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0 Introduction

The application of polyhedral methods to the TSP started in the mid-1970’s (see [15] and
[16] for the first major breakthroughs). For more than a decade, until the late 1980’s, the
main emphasis was on the symmetric TSP (STSP). There were several reasons for this:
the traveling salesman paradigm suggests a geometric interpretation in which the costs are
symmetric; some of the important real world applications, like in chip manufacturing, are
symmetric; the polyhedral formulation of the symmetric TSP connects nicely to matching
theory and borrows from the latter the family of facet defining 2-matching inequalities;
finally, the asymmetric TSP (ATSP) can be reduced to a STSP on an undirected graph with
twice as many nodes.

Nevertheless, there are good reasons to study the asymmetric TSP on its own. First, the
asymmetric TSP is the more general one, which subsumes the symmetric TSP as a special
case.

Second, the structure of the ATS polytope – i.e. the convex hull of incidence vectors
of TS tours in a digraph – is much richer than that of the STS polytope. Every facet F
of the STS polytope defined on a complete undirected graph G corresponds (trivially) to a
face F ′ of the ATS polytope defined on the directed graph G′ obtained from G by replacing
every edge with a pair of antiparallel arcs. But the symmetric inequalities obtained this way
define only a tiny fraction of the multitude of facets of the ATS polytope, the vast majority
of the latter being defined by asymmetric inequalities that have no counterpart for the STS
polytope defined on G.

Third, there are many important real-world problems that are naturally modeled as
asymmetric TSP’s. In industrial scheduling, the optimal sequencing of jobs on machines
with setup times is an ATSP; more generally, the optimal ordering of any set of tasks or
operations with sequence dependent changeover costs is an ATSP or one of its generalizations.

Fourth, the study of the ATS polyhedron provides certain insights into the structure of
the STS polyhedron. While it is true that an asymmetric facet inducing inequality α′x ≤ α0

for the ATS polytope defined on the digraph G′ typically has no counterpart for the STS
polytope defined on G, it is also true that such an inequality gives rise to a family of facet
inducing inequalities for a symmetric TS polytope defined on another, larger undirected
graph, as will be discussed later in this survey.

Finally, while it is true that an asymmetric TSP can be reduced to a symmetric one,
this symmetric TSP has a very special structure and is defined on an undirected graph with
twice as many nodes as the digraph of the ATSP, and so this transformation is not without
a price.

We next introduce the main notation used in the sequel.
Let G = (V, A) be the complete (loop-free) digraph on n nodes, with n ≥ 5. We associate

a variable xij with every arc (i, j) ∈ A. For S, T ⊆ V , we denote x(S, T ) :=
∑

(xij : i ∈
S, j ∈ T, (i, j) ∈ A) and write x(i, S) and x(S, j) for x({i}, S) and x(S, {j}) respectively.
Further, for any S ⊆ V we denote by δ+(S) the set of arcs with their tail in S and their head
in V \S, and by δ−(S) the set of arcs with their tail in V \S and their head in S. Also, we write
δ+(v), δ−(v) for δ+({v}), δ−({v}), respectively. Finally, we denote δ(S) := δ+(S) ∪ δ−(S).

When G has costs (usually restricted to nonnegative values) on its arcs, the traveling
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salesman problem defined on G is the problem of finding a minimum-cost directed Hamil-
tonian cycle in G. It is also called the Asymmetric Traveling Salesman Problem (ATSP), to
distinguish it from its symmetric counterpart (STSP) defined on an undirected graph.

There are several known formulations of the ATSP. We will use the standard one, due to
Dantzig, Fulkerson and Johnson [10]:

minimize c x

s.t.

x(δ+(v)) = 1 v ∈ V (0.1)

x(δ−(v)) = 1 v ∈ V (0.2)

x(S, S) ≤ |S| − 1 S ⊂ V, |S| ≥ 2 (0.3)

x ∈ {0, 1}A (0.4)

Here c = (cij) is the vector of costs, the equations (0.1) and (0.2) are the outdegree and
indegree constraints, respectively (briefly, the degree constraints), while (0.3) are the subtour
elimination constraints (SEC, for short). This formulation has n2 − n variables and O(2n)
constraints. There are more compact formulations, but this one has proved so far the most
useful.

The ATS polytope is then the convex hull of points satisfying (0.1)-(0.4).
The monotone ATS polytope P̃ is obtained from P by replacing = with ≤ in all the degree

constraints. It is well known [16] that P has dimension n(n − 1) − 2n + 1 whereas P̃ is of
full dimension.

Whenever there is a need to specify the graph G on which P or P̃ is defined, we will write
P (G) and P̃ (G), respectively. Moreover, we sometimes use the notation Pn for P defined on
the complete digraph with n nodes.

The polyhedral approach to combinatorial optimization consists in trying to describe the
solution set to the problem studied through a system of linear inequalities (and possibly
equations) that define its convex hull. Of particular importance in this attempt is the iden-
tification of inequalities that define facets of the convex hull, because these form a minimal
system. If the attempt is successful in that all the facets of the convex hull are identified,
then the problem becomes a linear program. If the attempt is only partly successful, in
that it fails to completely characterize the convex hull but it succeeds in describing large
families of facets of the latter, then the partial description of the convex hull obtained this
way usually makes it much easier to solve the problem by enumerative methods like branch
and bound, branch and cut, etc.

While a complete characterization of the ATS polytope – i.e. a listing of all the in-
equalities defining it – is only available for n ≤ 6 [11], several families of valid inequalities
have been identified recently, and many of them have been shown to be facet defining for
the corresponding polytope. In this survey we focus on ATSP-specific results (asymmetric
inequalities, lifting theorems, etc.), and refer the reader to Chapter 4 (Naddef) of the present
book for a thorough description of the properties shared with the STSP. Also, the separa-
tion problem for ATSP inequalities is not addressed in the present chapter: the interested
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reader is referred to Chapter 4 for the separation of symmetric inequalities, and to Chapter ?
(Fischetti-Toth) and to [6] and [7] for ATSP-specific separation procedures.

Finally, we assume the reader is familiar with the fundamentals of polyhedral theory, as
given e.g. in the excellent survey of polyhedral theory for the TSP by Grötschel and Padberg
[18].

The present chapter is organized as follows. In Section 1 we review the main classes of
inequalities for the ATS polytope (for short: ATS inequalities) known at the time of the
writing of [18]. Section 2 addresses the monotone ATS polytope, a widely used relaxation
of the ATS polytope. Facet-lifting procedures are analyzed in Section 3. The important
question of whether two different facet defining inequalities define the same facet of P , is
addressed in Section 4. Sections 5 and 6 are devoted to the study of large classes of ATS-
specific facet-defining inequalities introduced recently, namely the odd CAT and the SD
inequalities, respectively. Lifted cycle inequalities are finally investigated in Section 7, where
a characterization of this class is provided, and some specific subclasses with interesting
properties are analyzed.

1 Basic ATS inequalities

Several classes of valid inequalities for both P and P̃ were known at the time of the writing
of the Grötschel and Padberg survey [18]. Among them, we will outline next the so-called
comb, clique tree, D+

k , D−
k , Tk, C2 and C3 inequalities.

1.1 Symmetric Inequalities

Since the STSP is a special case of the ATSP, any given inequality ᾱy :=
∑

e∈E ᾱeye ≤ α0

defined for the STS polytope associated with a complete undirected graph GE = (V, E), has
an obvious ATS counterpart αx :=

∑
(i,i)∈A αijxi ≤ α0 obtained by defining αij := αji := ᾱe

for each e = [i, j] ∈ E. Conversely, every ATS inequality αx ≤ α0 which is symmetric (in the
sense that αij = αji for all (i, j) ∈ A, i < j) has an STS counterpart ᾱy :=

∑
e∈E ᾱeye ≤ α0

obtained by setting ᾱe := αij (= αji) for each e = [i, j] ∈ E. It can easily be shown
that the above mapping between STS and symmetric ATS inequalities preserves validity
(but not necessarily the facet-defining property, as discussed later in this subsection). As a
consequence, the ATS polytope inherits from its undirected version all classes of valid STS
inequalities.

Note however that symmetric inequalities are just a small fraction of the whole set of
(facet-defining) ATS inequalities. For example, Euler and Le Verge [11] showed that only
2 out of the 287 classes of inequalities representing a complete and irredundant description
of the ATS polytope on 6 nodes, are symmetric (namely, the classes of SEC’s (0.3) with
|S| = 2, 3). This implies that only 35 out of the 319,015 facets of P6 are defined by symmetric
inequalities.

We next present the two most basic families of symmetric inequalities, the comb and
clique-tree inequalities, and refer the reader to Chapter 4 of the present book for other large
classes of STS inequalities.
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Proposition 1.1 ([17]). Let H ⊂ V be a “handle” and T1, . . . , Ts ⊂ V be pairwise disjoint
“teeth” satisfying: (i) |H ∩ Ti| ≥ 1 and |Ti \ H| ≥ 1 for all i = 1, . . . , s, and (ii) s ≥ 3 and
odd. The following comb inequality is valid for both P and P̃ :

x(H, H) +
s∑

i=1

x(Ti, Ti) ≤ |H| +
s∑

i=1

(|Ti| − 1) − (s + 1)/2.

Theorem 1.2 ([12]). Comb inequalities are facet inducing for Pn for n ≥ 7, and for P̃n for
n ≥ 6.

