It was shown by Gomory [12,13] that every fractional
vertex x∗ of P associated with a certain basis B (say) of (A, I) can be cut off
by the CG cut in which u is chosen as the i-th row of B−1, where i is the
row associated with any fractional component of x∗. Therefore, P1 ⊂ P in case
P 6= PI , i.e., P1 gives a better approximation of PI than P . In some cases, one
has that PI = P1 as, e.g., for matching problems where undominated CG cuts
correspond to the famous Edmonds’ blossom inequalities [8,16]. Even in case
PI ⊂ P1, however, we are interested in optimizing cT x over P1 in order to get
a hopefully tight lower bound on the optimal value of the original ILP problem
(1).

By the well-known equivalence between optimization and separation [16],
we will address the CG separation problem in which we are given any point
x∗ ∈ IRn and we ask for a hyperplane separating x∗ from P1 (if any). Without
loss of generality we can assume that x∗ ∈ P , since all other points can be cut
by simply enumerating the members of the original inequality system Ax ≤ b,
x ≥ 0. Therefore, the separation problem we are actually interested in, called
CG-SEP in the sequel, reads:

Definition 1. (CG-SEP) Given any point x∗ ∈ P find (if any) a CG cut that
is violated by x∗, i.e., find u ∈ IRm

+ such that buT Acx∗ > buT bc, or prove that
no such u exists.

It was proved by Eisenbrand [10] that CG-SEP is NP-hard, so optimizing over P1

also is. It is worth observing that this result is not in contrast with the fact that
any vertex of P can easily be cut by a CG cuts read from the associated tableau.
Indeed, the equivalence between optimization and separation heavily depends on
the use of the ellipsoid method for linear programming, whose convergence in
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a polynomial number of iterations requires to consider a sequence of points x∗

generated as centers of appropriate ellipsoids, so the point x∗ to be cut off cannot
be assumed to have any special property such as, e.g., being integer, or being
a vertex of P—just for the same reason for which the convergence of binary
search in a logarithmic number of steps requires to consider the middle point
of the current interval at each step (considering any other point can affect the
logarithmic convergence of the method). Therefore the “trick” of replacing x∗

by a nearby vertex of P does not work, even if this operation can be performed
in polynomial time, since the polynomial convergence of the overall ellipsoid
method would be affected. On the other hand, the use of a cutting plane method
based on the simplex method will guarantee that the point x∗ to be cut at any
iteration is a vertex (of the current formulation), but this approach can generate
an exponential number of Gomory cuts (some of which even of rank larger than
1), so this method cannot lead to an efficient approach for optimizing over P1

(besides the fact that the simplex algorithm itself is non-polynomial).
In this paper we address the issue of evaluating the practical strength of

P1 in approximating PI . Our approach is to model the rank-1 CG separation
problem as a MIP model, which is then solved through a general-purpose MIP
solver. As far as we know, this approach was never implemented (and evaluated
computationally) by previous authors1. In Section 2 we describe our MIP model
for CG separation. In Section 3 we investigate computationally the practical
(and theoretical) benefits derived from using our separation tool. In particular,
we report the optimal value over the first Chvátal closure for a set of problems
from MIPLIB 3.0 [4]. We also report, for the first time, the optimal solution of a
very hard instance from MIPIB 2003 [1], namely nsrand-ipx, obtained by using
our CG separation procedure to preprocess the original ILP model. Finally, we
describe a new class of ATSP facets found with the help of our CG separation
procedure.

An extended abstract of the present paper appeared in the proceedings of
the IPCO XI meeting [11].

2. How?

The first question we address is how to solve the NP-hard CG-SEP problem.

2.1. A MIP model

Given the input point x∗ ≥ 0 to be separated, CG-SEP calls for a CG cut αT x ≤
α0 which is (maximally) violated by x∗, where α = buT Ac and α0 = buT bc for
a certain u ∈ IR+. A first CG-SEP model then reads:

1 The fact that CG separation can be modeled as a MIP can instead be attributed to folklore
and has been recently pointed out, e.g., by Caprara and Letchford [5] for the related class of
split cuts.
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max αT x∗ − α0 (6)
αj ≤ uT Aj , for j = 1, · · · , n (7)
α0 > uT b− 1 (8)
ui ≥ 0, for i = 1, · · · , m (9)
α, α0 integer (10)

In the above model, the integer variables αj and α0 play the role of coefficients
buT Ajc and buT bc in the CG cut, respectively. Hence the objective function
(6) gives the amount of violation of the CG cut evaluated for x = x∗, that
we want to maximize. Because of the sign of the objective function coefficients,
the rounding conditions αj = buT Ajc can be imposed though upper bound
conditions on variables αj (j = 1, · · · , n), as in (7), and with a lower bound
condition on α0, as in (8). Note that this latter condition is stated as a strict
inequality so as to avoid an integer uT b be rounded to uT b− 1.