Note that, unlike in the symmetric case, a comb inequality does not define a facet of
Pn when n = 6, as in this case the corresponding face turns out to be the intersection of
two distinct facets of Pn defined by asymmetric inequalities having no counterpart in the
symmetric case – a pathological situation that will be discussed later in this subsection.

Proposition 1.3 ([19]). Let C := {H1, . . . , Hr, T1, . . . , Ts}, with s ≥ 1 and odd, be a
family of nonempty subsets of V where the Hi (i = 1, . . . , r) are called handles and the Tj

(j = 1, . . . , s) are called teeth, which satisfy (see Figure 1.1 for an illustration): (i) Ti∩Tj =
∅, for each i, j ∈ {1, . . . , s}, i 
= j; (ii) Hi ∩ Hj = ∅, for each i, j ∈ {1, . . . , r}, i 
= j;
(iii) 2 ≤ |Tj| ≤ n − 2 and Tj \ (

⋃r
i=1 Hi) 
= ∅, for j = 1, . . . , s; (iv) the number, hi, of teeth

overlapping Hi is odd and at least 3, for i = 1, . . . , r; (v) the intersection graph of C (i.e.,
the undirected graph having one node for each subset belonging to C and one edge for each
pair of overlapping subsets) is a tree.

Then the following clique tree inequality is valid for both P and P̃ :

r∑
i=1

x(Hi, Hi) +
s∑

j=1

x(Tj , Tj) ≤ s(C),

where tj denotes the number of handles intersecting tooth Tj (j = 1, . . . , s), and s(C) :=∑r
i=1 |Hi| +

∑s
j=1(|Tj | − tj) − (s + 1)/2 is the size of C.

Observe that clique tree inequalities with just one handle coincide with the comb inequal-
ities introduced previously.

Clique tree inequalities have been proved by Grötschel and Pulleyblank [19] to be valid
and facet-inducing (in their undirected form) for the STS counterparts, Q and Q̃, of the
ATS polytopes P and P̃ . As already observed, this implies that they are valid (but not
necessarily facet-defining) for P and P̃ . Later, Fischetti [14] proved the following:

Theorem 1.4. All clique tree inequalities (except for combs when n = 6) define facets of
both P and P̃ .

We next address the correspondence between facets of the STS and ATS polytopes. It was
observed in [12] that the STS counterpart of every symmetric ATS inequality, say αx ≤ α0,
defining a facet of P (resp., P̃ ) necessarily defines a facet of Q (resp., Q̃). Indeed, consider
the polytope P (our reasoning trivially applies to P̃ as well). Let ᾱy ≤ α0 be the undirected
counterpart of αx ≤ α0. This inequality clearly defines a proper face of Q. Assume now that
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Figure 1.1: A clique tree with r = 3 handles and s = 9 teeth
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it is not facet defining for Q. Then there must exist a facet defining inequality β̄y ≤ β0, valid
for Q and satisfying {y ∈ Q : ᾱy = α0} ⊂ {y ∈ Q : β̄y = β0} ⊂ Q. But this implies that
the directed counterpart βx ≤ β0 of β̄y ≤ β0 is valid for P and induces a proper face which
strictly contains the face {x ∈ P : αx = α0}, impossible since αx ≤ α0 is facet-defining by
assumption.

An important question raised in [18] is whether or not the directed version of a facet-
defining inequality for the STS polytope is also facet defining for the ATS polytope. This
issue has been investigated by Queyranne and Wang [31], who showed that several known
classes of facet-defining inequalities for the STS polytope, including the path, wheelbarrow,
chain, and ladder inequalities (see Chapter 4 (Naddef) on these inequalities), do define facets
of P (with the exception of some pathological cases). Moreover, [31] proposed an operation
called tree-composition and used it to produce a new large class of symmetric inequalities
that define facets of the ATS (and hence of the STS) polytope.

1

2

3 4

5

≤ 4 1+ 1−

4−

2+

2−

3+

3− 4+

5+

5−

≤ 13

Figure 1.2: Curtain inequality for the ATSP and corresponding inequality for the STSP.

A more intriguing correspondence between STS and ATS polytopes (defined on graphs
with a different number of nodes) derives from the known fact [23] that every ATSP defined
on the complete digraph G = (V, A) can be restated as a STSP defined on an undirected
bipartite graph G∗

B := (V ∗, E∗
B), where V ∗ has a pair of nodes i+, i− for every node i ∈ V ,

and E∗
B has an edge (i+, j−) for every arc (i, j) ∈ A, and an edge (i+, i−) for every node i ∈ V ,

with the condition that the only admissible tours in G∗
B are those that contain every edge

(i+, i−), i = 1, . . . , n. (Here the subscript B stands for “bipartite.”) This transformation
has been used in [22] for solving hard instances of the ATSP by means of efficient computer
codes designed for the STSP. (See Chapter ? (Fischetti-Lodi-Toth) for a computational
assessment of this approach). However, the same transformation has important polyhedral
implications; namely, it can be used to find new facets of the STS polytope, as shown in [6].

To this end, denote by G∗ := (V ∗, E∗) the complete graph on V ∗. Clearly, E∗
B ⊂ E∗ and

G∗
B is a proper subgraph of G∗, defined on the same node set V ∗. Also, denote by Q(G∗)

and Q(G∗
B) the STS polytopes defined on G∗ and G∗

B, respectively, with yk� the variable
associated with edge (k, �) ∈ E∗. To the incidence vector x ∈ {0, 1}A of any tour in G, we
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1

2

3 4

5

≤ 4

2+

2−

3−

1+ 1− 5+ 5−

4+4−3+

≤ 13

Figure 1.3: Fork inequality for the ATSP and corresponding inequality for the STSP.

associate the incidence vector y ∈ {0, 1}E∗
of a tour in G∗, defined by yi+j− = xij for all

(i, j) ∈ A, and

yi+i− = 1 for all i ∈ V,
yi+j+ = yi−j− = 0 for all i, j = 1, . . . , n, i 
= j.

(1.1)

The above construction then induces a 1-1 correspondence between tours in G, i.e. ver-
tices of the ATS polytope P (G), and admissible tours in G∗

B, i.e. vertices of the STS polytope
Q(G∗

B). Note that Q(G∗
B) is the face of Q(G∗) defined byt he equations (1.1). This implies

that to every facet inducing inequality αx ≤ α0 for the ATS polytope P (G) there corre-
sponds a facet inducing inequality βy ≤ α0 for the STS polytope Q(G∗

B), where β ∈ R
E∗

B is
defined by βi+j− = αij for all (i, j) ∈ A and βi+j− = 0 for all i ∈ V .

Next, the inequality βy ≤ α0 can be lifted into one or more facet inducing inequalities
βy + γy′ ≤ β0, where y′ is the vector whose components are associated with the edges of
E∗\E∗

B, and γ is the vector of lifted coefficients. This can be done, for instance, by sequential
lifting [26]. The latter consists in choosing an appropriate sequence for the variables fixed at
1 or 0, freeing them one by one, and calculating the corresponding lifting coefficients. Here
β0 typically differs from α0, because when the coefficient of a variable previously fixed at one
is lifted, the right hand side is also changed.

The inequality βy + γy′ ≤ β0 resulting from the lifting is facet inducing for the STS
polytope Q(G∗) on the complete undirected graph G∗, and is often of a type unknown
before. In other words, the study of the polyhedral structure of the ATS polytope provides
new insights also into the structure of its symmetric counterpart.

Figures 1.2 and 1.3 show two known inequalities for the ATS polytope (the so-called cur-
tain and fork inequalities defined in Section 7) and their counterparts for the STS polytope.
The arcs in single and in double line have coefficient 1 and 2, respectively; all remaining arcs
have coefficient 0. (This rule applies to all subsequent figures too.)
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1.2 Asymmetric inequalities

We next introduce the main classes of asymmetric ATS inequalities known prior to the
publication of [18].

i1 i1

i2

i4 i4

i5i5

i3

i2

i3

Figure 1.4: The support graph of a D+
k (left) and of a D−

k (right) inequality when k = 5.

Proposition 1.5 ([15, 16]). Let {i1, i2, . . . , ik} ⊂ V , 3 ≤ k ≤ n−1; then the D+
k inequality

k−1∑
j=1

xij ij+1
+ xiki1 + 2 x({i1}, {i3, . . . , ik}) +

k∑
j=4

x({ij}, {i3, . . . , ij−1}) ≤ k − 1

and the D−
k inequality

k−1∑
j=1

xij ij+1
+ xiki1 + 2 x({i2, . . . , ik−1}, {i1}) +

k−1∑
j=3

x({ij}, {i2, . . . , ij−1}) ≤ k − 1

are valid for both P and P̃ (see Figure 1.4 for an illustration).

Notice that D−
k inequalities can be obtained from D+

k inequalities by switching the co-
efficients of each pair of arcs (i, j) and (j, i) – and by reversing the order of the nodes
i1, i2, . . . , ik.

Proposition 1.6 ([15, 16]). Let S ⊂ V with 2 ≤ k := |S| ≤ n − 2, and let w ∈ S,
p, q ∈ V \ S, and p 
= q. Then the following Tk inequality is valid for both P and P̃ (see
Figure 1.5):

x(S, S) + xpw + xwq + xpq ≤ k.

Fuerthermore, Tk inequalities define facets of P if and only if k 
= n−2, and of P̃ for any k.
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w

p q

S

Figure 1.5: The support graph of a Tk inequality (k = 3).

Tk inequalities can be generalized by attaching a source p and a sink q to a comb, as
follows.

Proposition 1.7 ([15, 16]). Let H ⊂ V be a “handle” and T1, . . . , Ts ⊂ V be pairwise
disjoint “teeth” satisfying: (i) |H ∩ Ti| ≥ 1 and |Ti \ H| ≥ 1 for all i = 1, . . . , s, and
(ii) s ≥ 3 and odd. For each pair of distinct vertices p and q in (V \ H) \ (

⋃s
i=1 Ti), the

following C2 inequality is valid for P and P̃ (see Figure 1.6):

x(H, H) +

s∑
i=1

x(Ti, Ti) +
∑
v∈H

(xpv + xvq) + xpq ≤ s(C) + 1,

where s(C) = |H| + ∑s
i=1(|Ti| − 1) − (s + 1)/2.

Proposition 1.8 ([15, 16]). Let i1, i2, and i3 be three different vertices, and let W1, W2 ⊂
V such that: (i) W1 ∩ W2 = ∅, and (ii) Wj ∩ {i1, i2, i3} = {ij} and |Wj| ≥ 2 for j = 1, 2.
Then the following C3 inequality is valid for both P and P̃ (see Figure 1.7):

x(W1, W1) + x(W2, W2) + x({i1}, W2) + xi2i1 + xi3i1 + xi3i2 ≤ |W1| + |W2| − 1.

Theorem 1.9. [12] All D+
k , D−

k , C2, and C3 inequalities define facets of both P and P̃ .
Other classes of relevant ATS inequalities have been described in [15, 16], including the

lifted cycle inequalities discussed in greater detail in the forthcoming Section 7. Finally,
Grötschel and Wakabayashi [20, 21] described “bad” facets of P̃ related to hypo-Hamiltonian
and hypo-semi-Hamiltonian subgraphs of G.
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T2

p q

T3

H

T1

Figure 1.6: The support graph of a C2 inequality.

{i1, i2, i3} = {1, 2, 3}
W1 = {1, 4}
W2 = {2, 5, 6}

2

3

6

4 5

1

Figure 1.7: The support graph of a C3 inequality.
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2 The monotone ATS polytope

Much of polyhedral theory deals with less than full dimensional polyhedra. The hallmark
of such a polyhedron, say P , is the existence of certain equations satisfied by every point
of P . Because of this, every valid inequality for P can be expressed in several forms, the
equivalence of which is not always easy to recognize. This may cause technical difficulties
when analyzing the facial structure of P . Moreover, polyhedral proof techniques often rely
on interchange arguments, involving extreme points that differ only in a few components:
the smaller the number of such components, the simpler the argument. Often the presence
of equations in the defining system of P implies that this number cannot be very small. In
particular, in the case of the ATS polytope any two distinct extreme points differ by at least
six components, since at least three arcs have to be deleted from a tour, and three others
added to it, in order to obtain a different tour.

A widely used technique to overcome these difficulties is to enlarge P ⊂ R
A so as to

make it full dimensional, i.e. to obtain a polyhedron P̃ of dimension |A|. When P lies in
the positive orthant, a standard way of doing this is to “enlarge P below” to obtain the
(downward) monotonization, or submissive, of P , defined as

P̃ := {y ∈ R
A : 0 ≤ y ≤ x for some x ∈ P} = (P − R

A
+) ∩ R

A
+.

Under appropriate conditions, optimizing a linear function over P is equivalent to opti-
mizing a related linear function over its monotonization P̃ , so P̃ can replace P insofar as
optimization is concerned. Hence the interest in the study of the polyhedral structure of P̃ .

It is easy to see that P̃ is full dimensional if and only if for each a ∈ A, there exists
x ∈ P with xa 
= 0. When P = conv{x ∈ Z

A
+ : A1x = b1, A2x ≤ b2}, P̃ can in some

cases be obtained by replacing A1x = b1 by A1x ≤ b1. This is true, for instance, in the case
of the symmetric and asymmetric TS polytopes defined on a complete graph or digraph,
when A1x = b1 consists of degree equations. In this situation the monotone polytope is the
convex hull of incidence vectors of path systems, i.e. families of simple node-disjoint paths
(including single nodes). But it is not true in general in the case of the same polytopes
defined on graphs other than complete: while the monotone polytope contains the incidence
vectors of all subsets of tours, the polytope obtained by replacing = with ≤ may contain
incidence vectors of arc sets that are not part of any tour.

Other useful relaxations (not covered in the present chapter) are the Fixed-Outdegree
1-Arborescence polytope studied in [3] (where the outdegree equations (0.1) are only imposed
for a given subset F of nodes), the Asymmetric Assignment polytope addressed in [1] (where
all SEC’s (0.3) with |S| ≥ 3 are relaxed), and the Graphical Asymmetric Traveling Salesman
polyhedron of Chopra and Rinaldi [8] (where the degree conditions (0.1)-(0.4) are relaxed
into x(δ+(v)) = x(δ−(v)) for all v ∈ V , and the SEC’s (0.2) are replaced by their cut form
x(δ+(S)) ≥ 1 for all ∅ ⊂ S ⊂ V ).

We analyze next the main properties of general monotone polyhedra and their implica-
tions for the study of the ATS polytope. The reader is referred to [5] for more details and
for the proof of the main propositions, as well as for a parallel treatment of the monotone
STS polytope.
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2.1 Monotonizations of polyhedra

Consider next an arbitrary polyhedron P contained in R
N , where N = {1, . . . , n}, and

assume that P is given in the form P := {x ∈ R
N : Ax ≤ b}. Although we make no

assumption on the dimensionality of P , the construction to follow becomes meaningful only
when P is less than full dimensional. Let A=x = b= be a full row rank equality system for P
(i.e., every equation satisfied by all points of P is a linear combination of A=x = b=), having
r := n − dim(P ) rows.

We introduce a generalized concept of monotonization of a polyhedron. For any partition
[NL, NU ] of N , let bj ∈ R ∪ {−∞}, j ∈ NL, and bj ∈ R ∪ {+∞}, j ∈ NU , be such that
xj ≥ bj for j ∈ NL and xj ≤ bj for j ∈ NU for every x ∈ P . Then the g-monotonization (g
for generalized) of P is defined as

g-mon(P ) :=

{
y ∈ R

N

∣∣∣∣ bj ≤ yj ≤ xj , j ∈ NL and xj ≤ yj ≤ bj , j ∈ NU

for some x ∈ P

}
.

Notice that when P ⊆ R
N
+ , if NU = ∅ and bj = 0, j ∈ NL = N , then g-mon(P ) = {y ∈

R
N : 0 ≤ yj ≤ xj , j ∈ N , for some x ∈ P} coincides with the submissive of P . Moreover, if

NL = ∅ and bj = +∞, j ∈ NU = N , then g-mon(P ) = {y ∈ R
N : yj ≥ xj , j ∈ NU , for some

x ∈ P} defines the so-called dominant of P .
Next we address the dimension of g-mon(P ).

Proposition 2.1. Let W := {j ∈ N : |bj | < ∞, xj = bj for all x ∈ g-mon(P )}. Then
dim(g-mon(P )) = n − |W |.

For the rest of this subsection we will assume that W = ∅, i.e. g-mon(P ) is full dimen-
sional.

Proposition 2.2. The inequalities (i) xj ≥ bj for j ∈ NL such that |bj | 
= ∞, and (ii) xj ≤
bj for j ∈ NU such that |bj| 
= ∞ define facets of g-mon(P ).

We will call trivial the facets of g-mon(P ) induced by xj ≥ bj or xj ≤ bj . By extension,
we will also call trivial every nonempty face of g-mon(P ), of whatever dimension, contained
in a trivial facet.

Proposition 2.3. Let αx ≤ α0 define a nontrivial face of g-mon(P ). Then αj ≥ 0 for all
j ∈ NL and αj ≤ 0 for all j ∈ NU .

Definition 2.4 ([19]). For a given valid inequality αx ≤ α0 defining a nontrivial face of
g-mon(P ), let N0 := {j ∈ N : αj = 0} and let A=

0 denote the r × |N0| submatrix of A=

whose columns are indexed by N0. The inequality αx ≤ α0 is said to be support reduced
(with respect to P ) if A=

0 has full row rank.

It can be shown that, if αx ≤ α0 defines a nontrivial facet of g-mon(P ), then either
αx ≤ α0 is support reduced, or else it is a linear combination of equations satisfied by all
points in P (i.e., there exists μ ∈ R

r \ {0} such that (α, α0) = μ(A=, b=)). This property
leads to the following result.
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Theorem 2.5. Let αx ≤ α0 be a valid inequality for g-mon(P ), that defines a nontrivial
facet of P . Then αx ≤ α0 defines a facet of g-mon(P ) if and only if it is support reduced.

We next address the important question of whether a facet defining inequality for g-
mon(P ) is also facet defining for P .

Definition 2.6 ([2, 5]). Let αx ≤ α0 be a support reduced inequality defining a nontrivial
facet of g-mon(P ), and let F := {x ∈ P : αx = α0} denote the face of P induced by αx ≤ α0.
Suppose w.l.o.g. that N0 := {j ∈ N : αj = 0} = {j1, . . . , jq}, where q ≥ r, and j1, . . . , jr

index independent columns (i.e., a basis) of A=
0 . Inequality αx ≤ α0 is said to be strongly

support reduced with respect to P if for every k ∈ {r + 1, . . . , q}, if any, there exists a pair
x1, x2 ∈ F such that {jk} ⊆ Δ(x1, x2) ⊆ {j1, . . . , jk}, where Δ(x1, x2) := {j ∈ N : x1

j 
= x2
j}.