We will now elaborate the basic model above, in the attempt of reducing its
size while improving the quality of the generated CG cuts. We observe that any
variable xj with x∗j = 0 gives no contribution to the cut violation, hence there
is no need to consider it explicitly in the separation model. Indeed, whenever
x∗j = 0 one can simply disregard xj in the separation problem, and recompute the
corresponding coefficient a posteriori, when the optimal u has been determined,
as αj := uT Aj (no time-consuming lifting operations being needed). The same
holds for variables at their upper bound in x∗, which can be complemented
before separation (an operation that affects the right-hand-side vector b).

In addition, as already mentioned, one can assume ui < 1 in case the i-th
row of (A, b) is integer. Indeed, the CG cut associated with any ui ≥ 1 is easily
seen to be a dominated one, as it can be obtained as the sum of the CG cut with
ui replaced by its fractional part, plus buic times the i-th constraint aT

i x ≤ bi.
(Some unexpected practical implications of imposing the above multiplier upper
bound will be discussed in Section 2.2.)

In view of the considerations above, we propose the following MIP model for
CG-SEP:

max
∑

j∈J(x∗)

αjx
∗
j − α0 (11)

fj = uT Aj − αj , for j ∈ J(x∗) (12)
f0 = uT b− α0 (13)
0 ≤ fj ≤ 1− δ, for j ∈ J(x∗) ∪ {0} (14)
0 ≤ ui ≤ 1− δ, for i = 1, · · · ,m (15)
αj integer, for j ∈ J(x∗) ∪ {0} (16)

where J(x∗) := {j ∈ {1, · · · , n} : x∗j > 0} denotes the support of x∗ (possibly
after having complemented same variables and updated b accordingly). In this



Optimizing over the first Chvátal closure 5

model we introduced explicit slack variables fj = uT Aj−buT Ajc to capture the
coefficient fractionality, and required them to be in range [0, 1 − δ] for a small
δ > 0. (Some of these constraints are in fact redundant because of the objective
function, but we observed that their incorporation into the model improves its
numerical behavior.) In our implementation we chose the δ = 0.01; this choice
improves the numerical stability of our method, though it could affect the exact
nature of our CG separation procedure in some pathological cases.

Model (11)-(16) can easily be adapted to deal with the case where the original
model (1) contains free variables and/or equations–in this latter case, condition
(15) is replaced by

−1 + δ ≤ ui ≤ 1− δ. (17)

In addition, one can also allow for the presence of continuous variables2. Indeed,
if a variable xj is not restricted to be integer, one can still derive a valid cut
by setting αj = 0 and imposing uT Aj ≥ 0 (or uT Aj = 0 in case xj is a free
variable).

2.2. Multiplier Selection

Model (11)–(16) typically has several equivalent solutions, hence we are inter-
ested in a clever way of breaking ties. Indeed, our ultimate goal is to find, for
each fractional point x∗ to be cut off, a “round” of Chvátal-Gomory cuts that
are significantly violated and whose overall effect is as strong as possible in im-
proving the current LP relaxation. Moreover, the separation problem should be
solved as quickly as possible. In this view, we have implemented the following
additional mechanisms to guide the MIP solver to provide effective cuts.

1. Making the cut sparser (and stronger). A major practical issue with CG
separation is the strength of the returned cuts. As a matter of fact, several
equivalent solutions of the separation problem typically exist, some of which
produce very weak cuts for the ILP model (1). This is because the separation
problem actually considers the face F (x∗) of PI where all the ILP constraints
that are tight at x∗ (including the variable bounds) are imposed as equalities.
Hence for this face there exist several formulations of a same cut, which are
equivalent for F (x∗) but not for PI . One therefore has to consider the issue
of producing a violated cut that is as strong as possible with respect to PI .
In practice, this leads to the issue of producing “minimal” CG multiplier
vectors with as few nonzero entries as possible. To achieve minimality, we
modified the objective function (11) into

max(
∑

j∈J(x∗)

αjx
∗
j − α0)−

m∑

i=1

wiui (18)

2 The mixed-integer case is however not covered in the original Chvátal’s work, and would
be more appropriately addressed in the context of Gomory mixed-integer cuts.
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by introducing the penalty term −∑
i wiui, where wi = 10−4 for all i. It

is worth observing that, because of equations (12)-(13), one can rewrite the
violation term

∑
j∈J(x∗) αjx

∗
j −α0 in (11) as f0−

∑
j∈J(x∗) fjx

∗
j −

∑m
i=1 uis

∗
i ,

where s∗ = b − Ax∗ ≥ 0. As a consequence, the penalty term wi is only
relevant for tight constraints, and can be omitted when s∗i > 0.

2. Enhancing the “collaborative behavior” of the cuts. Preliminary computa-
tional experiments have shown the presence of the lower/upper bounds (15)
or (17) on the multipliers ui sometimes weaken the overall performance of
our method. This is true, in particular, for the constraints stated in equality
form—removing the conditions −1 < ui < 1 generally produces much bet-
ter results, though these bounds were only meant at choosing a (sparse but)
equivalent formulation of a same violated cut. A possible explanation of this
quite surprising behavior is that removing the lower/upper bounds on the
CG multiplier is beneficial for the MIP heuristics we use (ILOG-Cplex 9.1).
Even more importantly, it seems that leaving more freedom in the choice
of the multipliers produces a beneficial “diversification effect” in breaking
ties between equivalent solutions of the separation model (11)–(16), hence
each call of the MIP separation tends to return cuts that are less corre-
lated with those generated in the previous calls. This results into a better
“collaborative behavior” of the generated cuts (also well known, though not
completely understood, when using rounds of Gomory cuts read from the
tableau). Therefore, in our implementation we allow for the maximum de-
gree of freedom, and remove all the lower/upper bound conditions (15) or
(17) on the CG multipliers (we only keep the nonnegativity conditions asso-
ciated with constraints in less-than-or-equal-to form, as they are required for
the correctness of the method). The underlying idea is that, for slack cuts
with s∗i > 0, the objective function already tends to reduce the absolute value
of the associated multiplier, hence the lower/upper bounds on the multiplier
are somehow redundant. For tight constraints, instead, imposing the bound
conditions is immaterial as far as the separation of the current point x∗ is
concerned, but hurts the MIP heuristics as it reduces their degree of free-
dom. A drawback of this choice is however that (in spite of the penalty terms
in the objective function) the returned cuts may involve multipliers ui with
|ui| > 1, i.e., the cuts may be unnecessarily dense (and quite weak, in case
of less-than-or-equal-to constraints). We therefore implemented a simple cut
post-processing procedure where each CG multiplier returned by the MIP
solver is replaced by its fractional part (when this is mathematically correct)
before deriving the actual CG cut. As shown in the computational tests,
this mechanism turns out to be quite effective, the main so for the problems
involving a large number of equality (i.e., always tight) constraints.

2.3. Implementation in a pure cutting-plane framework

We have embedded our CG cut separator into a pure cutting-plane framework
where we keep generating violated CG cuts of rank 1 (with respect to the original
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formulation of the ILP model at hand), until we stop either because no such
violated cut exists (in which case we have optimized over the first closure),
or because a time-limit condition is met. In our prototype implementation, we
avoided a number of possible improvements consisting, e.g., in designing ad-hoc
heuristics for our MIP separation, or in driving the MIP solver to produce a
sequence of CG cuts with disjoint support. We only used the following simple
mechanisms:

– When the LP relaxation of the original ILP model (1) is solved, we take
all the violated Gomory fractional cuts that can be read from the current
tableau, and skip CG separation; in principle this mechanism could also be
applied in the subsequent iterations, provided that we skip the Gomory cuts
having a non-zero CG multiplier for a constraint that was not in the original
formulation, so as to ensure that all generated cuts are of rank 1.

– The MIP solver for CG separation is invoked with an initial lower bound of
0.01, meaning that we are only interested in CG cuts violated by more than
0.01.