Theorem 2.7. Let αx ≤ α0, where α0 
= 0, define a nontrivial facet of g-mon(P ). If
αx ≤ α0 is strongly support reduced with respect to P , then it also defines a facet of P .

2.2 Properties of the monotone ATS polytope

We now turn to the ATS polytope, P , and examine its relation to its submissive P̃ .
Given the complete digraph G = (V, A), we define a bipartite graph B[G] := (V +∪V −, E)

having two nodes, v+ ∈ V + and v− ∈ V −, for every node v of G, and an edge [i+, j−] ∈ E
for every arc (i, j) of G. It is easy to see that the coefficient matrix of the degree equations
coincides with the node-edge incidence matrix of B[G], hence a subset Ã of the arcs of G
indexes a basis of the equality system of P if and only if Ã induces a spanning tree of B[G].

Note that two edges of B[G] are adjacent if and only if the corresponding arcs of G have
either the same tail or the same head. Thus two nodes of B[G] are connected by a path
if and only if the corresponding nodes of G are connected by an alternating path, i.e., by a
path of alternating arc directions.

Now let αx ≤ α0 define a nontrivial facet of P̃ , and denote A0 := {(i, j) ∈ A : αij = 0},
A+ := A \ A0, G0 := (V, A0), and G+ := (V, A+).

Since connectedness is the necessary and sufficient condition for B[G0] to contain a span-
ning tree and thus for A0 to contain a basis of A=, it follows that an inequality αx ≤ α0

is support reduced with respect to P if and only if the bipartite graph B[G0] is connected.
Thus when P is the ATS polytope, Theorem 2.5 specializes to the following:

Theorem 2.8. Let αx ≤ α0 be a nontrivial facet-defining inequality for P , that is valid for
P̃ . Then αx ≤ α0 defines a facet of P̃ if and only if the bipartite graph B[G0] is connected.

A relevant special case in which B[G0] is obviously connected arises when

G+ has an isolated node h, and G0 has an arc a∗ 
∈ δ(h) (2.1)

as in this case the 2n − 1 edges of B[G0] corresponding to the arcs in δ(h) ∪ {a∗} induce
a spanning tree of B[G0]. Condition (2.1) is satisfied by many nontrivial facet inducing in-
equalities for the submissive of P , and is related to the concept of h-canonical form discussed
in Section 4.
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Suppose now that condition (2.1) is satisfied, guaranteeing that αx ≤ α0 is support
reduced. We next give a sufficient condition for αx ≤ α0 to be strongly support reduced.

Let Gh := G − {h}, where h is the isolated node in (2.1). Two arcs of Gh are called
α-adjacent (in Gh) if they are contained in a tour T of Gh such that α(T ) = α0. We define
the (undirected) α-adjacency graph G∗

h := (V ∗, E∗) of Gh, as having a node for every arc
in A0 \ δ(h), and an edge for every pair a, b ∈ V ∗ such that arcs a and b are α-adjacent in
Gh. It can be shown that, under the assumption (2.1), a sufficient condition for αx ≤ α0

to be strongly support reduced is that graph G∗
h be connected. This leads to the following

characterization that is trivial to verify without constructing G∗
h explicitly and holds in most

of the relevant cases.

Theorem 2.9. Let αx ≤ α0 define a nontrivial facet of P̃ and a proper face of P . Assume
G+ has two isolated nodes, say h and k. If the bipartite graph B[G0 − {h, k}] is connected,
then αx ≤ α0 is strongly support reduced, hence it defines a facet of P .

Corollary 2.10. Let αx ≤ α0 define a nontrivial facet of P̃ and a proper face of P . If G+

has three isolated nodes, then αx ≤ α0 defines a facet of P .

Similar results apply to the STS polytope as well [5].
This gives an unexpectedly simple answer to an open problem posed by Grötschel and

Padberg:
“Research problem. Find (reasonable) sufficient conditions which imply that an in-

equality defining a facet for Q̃n
T (the monotone STS polytope) also defines a facet for Qn

T

(the STS polytope).”[18, p. 271]

3 Facet-lifting procedures

In this section we discuss general facet lifting procedures for the ATS polytope, which can
be used to obtain new classes of inequalities from known ones. Unlike the traditional lifting
procedure which calculates the coefficients of the lifted variables sequentially, often in non-
polynomial time, and with outcomes that depend on the lifting sequence, these procedures
calculate sequence-independent coefficient values, often obtained by closed form expressions.
We concentrate on ATS-specific liftings, and refer the reader to Queyranne and Wang [31]
and Chopra and Rinaldi [8] for facet composition and lifting operations that apply to sym-
metric ATS inequalities only.

The subsection on cloning and clique lifting is based on [4], whereas those on T -lifting,
merge lifting, and 2-cycle cloning are based on [13].

3.1 Cloning and clique lifting

Let F be a given family of valid ATS inequalities, all defining proper faces, and denote by
Fn the restriction of F to Pn.

Definition 3.1. Let αx ≤ α0 be a member of Fn, and h, k any two distinct nodes. Then h
and k are called clones (with respect to αx ≤ α0 and F) if:

14



(a) αih = αik and αhi = αki for all i ∈ V \ {h, k};
(b) αhk = αkh = max{αik + αkj − αij : i, j ∈ V \ {h, k}, i 
= j};

(c) the inequality
∑

(i,j)∈A\δ(h)

αijxij ≤ α0 − αkh belongs to Fn−1.

If there exists no pair of clones with respect to αx ≤ α0, the inequality αx ≤ α0 is said
to be primitive.

We call a facet regular if it is nontrivial and its defining inequality is not the 2-cycle
inequality xij + xji ≤ 1 for some i, j ∈ V . The following lemma is used in the proof of
Theorem 3.3, the main result of this subsection.

Lemma 3.2 ([1, 4]). Let αx ≤ α0 be any inequality defining a regular facet of P , and let
k ∈ V be any node. Then there exists a sequence of 2n− 3 tours x(t) with αx(t) = α0, where
each tour x(t) (t = 1, . . . , 2n − 3) is associated with an arc (it, jt) ∈ δ−(k) ∪ δ+(k) such that

x
(t)
itjt

= 1 and x
(1)
itjt

= x
(2)
itjt

= · · · = x
(t−1)
itjt

= 0.

Theorem 3.3. If all the primitive inequalities of F define regular facets of the corresponding
polytopes P , then so do all the inequalities of F .

Proof. The proof is by induction on the number q of nodes that are clones. For q = 0 the
statement is true by assumption. Suppose the theorem holds when the family F is restricted
to inequalities with respect to which the corresponding digraph has no more than q0 ≥ 0
clones, and consider any inequality of the original family with q = q0 +1 clones. Let h, k ∈ V
be any pair of clones relative to each other, with h as the “new” (q-th) clone. We will now
construct a set X ⊂ P containing dim(P ) affinely independent tours x satisfying αx = α0.

Let α̃y ≤ α̃0 be the member of Fn−1 defined at point (c) of Definition 3.1, where α̃0 =
α0−αhk. From the induction hypothesis, α̃y ≤ α̃0 defines a regular facet of the ATS polytope
P (G̃) associated with the complete digraph G̃ = (Ṽ , Ã) induced by Ṽ := V \ {h}. Thus
there exists a set Y of (n− 1)2 − 3(n− 1)+ 1 affinely independent tours y ∈ P (G̃) satisfying
α̃y = α̃0. We initialize the set X by taking for each y ∈ Y , the tour x obtained from y by
inserting node h right after k, i.e. by replacing the arc leaving k, say (k, j), with the arcs
(k, h) and (h, j). All these tours satisfy αx = α̃y + αkh = α̃0 + αkh = α0, and are easily seen
to be affinely independent. Indeed, the above transformation induces a 1-1 correspondence,
ϕ, between Ã and a subset of A, such that for all (i, j) ∈ Ã, xϕ(i,j) = 1 if and only if yij = 1.
It follows that the affine dependence of X would imply that of Y . In addition, all x ∈ X
satisfy xkh = 1, and hence xij = 0 for each (i, j) ∈ Q := (δ+(k)∪ δ−(h)∪{(h, k)}) \ {(k, h)}.