– Each time the MIP solver for CG separation updates its incumbent solution,
we store the corresponding CG cut in a pool, with the aim of adding it to the
current ILP formulation right after the end of the separation phase. Because
of the penalty term that appears in the MIP objective function (11), however,
we found that it is useful to skip all the CG cuts with the same violation∑

j∈J(x∗) αjx
∗
j − α0, except the one with the sparsest support.

– The MIP execution for CG separation is stopped if either the optimal so-
lution has been found, or a prefixed number τ of branching nodes has been
explored after the last update of the incumbent solution, where τ = 1000 if
the violation of the incumbent is less than 0.2, and τ = 100 if the violation
is greater or equal to 0.2.

3. Why?

We next try to give concrete (i.e., supported by computational results) answers
to some important questions related to the practical behavior of our MIP sep-
arator and to the theoretical effectiveness of rank-1 CG cuts, when applied to
a wide range of ILP instances—both with and without a specific combinatorial
structure.

Our implementation of the cutting-plane method uses the commercial soft-
ware ILOG-Cplex 9.1 as the LP solver, whereas the separation problem is solved
through ILOG-Cplex 9.1 MIP solver with “mip emphasis 4” parameter; see [14].
All computing times refer to a Pentium M 1.7 Ghz notebook with 512 MByte
RAM.
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3.1. Can we solve matching problems?

In order to develop and test our code in a “familiar” setting, we addressed first
the Edmonds-Johnson [9] matching problem, defined as:

min{cT x : Ax = b, 0 ≤ x ≤ q, x integer} (19)

where A, b, q are integer arrays of appropriate dimensions, and
∑m

i=1 |aij | ≤
2 holds for all j = 1, · · · , n. A celebrated result of Edmonds [8,9] says that
P1 is an integer polyhedron, i.e., P1 and PI coincide for matching problems.
Moreover, undominated Chvátal cuts (called blossom inequalities) only arise for
u ∈ {0, 1/2}m, and correspond to setting ui = 1/2 for (a) the equations aT

i x = bi

associated with a certain set H (say) and (b) the upper-bound constraints xj ≤
qj associated with a possibly-empty set T ⊆ {1, · · · , n}, such that

∑
i∈H bi +∑

j∈T qj is an odd number. Blossom inequalities can be separated in polynomial
time by an ad-hoc procedure looking for a minimum-weight odd cut is a certain
graph; see Padberg and Rao [17] and Letchford, Reinelt and Theis [15].

A relevant case of matching problems arises when A is the node-edge in-
cidence matrix of a (multi-)graph G = (V, E). Given edge costs ce (e ∈ E)
and node values bv ≥ 0 (v ∈ V ), we call for a minimum-cost partial graph
G′ = (V, M) of G where each node v has degree bv. The b-matching problem can
then be formulated as

min{cT x :
∑

e∈δ(v)

xe = bv for v ∈ V, 0 ≤ x ≤ 1, x integer} (20)

Also belonging to the family of matching problems is the T -join problem, where
each node v has an associated parity bv ∈ {0, 1} and one looks for a minimum-
cost partial graph G′ = (V, M) of G where each node v has an odd degree if
and only if bv = 1. This problem can be formulated as the b-matching problem
above, with the degree equations replaced by

∑
e∈δ(v) xe − 2zv = bv, zv integer,

for all v ∈ V .
Table 1 reports computational results on a set of 2-matching problems taken

from TSPLIB: in all cases, our method was able to compute the optimal solution
over the first Chvátal closure, and produced an integer solution—as expected.

Table 2 shows that the multiplier-selection rules discussed in Section 2.2 are
indeed effective in reducing the overall computing time. In the table, we com-
pare the results of our best algorithm (v.best) with two alternative versions in
which the mechanism for making the cuts sparser (v.dense) or more collabora-
tive (v.bound) has been disabled. For each run, a limit of 100 separation calls
has been imposed. The table clearly shows the performance deterioration—in
particular, when imposing the multiplier bounds.

It should be observed that some of these instances can be solved in a much
shorter computing time by just applying ILOG-Cplex 9.1 MIP solver to the rank-
0 model (20). However, for some hard instances our method also has a practical
interest if used in a cut-and-branch approach where we abort our cut generation
after the addition a certain number of CG cuts, and then switch to a commercial
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ID initial LB Optimum # iter.s # cuts CPU time
eil101 619.0 623.0 17 34 0.95
gr120 6,662.5 6,694.0 38 49 6.14
pr124 50,164.0 51,477.0 83 141 13.96
gr137 66,643.5 67,009.0 15 37 1.26
pr144 32,776.0 33,652.0 35 71 3.86
ch150 6,281.0 6,337.0 76 125 44.41
rat195 2,272.5 2,297.0 125 231 160.74
kroA200 27,053.0 27,426.0 26 81 5.56
kroB200 27,347.0 27,768.0 171 332 215.37
ts225 115,605.0 121,261.0 613 1401 2,914.36
pr226 55,247.5 57,177.0 230 319 166.83
gr229 127,411.0 128,353.0 96 176 87.37
gil262 2,222.5 2,248.0 150 304 195.89
a280 2,534.0 2,550.0 89 129 34.89
lin318 38,963.5 39,266.0 321 589 4,046.93

Table 1. 2-Matching Problems.

v.best v.dense: denser cuts v.bound: ui ∈ [−0.99, 0.99]
# # CPU % gap # # CPU % gap # # CPU % gap

ID iter.s cuts time closed iter.s cuts time closed iter.s cuts time closed
eil101 17 34 1.03 100.0 17 34 1.06 100.0 100 217 40.60 92.6
gr120 38 49 6.45 100.0 42 62 12.88 100.0 100 277 104.50 83.4
pr124 83 141 14.57 100.0 93 134 22.52 100.0 100 210 41.40 25.6
gr137 15 37 1.37 100.0 15 37 1.42 100.0 100 221 62.00 77.2
pr144 35 71 4.29 100.0 38 79 8.05 100.0 100 231 46.50 65.5
ch150 76 125 45.91 100.0 81 154 75.26 100.0 100 276 111.90 57.7
rat195 100 171 79.20 97.4 100 194 104.40 93.3 100 292 167.90 34.8
kroA200 26 81 6.21 100.0 26 81 6.34 100.0 100 250 87.50 80.3
kroB200 100 175 39.60 82.2 100 171 39.20 77.0 100 229 87.70 30.9
ts225 100 172 51.70 84.1 100 179 54.00 88.8 100 245 102.00 37.6
pr226 100 170 33.90 96.1 100 152 31.40 80.8 100 195 73.50 31.3
gr229 96 176 92.60 100.0 100 220 145.70 97.4 100 249 156.40 46.3
gil262 100 194 59.20 97.0 100 202 103.10 96.7 100 247 112.30 48.5
a280 89 129 39.47 100.0 70 100 33.84 100.0 100 176 102.00 50.0
lin318 100 169 73.30 68.0 100 183 93.90 69.4 100 273 210.20 26.6

Table 2. 2-Matching Problems: impact of the multiplier selection rules.

MIP solver for concluding the optimization. This is illustrated in Table 3, where
some large 2-matching instances are solved through ILOG-Cplex MIP solver with
and without the addition of an initial pool of CG cuts generated by 100 calls to
our separation procedure.

3.2. How tight is the first closure for MIPLIB instances?

Table 4 reports the outcome of our experiments on a test-bed made by all
pure-integer problems from MIPLIB 3.0 [4]. The cases where our cutting plane
procedure exceeded a time limit of 3 hours are given in the bottom part of
the table. In this situation, the percentage of integrality gap closed (% gap
closed), computed as 100−100(opt value(PI)−opt value(P1))/(opt value(PI)−
opt value(P )), is underestimated as we only have a lower bound on the optimal
value opt value(P1) over the first closure.
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ILOG-Cplex cut-and-branch
% gap % gap separation total

ID closed nodes time # cuts closed time nodes time
kroB200 100.0 330,913 2,748.24 179 77.1 39.20 348 60.67
ts225 47.1 230,115 1h 193 85.9 46.10 1,018 75.39
pr226 55.0 288,901 1h 168 91.3 31.60 51 35.20
gr229 100.0 15,005 180.79 182 96.9 54.70 7 60.94
gil262 100.0 117,506 2,094.77 172 97.4 54.50 1 58.39
lin318 53.3 117,100 1h 182 69.5 62.60 24,734 814.74

Table 3. 2-Matching Problems: cut-and-branch approach.