Now let {y(t) : t = 1, . . . , 2(n− 1)− 3} be a sequence of tours of G̃ with α̃y(t) = α̃0, each

tour being associated with an arc (it, jt) in Q̃ := (δ−(k) ∪ δ+(k)) ∩ Ã such that y
(t)
itjt

= 1

and y
(1)
itjt

= · · · = y
(t−1)
itjt

= 0. The existence of such a sequence follows from Lemma 3.2. For

t = 1, . . . , 2n− 5, put into X the tour x(t) obtained from y(t) by inserting node h just before
node k, i.e. by replacing the arc of y(t) entering k, say (i, k), with arcs (i, h) and (h, k).
Clearly αx(t) = α̃y(t) + αhk = α̃0 + αhk = α0. As to the affine independence of the set X,
it suffices to note that each x(t) contains an arc (rt, st) ∈ Q not contained in any previous
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x ∈ X (with (rt, st) = (it, jt) if it = k, and (rt, st) = (h, jt) if jt = k). At this point, the set
X has |Y | + 2n − 5 = n2 − 3n members. The last tour put into X is then any tour x∗ such
that αx∗ = α0 and x∗

hk = x∗
kh = 0. To show that such x∗ exists, let (r, s) ∈ Ã\ δ(k) be an arc

for which the maximum in the definition of αhk is attained (see point (b) of Definition 3.1),
i.e. such that αhk = αrk + αks − αrs (= maxi,j{αik + αkj − αij}), and let y∗ ∈ Y be a tour
in G̃ such that α̃y∗ = α̃0 and y∗

rs = 1 (such a tour exists, since α̃y ≤ α̃0 defines a nontrivial
facet of P (G̃).). Then x∗ can be obtained from y∗ by inserting h into the arc (r, s), i.e. by
replacing (r, s) with the pair (r, h), (h, s). The affine independence of X then immediately
follows from the fact that x∗

kh + x∗
hk = 0, while xkh + xhk = 1 for all the other members x of

X.
Thus αx ≤ α0 defines a facet of P . To see that this facet is regular, it suffices to notice

that for every (i, j) ∈ A, X contains a tour x such that xij = 1 as well as a tour x′ such that
x′

ij + x′
ji = 0.�

We now describe a constructive procedure, based on Theorem 3.3, to lift an inequality by
cloning some nodes of G. Unlike the well known lifting procedure for general 0-1 polytopes
[26], which calculates the lifted coefficients by solving a sequence of integer programs, one
for each new coefficient, the procedure lifts simultaneously all the variables corresponding
to the arcs incident with a node (or group of nodes), and calculates their coefficients by a
closed form expression. Let G′ = (V ′, A′) be the complete digraph induced by the node set
V ′ := V ∪ {n + 1} (where n = |V |).
Theorem 3.4. Suppose the inequality αx ≤ α0 defines a regular facet of P (G), and let k
be an arbitrary but fixed seed node. Let δk := max{αik + αki − αij : i, j ∈ A \ δ(k)}, and
α′

0 := α0 + δk. Moreover, for each (i, j) ∈ A′ let α′
ij := δk if (i, j) ∈ {(k, n + 1), (n + 1, k)};

α′
ij := αik if j = n + 1, i 
= k; α′

ij := αkj if i = n + 1, j 
= k; and α′
ij := αij otherwise.

Then the lifted inequality α′x′ ≤ α′
0 defines a regular facet of P (G′).

Consider now the situation arising when the above described lifting procedure is applied
to a sequence of nodes according to the following scheme. An initial inequality αx ≤ α0 is
given, defining a nontrivial facet of the ATS polytope associated with the complete digraph
G1 = (V 1, A1). For � = 1, . . . , m, choose any “seed” node k� ∈ V �, define the enlarged
digraph G�+1 = (V �+1, A�+1) induced by V �+1 := V � ∪ {|V �| + 1}, compute the coefficients
αij of the new arcs (i, h) ∈ A�+1 \ A� according to Theorem 3.4, and repeat. W.l.o.g., one
can assume that the seed nodes k� are always chosen in V 1 ⊆ V � (since each node in V � \V 1

is a clone of a node in V 1). It is not difficult to show that, for any k ∈ V 1, δk does not
depend on the iteration in which k is selected as the seed node of the lifting. As a result, a
more general lifting procedure based on Theorem 3.3 can be outlined as follows.

Procedure CLIQUE-LIFTING:

1. Let αx ≤ α0 be any valid inequality defining a regular facet of P (G).

2. For all k ∈ V , compute δk := maxi,j{αik + αkj − αij}.
3. Define an enlarged complete digraph G∗ = (V ∗, A∗) obtained from G by replacing each

node k with a clique Sk containing |Sk| ≥ 1 nodes.
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4. For all (i, j) ∈ A∗, let i ∈ Ski
and j ∈ Skj

, and define α∗
ij := αki,kj

if ki 
= kj, α∗
ij := δki

otherwise.

5. The inequality α∗x∗ ≤ α∗
0 := α0 +

∑
k∈V δk(|Sk|−1), where x∗ ∈ R

A∗
, is then valid and

defines a regular facet of P (G∗).

Thus, given a complete digraph G∗ = (V ∗, A∗), and an induced subgraph G = (V, A) of
G∗ along with a primitive facet defining inequality αx ≤ α0 for P (G), any node of V ∗\V can
be made a clone of any node of V . Applying this procedure recursively in all possible cloning
combinations thus gives rise to |V ||V ∗|−|V | distinct lifted inequalities, all facet defining for
P (G∗).

Clique lifting carries over to the monotone ATS polytope P̃ . Indeed, it can easily be
shown that, if the inequality αx ≤ α0 of Theorem 3.4 is support-reduced, then so is the
lifted inequality α∗x∗ ≤ α∗

0. Therefore, as discussed in Section 2, one has the following

Theorem 3.5. If αx ≤ α0 defines a nontrivial facet of both P (G) and P̃ (G), then α∗x∗ ≤ α∗
0

defines a nontrivial facet of both P (G′) and P̃ (G′).

Two earlier lifting procedures for facets of P , introduced in [15], require the presence,
in the support of the inequality to be lifted, of a clique satisfying certain conditions on the
coefficient values. When these conditions apply, the resulting inequalities are a subset of our
family, obtained by cloning a vertex of the above mentioned clique.

More recently, Padberg and Rinaldi [28] have discussed clique-liftability for the symmet-
ric TS polytope QV defined on the complete undirected graph with node set V . In their
terminology, a facet inducing inequality cx ≤ c0 for QV is clique-liftable if for every v ∈ V
there exists a real number α(c, v) ≥ 0 depending on c and v, such that for any set W with
W ∩ V = ∅, there exists an inequality c∗y ≤ c∗0, facet inducing for QV ∪W , whose coefficients
are given by c∗uw := cuw if u, w ∈ V , c∗uw := cuv if u ∈ V \ {v}, w ∈ W , and c∗uv := α(c, v) if
u, w ∈ W ∪ {v}, whereas c∗0 := c0 + |W | · α(c, v). From this perspective, the above results
mean that in the case of the ATS polytope all regular facet-inducing inequalities are clique-
liftable (with a definition duly modified to take into account directedness), since for each
v ∈ V , α(c, v) exists and is equal to δv.

Also related to clique lifting is the 0-node lifting introduced by Naddef and Rinaldi [24, 25]
in their study of the graphical relaxation of the STS polytope (as defined in Chapter 4) and
extended to the graphical ATS polytope (as defined in Section 2) by Chopra and Rinaldi
[8]. An inequality πx ≥ π0, π ≥ 0, is said to satisfy the shortest path condition if, for
each (i, j) ∈ A, the π-length of every directed path from i to j is greater or equal to πij (a
necessary condition for an inequality to be nontrivial facet-defining for the graphical ATS
polytope [8]). On a complete digraph, this is equivalent to requiring that πij ≤ πik + πkj for
all triples i, j, k ∈ V of distinct nodes. Moreover, the inequality πx ≥ π0 is said to be tight
triangular whenever it satisfies the shortest path condition and, for each k ∈ V , there exists
(i, j) ∈ A\δ(k) such that πij = πik+πkj. 0-node lifting then consists of replacing a given node
v by a clique of clones connected one to each other by arcs with πv′v′′ = 0 (hence the name
0-node lifting). This operation was first studied in the context of the graphical STS polytope
by Naddef and Rinaldi [24, 25], who also provided necessary and sufficient conditions under
which the 0-node lifting of a tight triangular inequality preserves the facet-defining property
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with respect to the standard (sometimes called flat) STS polytope. At a later time, Chopra
and Rinaldi [8] proved that 0-node lifting always preserves the facet-defining property for
the graphical ATS polytope, while they did not address the question of whether this is also
true with respect to the flat ATS polytope. Observe that an inequality πx ≥ π0 can trivially
be put in the form αx ≤ α0 by simply setting (α, α0) := −(π, π0), hence πx ≥ π0 is tight
triangular if and only if α ≤ 0 and αvv = 0 for all v ∈ V . From this perspective, 0-node
lifting reduces to clique lifting, thus it has the nice property (not known to be shared by its
symmetric counterpart) of always preserving the facet-defining quality with respect to the
flat) ATS polytope.

3.2 T-lifting

T-lifting aims at extending the following construction [16]: given the SEC x(S, S) ≤ |S| − 1
associated with a subset S with cardinality k, 2 ≤ k ≤ n − 2, choose three distinct nodes,
say p, q ∈ V \ S and w ∈ S, and add the term xpw + xwq + xpq to the left-hand side of
the SEC, and 1 to its right-hand side, thus obtaining a Tk inequality which is known to be
facet-defining for Pn for k 
= n − 3.

Now let αx ≤ α0 be any valid inequality for Pn. To simplify notation, in the sequel we
will often use notation αkk (= max{αik + αkj − αij : (i, j) ∈ A \ δ(k)}) to represent the
clique-lkifting coefficient δk defined in Theorem 3.4. We assume:

(a) αij ≥ 0 and integer for all (i, j) ∈ A;

(b) there exist two distinct isolated nodes p, q, i.e., αih = αhi = 0 for all i ∈ V (h = p, q);

(c) a node w ∈ V \ {p, q} with αww = 1 exists, such that αwy ≤ α0 − 1 (where αw is the
restriction of α onto G(V \ {w})) is valid and defines a nonempty face of Pn−1.

Note that the above conditions imply αij ∈ {0, 1} for all (i, j) ∈ δ(w). Starting with
αx ≤ α0, we define the T-lifted inequality βx := αx + xpw + xwq + xpq ≤ β0 := α0 + 1,
obtained by adding (and then rounding) the following 6 valid inequalities, all weighed by
1/2: x(δ+(i)) ≤ 1 for i ∈ {p, w}; x(δ−(j)) ≤ 1 for j ∈ {w, q}, αx ≤ α0, and the inequality
obtained from αwy ≤ α0 − 1, see condition (c) above, by re-introducing node w as a clone of
p.

We now address the important question of whether βx ≤ β0 is facet inducing, assuming
that this is the case for the starting inequality. An example of an application that does not
produce a facet corresponds to Tk inequalities on n = k + 3 nodes. Actually, T-lifting can
in some cases even produce an inequality with non-maximal coefficients, i.e., some βij can
singularly be increased without affecting the validity of βx ≤ β0.

Let V := V \ {p, w, q}, J+ := {j ∈ V : αwj > 0}, J0 := V \ J+, I+ := {i ∈ V : αiw > 0},
and I0 := V \ I+. Moreover, let F := {x ∈ Pn : βx = β0} denote the face induced by
βx ≤ β0.

Theorem 3.6. Let αx ≤ α0 satisfy conditions (a) to (c) above, and let the inequality αqy ≤
α0 − 1 induce a nontrivial facet of Pn−1. Assume that all the coefficients βpj, j ∈ J+,
and βiq, i ∈ I+, are maximal with respect to the T -lifted inequality βx ≤ β0. Then F is
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either a facet of Pn, or else a face of dimension dim(Pn) − 2 contained in the hyperplane
H := {x ∈ R

A : xqp = x(p, J∗) + x(I∗, q)}, where J∗, I∗ ⊆ V are such that J0 ⊆ J∗ and
I0 ⊆ I∗.

In the case of a Tk inequality on n = k + 3 nodes, the non-maximal face induced by
βx ≤ β0 is contained in the hyperplane H defined by the equation xqp = xpz +xzq, where z is
the unique node in V \ (S ∪{p, q}). The existence of H is however a pathological occurrence
for T-lifting, as shown in the following.

Corollary 3.7. Under the assumptions of Theorem 3.6, F is a facet of Pn if there exists
x∗ ∈ F such that x∗

qp = 0 and x∗
ij = 1 for a certain (i, j) ∈ (p, J0) ∪ (I0, q).

It is not hard to see that the above corollary applies, e.g., when there exists r ∈ V
such that αir = αri = 0 for all i, and (J0 ∪ I0) \ {r} 
= ∅. Therefore the most restrictive
requirement in Theorem 3.6 is the coefficient maximality. The reader is referred to [13] for
a discussion of necessary and sufficient conditions for such a maximality.

A large class of inequalities can be obtained by iterating the application of T-lifting
on clique tree inequalities. Let C = (W1, . . . , Wr) be a clique tree on n ≥ 7 nodes, and let
αx ≤ α0 be the associated facet-inducing inequality. Now let T := {pj, wj, qj : j = 1, . . . , m}
contain 3m nodes such that, for j = 1, . . . , m, nodes pj and qj are not covered by C, whereas
wj belongs to a tooth and to no handles. Moreover, assume that each tooth contains at least
one node not belonging to any handle nor to {w1, . . . , wm}. Then for n ≥ 7 and m ≥ 0, the
T-clique tree inequality

∑r
i=1 x(Wi, Wi) +

∑m
j=1(xpjwj

+ xwjqj
+ xpjqj

) ≤ σ(C) + m is valid
and facet-inducing for Pn (except when either r = 1, m = 1 and n = |W1| + 3, or r = 1,
m = 2 and n = |W1| + 4).

Different classes of facet-inducing inequalities can be obtained similarly, by applying
T -lifting to different facet-defining αx ≤ α0 such as, e.g., D+

k and D−
k -inequalities.

3.3 Merge lifting

Merge lifting is an operation that produces (under appropriate conditions) a facet inducing
inequality for Pn+1 starting from two ‘almost identical’ inequalities for Pn. Roughly speaking,
the new inequality is obtained by swapping the coefficients of arcs in δ+(h) and δ−(h) for a
certain node h (where h = n is assumed for the sake of easy notation).

More specifically, we are given two valid inequalities for Pn, say αx ≤ α0 and βx ≤ β0,
which are ‘almost identical’ in the sense that αij = βij for all (i, j) ∈ A \ δ(n). For a real
parameter ω, we define an inequality γx′ ≤ ω for Pn+1 as follows: γij := αij(= βij), for
all i, j ∈ A \ δ(n), γn,n+1 := ω − α0, γn+1,n := ω − β0, whereas for all i ∈ V \ {n} we set
γin := αin, γn+1,i := αni, γni := βni, γi,n+1 := βin (see Figure 3.1 for an illustration). By
construction, the above inequality is satisfied by all x′ ∈ Pn+1 such that x′

n,n+1 + x′
n+1,n = 1,

independently of ω. It then follows that γx′ ≤ ω is valid for Pn+1 if and only if ω is chosen
greater or equal to γ0 := max{γx′ : x′ ∈ Pn+1, x′

n,n+1 = x′
n+1,n = 0}. When ω = γ0, we say

that γx′ ≤ ω has been obtained from αx ≤ α0 and βx ≤ β0 through merge lifting.
It can be proved that γx′ ≤ γ0 defines a facet of Pn+1 if αx ≤ α0 is facet defining for Pn,

and βx ≤ β0 satisfies a certain regularity condition [13]. Observe that node cloning can be
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ω − β0

Figure 3.1: Illustration of the merge lifting operation.

viewed as a special case of merge lifting, arising when (α, α0) = (β, β0); in this case, γ0 can
easily be computed as α0 + αnn.

As an example of merge lifting application, let αx ≤ α0 be the inequality associated
with any clique tree C = (W1, . . . , Wr) that leaves node n uncovered, and let βx ≤ β0

be the one associated with the clique tree C ′ obtained from C by including node n into,
say, W1 \ (W2 ∪ . . . ∪ Wr). Therefore αx :=

∑r
i=1 x(Wi, Wi) ≤ α0 := σ(C), and βx :=

x(W1 ∪ {n}, W1 ∪ {n}) +
∑r

i=2 x(Wi, Wi) ≤ β0 := σ(C) + 1. Both inequalities are known to
define facets of Pn. By construction, the two inequalities are suitable for merge lifting. The
inequality γx′ ≤ ω is in this case

∑r
i=1 x′(Wi, Wi)+x′(n, W1)+x′(W1, n+1)+(1+θ)x′

n,n+1+
θx′

n+1,n ≤ σ(C) + 1 + θ, where we have defined θ := ω − σ(C) − 1 to simplify notation. For
sufficiently large δ, this inequality is valid for Pn+1. In order to have a facet, however, one
has to choose not too large a value for θ, namely θ = 1 if W1 is a tooth of C, and θ = 0 if W1

is a handle of C (in this latter case, if C is a comb we obtain a C2 inequality). Notice that,
unlike the starting inequalities αx ≤ α0 and βx ≤ β0, the merge-lifted inequality γ′x ≤ γ0 is
asymmetric.

The iterative application of merge lifting on the T-clique tree inequality defined in the
previous subsection, leads to large classes of facets. We describe one these classes, containing
clique tree, C2, and Tk inequalities as special cases. Let C be a given clique tree, T =
{pj, qj , wj : j = 1, . . . , m} be as defined in the previous subsection, and let Z = {aj, bj : j =
1, . . . , k} contain 2k nodes not covered by C nor by T . Each pair aj , bj is associated with
a distinct clique of C, say Wi(j), and with a value θj (with θj = 1 if Wi(j) is a tooth of C,
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θj = 0 otherwise). Then for n ≥ 7, m ≥ 0 and k ≥ 0 the following ZT-clique tree inequality

r∑
i=1

x(Wi, Wi) +
m∑

j=1

(xpjwj
+ xwjqj

+ xpjqj
) +

k∑
j=1

(
x(aj , Wi(j)) + x(Wi(j), bj) + (1 + θj) xajbj

+ θj xbjaj

) ≤ σ(C) + m +
k∑

j=1

(1 + θj)

is valid and facet-inducing (except in a few pathological cases) for Pn.

3.4 Two-cycle cloning

We now describe 2-cycle cloning, an operation that under appropriate conditions constructs
a facet-inducing inequality for Pn+2 starting from a facet of Pn. This operation is related to
the edge cloning procedure proposed for the symmetric TSP by Naddef and Rinaldi [25], and
analyzed by Chopra and Rinaldi [8] in the context of symmetric ATS inequalities. However,
2-cycle cloning is ATS-specific, in that it allows one to lift both symmetric and asymmetric
inequalities.