% gap
ID Optimum # iter.s # cuts closed time
air03 340,160.00 1 35 100.0 0.65
gt2 21,166.00 192 529 100.0 239.93
lseu 1,120.00 98 195 91.3 1,516.90
mitre 115,155.00 935 1,128 100.0 1,995.15
mod008 307.00 29 118 100.0 12.25
mod010 6,548.00 5 40 100.0 0.74
nw04 16,862.00 127 492 100.0 509.27
p0033 3,089.00 42 115 85.4 16.20
p0548 8,691.00 587 1,809 100.0 1,679.76
stein27 18.00 142 392 0.0 521.00
air04 56,137.00 129 830 ≥ 28.9 3h
air05 26,374.00 212 1,196 ≥ 30.4 3h
cap6000 -2,451,377.00 176 295 ≥ 23.4 3h
enigma 0.00 13,234 53,635 — 3h
fast0507 174.00 21 299 ≥ 4.7 3h
fiber 405,935.18 432 1,880 ≥ 98.8 3h
harp2 -73,899,798.00 1,077 1,549 ≥ 43.9 3h
l152lav 4,722.00 793 2,249 ≥ 60.0 3h
misc03 3,360.00 428 1,154 ≥ 51.0 3h
misc07 2,810.00 618 1,870 ≥ 16.9 3h
p0201 7,615.00 911 2,568 ≥ 60.6 3h
p0282 258,411.00 641 1,920 ≥ 99.9 3h
p2756 3,124.00 1,018 4,358 ≥ 90.4 3h
seymour 423.00 94 3,383 ≥ 23.5 3h
stein45 30.00 14,463 31,643 ≥ 0.0 3h

Table 4. General IPs of the MIPLIB 3.0. Note that for instance gt2 in 192 iterations the
bound is improved to reach the optimal value but no integer solution can be found in the time
limit of 3 hours.

The impact of the mechanisms for making the cuts sparser and more collab-
orative, as described in Section 2.2, is in the MIPLIB context less impressive.
In particular, the diversification effect guaranteed by removing the multiplier
lower/upper bounds appears crucial just for a few specific instances. For exam-
ple, if one does not remove the multiplier bounds when solving problem mitre,
the first 100 separations are completely ineffective in improving the lower bound
value of 114,821.48 obtained after the addition of the Gomory cuts read from
the initial tableau–though 355 new cuts are added. As a comparison, the version
without multiplier bounds brings the lower bound to 114,865.26 after the same
number of iterations, i.e., it closes 13.2% of the gap. In general, however, the
overall impact is not as strong as the one shown in Table 2 for the 2-matching
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case. One possible explanation is that the models in the MIPLIB are more het-
erogeneous (in terms of constraints) and involve fewer equations with respect to
the 2-matching ones, hence our diversification mechanism becomes less impor-
tant. The use of the penalty terms for making the cuts sparser appears instead
quite crucial for the MIPLIB instances too. For example, for problem fiber our
best version closes 91.0% of the initial gap after 100 iterations, while the version
without the penalty terms closes only 33.9% of the gap in the same number of
iterations. This trend is consistently confirmed on the other instances.

Finally, in order to evaluate the viability of using our cut generator in a
cut-and-branch approach akin to the one we described for 2-matching problems,
we made the following experiment on the very hard ILP instance harp2. After
having generated 211 rank-1 CG cuts (53 of which are tight at the end of the
cutting-plane phase) in 100 rounds of separation, we switched to ILOG-Cplex
MIP solver and obtained the optimal solution within 1,500 CPU seconds and
400K nodes (including both cut generation and branching), while ILOG-Cplex
alone required more than 15,000 CPU seconds and 7M nodes to solve the original
instance.

3.3. Beyond the first closure?

The previous experiments show that optimizing over the first closure often gives
a very tight approximation of the integer optimal value, though it may require
a large computing time. Besides the obvious issue of designing more specific
separation procedures for CG cuts, we addressed the possibility of using our
cutting plane method as a pre-processing tool, to be used to strengthen the
user’s formulation by possibly exploiting cuts of Chvátal rank larger than 1.
This idea was evaluated by comparing two different cut preprocessors, namely:

– cpx : Apply ILOG-Cplex 9.1 (with mip emphasis “move best bound”) on the
current ILP model, save the final root-node model (including the generated
cuts) in a file, and repeat on the new model until a total time limit is exceeded.