A 2-cycle is simply a cycle of length 2. Let αx ≤ α0 be a valid inequality for Pn.
Given two distinct nodes h and k such that Δ(h, k) := (αhh + αkk) − (αhk + αkh) > 0, let
α∗x′ ≤ α∗

0 := α0 + αhh + αkk be the inequality for Pn+2 obtained from αx ≤ α0 by adding
nodes h′ := n + 1 and k′ := n + 2 as clones of h and k, respectively. We define the following
(not necessarily valid) inequality for Pn+2:

βx′ := α∗x′ − Δ(h, k) x′
hh′ + x′

h′h + x′
kk′ + x′

k′k ≤ β0 := α∗
0 − Δ(h, k) = α0 + αhk + αkh

and say that βx′ ≤ β0 is obtained from αx ≤ α0 by cloning the 2-cycle induced by h and
k. In other words, βx′ ≤ β0 is obtained from α∗x′ ≤ α∗

0 by adding the invalid constraint
−(x′

hh′ + x′
h′h + x′

kk′ + x′
k′k) ≤ −1 weighted by Δ(h, k). Note that, although similar, nodes

h and h′, as well as k and k′, are no longer clones with respect to βx′ ≤ β0 because of the
coefficient reduction.

Theorem 3.8. Assume that αx ≤ α0 defines a regular facet of Pn. If βx′ ≤ β0 is valid,
then it defines a regular facet of Pn+2.

By construction, βx′ ≤ β0 is valid for Pn+2 if and only α∗x′ ≤ α∗
0 − Δ(h, k) holds for

all x′ ∈ Pn+2 such that x′
hh′ = x′

h′h = x′
kk′ = x′

k′k = 0. In several cases, α is integer and
Δ(h, k) = 1, hence the above condition simply requires that no x′ ∈ Pn+2 with α∗x′ = α∗

0

exists, such that x′
hh′ = x′

h′h = x′
kk′ = x′

k′k = 0. Easy-to-check conditions for the validity
of βx′ ≤ β0 were given recently by Caprara, Fischetti and Letchford [7] in case a rank-1
Chvátal truncation proof of validity is available for αx ≤ α0.

A relevant application of 2-cycle cloning arises when αx ≤ α0 is the ZT-clique tree
inequality of the previous subsection, and the two nodes h, k belong to a 2-node pendant
tooth (i.e., to a tooth intersecting only one handle). This enlarges the ZT-clique tree class
so as to cover the Padberg-Hong [27] chain inequalities, a special case arising when αx ≤
α0 is associated with a comb and 2-cycle cloning is iterated on a single pendant tooth.
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From Theorem 3.8, the members of this new class define facets of Pn (this extends the
corresponding result for chain inequalities, due to Queyranne and Wang [31]). Moreover,
one can show that the 2-cycle induced by the pair p, q chosen for T-lifting can always be
cloned, in the sense that the resulting inequality is valid (and hence facet-inducing). The
same holds for the node pairs aj, bj of ZT-clique tree inequalities. Therefore, one can make
the class of ZT -clique tree inequalities even larger by iteratively applying 2-cycle cloning,
thus obtaining inequalities that generalize properly clique tree, C2, Tk, chain inequalities, as
well as the CAT inequalities [1] described in Section 5

Other examples of application of 2-cycle cloning are given in [7], where extended versions
of C3 inequalities and of SD inequalities (the latter described in Section 6) are analyzed.

4 Equivalence of inequalities and canonical forms

We will consider only valid inequalities with rational coefficients defining proper, nonempty
faces of P . Two given inequalities αx ≤ α0 and α′x′ ≤ α′

0 are said to be equivalent if
one of them is a linear combination of the other and the degree constraints, i.e., if there
exist ρ ∈ R+ and ui, vi ∈ R (i ∈ V ) such that α′

0 = ρα0 +
∑

i∈V (ui + vi) and, for all
(i, j) ∈ A, α′

ij = ραij + ui + vj . It is well known that αx ≤ α0 and α′x ≤ α′
0 define the same

facet of P (assuming that they are both facet inducing) if and only if they are equivalent.
As in the previous section, for all k ∈ V we define αkk := max{αik + αkj − αij : (i, j) ∈

A \ δ(k)}. Note that equivalence transformations affect the values αkk (which are the same
as the values δk defined in Theorem 3.4) the same way as the other coefficients αij, i.e., if
ρ > 0 and α′

ij = ραij + ui + vj, for all (i, j) ∈ A, then also α′
kk = ραkk + uk + vk for each

k ∈ V . Indeed, α′
kk := maxi,j{α′

ik + α′
kj − α′

ij} = maxi,j{ρ(αik + αkj − αij) + uk + vk} =
ρ maxi,j{αik + αkj − αij} + uk + vk = ραkk + uk + vk.

We will analyze next the notion of h-canonical form introduced in Balas and Fischetti
[3] (see also Remark 9.2 in [17]).

Definition 4.1. An inequality βx ≤ β0 is said to be in h-canonical form with respect to any
given h ∈ V if:

(i) βih = βhi = 0 for all i ∈ V \ {h}.
(ii) β ≥ 0 and there exists (r, s) ∈ A with r, s 
= h and βrs = 0,

(iii) the coefficients βij and the right hand side β0 are relatively prime integers.

The h-canonical form of a given inequality αx ≤ α0 is an inequality βx ≤ β0 in h-
canonical form, which is equivalent to αx ≤ α0. Any inequality αx ≤ α0 can be put in this
form simply by defining βij := σ[αij + (αhh −αih) + (−αhj)] = σ[αhh − (αih + αhj −αij)] ≥ 0
for all i, j ∈ V , and β0 := σ[α0 +

∑
i∈V (αhh − αih − αhi)], where σ > 0 is a scaling factor

chosen so as to satisfy the normalization condition (iii).

Theorem 4.2. Two inequalities αx ≤ α0 and α′x ≤ α′
0 are equivalent if and only if their

h-canonical forms βx ≤ β0 and β ′x ≤ β ′
0 are the same.
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We now state three interesting properties of the h-canonical form.

Theorem 4.3. Let the inequality βx ≤ β0 be in h-canonical form for some h ∈ V . If there
exists a symmetric inequality αx ≤ α0 equivalent to βx ≤ β0, then βx ≤ β0 is symmetric.

Theorem 4.4. If two given nodes s and t are clones with respect to some inequality αx ≤ α0,
then s and t are also clones with respect to the h-canonical form βx ≤ β0 of αx ≤ α0.

Thus the h-canonical form conspicuously exhibits all clones, some of which could be
hidden in other formulations. In addition, when checking equivalence among the members
of a given family of inequalities through transformation to h-canonical form, we can restrict
ourselves to considering only the primitive inequalities of the family.

Theorem 4.5. Inequalities in h-canonical form are support reduced.

As a consequence of the above theorem, if αx ≤ α0 defines a nontrivial facet of P , then
its h-canonical form βx ≤ β0 defines a facet of both P and P̃ (see Theorem 2.5). Note that
this is not necessarily true of other inequalities equivalent to αx ≤ α0, some of which can
even be invalid for P̃ .

Finally we note that if αx ≤ α0 defines the improper face of P , i.e., if for some multipliers
ui, vj we have αij := ui + vj, (i, j) ∈ A, and α0 :=

∑
i(ui + vi), then its h-canonical form

βx ≤ β0 has β = 0 and β0 = 0. Indeed, βij = σ(αhh − αih − αhj + αij) = 0, ∀i, j ∈ V (note
that αhh = maxi,j{αih + αhj − αij} = uh + vh).

The use of h-canonical forms goes beyond determining whether two given ATS inequalities
are equivalent. In particular, Queyranne and Wang [29] exploited extensively h-canonical
forms to establish whether a given inequality αx ≤ α0 defines a facet of the ATS polytope.
Indeed, according to the so-called indirect method [18] the proof of the latter consists of
showing that any valid ATS inequality βx ≤ β0 such that {x ∈ P : αx = α0} ⊆ {x ∈ P :
βx = β0} ⊂ P is indeed equivalent to αx ≤ α0, a property which is easier to establish if one
assumes without loss of generality that both αx ≤ α0 and βx ≤ β0 are in h-canonical form
with respect to some (arbitrary) node h.

We conclude this subsection by observing that the h-canonical form has the disadvantage
of depending on h, which can cause some problems when comparing two members of a family
of (as opposed to single) inequalities. Thus, when choosing h as a particular vertex of the first
inequality, one should consider all possible roles for h in the second inequality. A different
canonical form, which does not depend on the node h, has been studied in [4]. Roughly
speaking, the dependence on node h is eliminated by adding the h-canonical forms for all
h ∈ V . More precisely, the canonical form βx ≤ β0 of a given inequality αx ≤ α0 is defined
as follows: Let first Δ :=

∑
h∈V αhh, ri :=

∑
j∈V αij for i ∈ V , cj :=

∑
i∈V αij for j ∈ V ,

γ0 := nΔ + nα0 −
∑

i∈V (ri + ci), and γij := Δ + nαij − ri − cj for i, j ∈ V , and then set
β0 := σ(γ0 − nε) and βij := σ(γij − ε) for i, j ∈ V , where ε := min{γij : i, j ∈ V } and σ > 0
is a scaling factor making the coefficients βij and β0 relatively prime integers.

As an example, consider the following T2 inequality, defined on a digraph with 4 nodes
(see Figure 4.1): αx := x12 + x13 + x23 + x24 + x42 ≤ 2. Its canonical form is obtained by
computing (αhh) = (1, 2, 1, 1), Δ = 5, (ri) = (3, 4, 1, 2), (cj) = (1, 4, 3, 2), ε = 0 and σ = 1,
leading to the inequality βx := 2(x12 + x23 + x34 + x41) + 3(x13 + x31 + x24 + x42) ≤ 8.
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Figure 4.1: A T2 inequality (a) and its canonical form (b).

Theorem 4.6. Theorems 4.2 to 4.4 remain valid if the h-canonical form is replaced by the
canonical form of the inequality involved.