– cpx-cg : Apply ILOG-Cplex 9.1 (with mip emphasis “move best bound”) on
the current ILP model, followed by 600 seconds of our CG separation pro-
cedure; then save in file the ILP model with all the cuts that are active in
the last LP solution3, and repeat on the new model until a total time limit
is exceeded.

Figure 1 compares the behavior of the two methods above on a very hard in-
stance from MIPLIB 2003, namely timtab1 (viewed here as a pure ILP problem,
as it is correct in this case). The horizontal axis counts the number of calls to
the separation procedures (not the computing time nor the number of generated
cuts), hence comparing the graph slopes can be misleading since every separation
call produced about 10-50 cuts for cpx, but just 1-5 cuts for cpx-cg. Method cpx

3 As we no longer insist in staying within the first Chvátal closure, CG cuts could be
improved by deriving the stronger Gomory mixed-integer cut from the surrogate equations
uT A + s = uT b, s ≥ 0.
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exhibits an early tailing-off phenomenon, while the growth for cpx-cg is more
regular and produces a much better final lower bound.

Fig. 1. Lower bounds provided by cpx and cpx-cg after each call of the separation procedures,
for the hard MIPLIB instance timtab1.

Remarkably, our cut preprocessor allowed us to find, for the first time [1], a
provable optimal solution of value 51,200.00 for the very hard instance nsrand-
ipx (in order to get a pure ILP, the objective function x1 was replaced by its
expression given by the first constraint in the model.) To this end, we applied
ILOG-Cplex 9.1 MIP solver to the tightened formulation returned by cpx-cg after
4800 seconds–this brought the initial LP bound from 49,667.89 to 50,665.71.

3.4. Can we discover new classes of strong inequalities?

The capability of separating over the CG cut class also has an interesting ap-
plication in the off-line study of the facial structure of a specific problem. This
is in the spirit of the widely-used approach of producing (through appropriate
software such as PORTA [6]) an explicit polyhedral description of very small
instances of the problem at hand, but has the advantage of being applicable to
instances of much larger size.

To illustrate a possible application to the Asymmetric Travelling Salesman
Problem (ATSP), we made the following experiment. We set up a partial ATSP
formulation including out- and in-degree equations, plus the subtour elimination
constraints on 2-node sets, i.e., we addressed the NP-hard Asymmetric Assign-
ment Problem (AAP) relaxation studied by Balas [2]. We then applied our sepa-
ration procedure to a specific ATSP instance from TSPLIB, namely the 48-node
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instance ry48p, and stored the CG cuts we found along with the associated CG
multipliers4. One of the returned CG cut had a violation of 0.75, and was as-
sociated with the following non-zero CG multipliers (reported in parenthesis):
out-degree equation for nodes 21 (-0.5), 35 (0.5), 47 (-0.25), 2 (0.5), 26 (0.5),
12 (-0.25), 20 (-0.25), and 48 (-0.5); in-degree equations for nodes 5 (-0.5), 29
(-0.5), 35 (-0.5), 47 (0.25), 4 (-0.5), 42 (-0.5), 32 (0.5), 33 (0.25), and 20 (0.25);
subtour elimination constraint on the 2-node sets {5, 29} (0.5), {21, 47} (0.25),
and {35, 45} (0.5). To simplify our analysis, we normalized the corresponding
cut by adding 1 to all the negative CG multipliers, thus producing an equivalent
CG cut in the so-called h-canonical form [3], i.e., with non-negative and relative
prime coefficients, whose support leaves at least one node h isolated. This form
immediately showed the presence of clones [3], that for the purpose of our anal-
ysis could be removed from the digraph. After renaming the nodes, we were left
with a 8-node digraph and with the following CG multipliers: out-degree equa-
tion for nodes 1 (0.75), 3 (0.75), 4 (0.5), 5 (0.75), and 6 (0.5); in-degree equations
for nodes 1 (0.25), 2 (0.5), 5 (0.25), 6 (0.5), and 7 (0.25); subtour elimination
constraint on the 2-node sets {4, 5} (0.25) and {6, 7} (0.5). The associated CG
cut is αT x ≤ α0, where

α =




0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0
1 1 0 1 0 1 1 0
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0




; α0 = 5 (21)

and it is easily shown (by computational methods) to be facet-defining for ATSP
(and hence for AAP). Using clique lifting [3] we can then obtain a large class of
ATSP facets, that to the best of our knowledge is new.
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