An example of application of canonical form is given in Section 6, where it is used to
point out the existence of equivalent members in the class of the SD inequalities.

5 Odd closed alternating trail inequalities

Odd Closed Alternating Trail (CAT) inequalities were introduced in [1]. An assignment in
the complete digraph G is a spanning subgraph that is the node-disjoint union of directed
cycles. A frequently used relaxation of the ATS problem is the Assignment Problem (AP),
whose constraint set is obtained from the ATS formulation (0.1)-(0.3) by removing all SEC’s
(0.3). An asymmetric assignment is one that contains no directed 2-cycles, i.e. that satisfies
the 2-node SEC’s:

xij + xji ≤ 1 for all (i, j) ∈ A, i < j. (5.1)

The Asymmetric Assignment (AA) polytope PA is the convex hull of incidence vectors of
asymmetric assignments, i.e.

PA := conv {x ∈ {0, 1}A : x satisfies (0.1), (0.4), and (5.1}.

Unlike the standard AP, minimizing a linear function over PA is an NP-hard problem [32].
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An arc set that is the node disjoint union of directed cycles and/or paths will be called
an (asymmetric) partial assignment. The Asymmetric Partial Assignment (APA) polytope
on G, or monotonization of PA, is

P̃A := conv{x ∈ {0, 1}A : (5.1), and x(δ+(v)) ≤ 1, x(δ−(v)) ≤ 1 for all v ∈ V }.

In this section we describe classes of facet inducing inequalities for the ATS polytope P
that correspond to facets of the AA polytope PA. They are associated with certain subgraphs
of G (called closed alternating trails) that correspond to odd holes of the intersection graph
of the coefficient matrix of the AA polytope. The reader is referred to [1] for proofs of the
main results.

Let G∗ = (V, E) be the intersection graph of the coefficient matrix of the system (0.1)-
(0.4) and (5.1). Then G∗ has a vertex for every arc of G; and two vertices of G∗ corresponding,
say, to arcs (p, q) and (r, s) of G, are joined by an edge of G∗ if and only if either p = r, or
q = s, or p = s and q = r. Two arcs of G will be called G∗-adjacent if the corresponding
vertices of G∗ are adjacent. Clearly, there is a 1-1 correspondence between APA’s in G and
vertex packings (independent vertex sets) in G∗, hence the APA polytope P̃A defined on G
is identical to the vertex packing polytope defined on G∗ .

We define an alternating trail in G as a sequence of distinct arcs T = (a1, . . . , at), such
that for k = 1, . . . , t − 1, ak and ak+1 are G∗-adjacent, but ak, a�, � > k + 1, are not (with
the possible exception of a1 and at). If a1 and at are G∗-adjacent, the alternating trail T is
closed. An arc ak = (p, q) of T is called forward if p is the tail of ak−1, or q is the head of
ak+1, or both; it is called backward if q is the head of ak−1, or p is the tail of ak+1, or both.
The definition of an alternating trail T implies that the direction of the arcs of T alternates
between forward and backward, except for pairs ak, ak+1 that form a directed 2-cycle entered
and exited by T through the same node, in which case ak and ak+1 are both forward or both
backward arcs. It also implies that all the 2-cycles of T are node-disjoint (since two 2-cycles
of G that share a node define a 4-cycle in G∗). Notice that T traverses a node at most twice,
and the number of arcs of T incident from (incident to) any node is at most 2.

Let G[T ] denote the subdigraph of G generated by T , i.e., G[T ] has T as its arc set, and
the endpoints of the arcs of T as its node set. Further, for any v ∈ N , let deg+

T (v) and
deg−

T (v) denote the outdegree and indegree of node v in G[T ], respectively.
The length of an alternating trail is the number of its arcs. An alternating trail will be

called even if it is of even length, odd if it is of odd length. We will be interested in closed
alternating trails (CATs for short) of odd length, the reason being the following.

Proposition 5.1. There is a 1-1 correspondence between odd CATs in G and odd holes
(chordless cycles) in G∗.

It is well known [26] that the odd holes of an undirected graph give rise to facets of the
vertex packing polytope defined on the subgraph generated by the odd hole, and that these
facets in turn can be lifted into facets of the polytope defined on the entire graph. In order to
make the lifting procedure conveniently applicable to the particular vertex packing polytope
associated with G∗, we need some structural information concerning adjacency relations on
G∗.
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Let T be a CAT in G. A node of G[T ] will be called a source if it is the common tail
of two arcs of T , and a sink if it is the common head of two arcs of T . A node of G[T ] can
thus be a source, or a sink, or both, or none. A node of G[T ] that is neither a source nor a
sink will be called neutral. A neutral node is incident only with the two arcs of a 2-cycle. A
2-cycle will be called neutral if it contains a neutral node. Several odd CATs are illustrated
in Figure 5.1. The sources and sinks of G[T1] are nodes 1, 2 and 2, 4, respectively, while 3 is
neutral. G[T2] has three neutral nodes, 1, 4 and 6, while nodes 2, 3 and 5 are both sources
and sinks. G[T3] has sources 1 and 4, sinks 2, 3 and 4, while 5 is a neutral node. Further,
G[T1], G[T2] and G[T3] have one, three and one neutral 2-cycles, respectively, and G[T3] also
has a non-neutral 2-cycle.

1

4 2 3

(a)

G[T1]
G[T2]

1

2

5

4

3

6

(b)

G[T3]

51

2
3

4

(c)

Figure 5.1: Some odd CAT’s.

A chord of a CAT T is an arc a ∈ A \ T joining two nodes of G[T ]. One can distinguish
between several types of chords, of which the most important ones are those of type 1. A
chord (u, v) is of type 1 if it joins a source to a sink (i.e. deg+

T (u) = deg−
T (v) = 2).

We are now ready to characterize the class of facet inducing inequalities of the APA
polytope P̃A associated with odd CATs. We consider first the subgraph generated by an odd
CAT.

Proposition 5.2. Let T be an odd CAT of length t, and let P̃A(G[T ]) be the APA polytope
defined on G[T]. Then the inequality

x(T ) ≤ (t − 1)/2 (5.2)
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defines a facet of both P̃A(G[T ]) and P̃ (G[T ]).

Next we apply sequential lifting to (5.2) and identify inequalities of the form

x(T ) +
∑

(αijxij : (i, j) ∈ A \ T ) ≤ (t − 1)/2 (5.3)

that define facets of P̃A. We take the arcs of A \ T in any order such that the chords of
Type 1 precede all other arcs. It is then not hard to show that, for any such lifting sequence,
the lifting coefficient of each arc a ∈ A \ T is αa = 1 if α is a chord of Type 1, and αa = 0
otherwise. This leads to the following result.

Theorem 5.3. Let T be an odd CAT of length t, and let C1 be the set of its chords of type 1.
Then the odd CAT inequality

x(T ∪ C1) ≤ (t − 1)/2 (5.4)

defines a facet of both P̃A and P̃ .

Proof outline. One can show that a chord of type 1, if lifted first, gets a coefficient of 1. It
then follows by induction that all remaining arcs of C1, if lifted before those in A \ (T ∪C1),
get a coefficient of 1. Finally, all arcs lifted after those in C1 get a coefficient of 0.�

If a different lifting sequence is used, one can get facet inducing inequalities with a
coefficient of 1 for some chords not in C1 and a coefficient of 0 for some chords in C1; but
these inequalities do not share the simplicity and regularity of the family (5.4) (see [1] for
details).

The arc sets corresponding to the support of each odd CAT inequality in the digraph
with 6 nodes are shown (up to isomorphism) in Figure 5.2, with the arcs of T and C1 shown
in solid and shaded lines, respectively.

Remark 5.4. The odd CAT inequalities (5.4) have Chvátal rank 1.

(For a definition and discussion of Chvátal rank see e.g. [9].)
Proof. Each inequality (5.4) associated with an odd CAT T can be obtained by adding the
outdegree equations (0.1) associated with each source of G[T ], the indegree equations (0.4)
associated with each sink of G[T ], and the inequalities (5.1) associated with each two-cycle
of G[T ]; then dividing by two the resulting inequality and rounding down all coefficients to
the nearest integer.�

We finally address the polytopes PA and P , and show that, with the exception of one
special case for n = 5 and one for n = 6, the odd CAT inequality defines a facet of the ATS
polytope P . It then follows that it also defines a facet of the AA polytope PA.

We consider first three cases with small n and |T |. The shortest odd CAT has length 5
and it uses 4 nodes, i.e. (5.4) is defined only for |T | ≥ 5 and n ≥ |V [T ]| ≥ 4.

Proposition 5.5. Let |T | = 5 and |V [T ]| = 4. Then the odd CAT inequality (5.4) defines
a facet of PA and P if n = 4 and n = 6, but not if n = 5.

Proposition 5.6. Let |T | = 7 and |V [T ]| = 5. Then the odd CAT inequality (5.4) defines
a facet of PA and P for n = 5 and n = 6.

27



n = 6 |T | = 5 |C1| = 0

(a)

|N(T )| = 5 |T | = 7 |C1| = 2

(b) (c)

|T | = 7, |C1| = 3 |T | = 9, |C1| = 5

|N(T )| = 6

(d) (e)

|T | = 9, |C1| = 3

(f)

Figure 5.2:
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Finally, for |V [T ]| = 6 we will denote by T ∗ the odd CAT of Figure 5.2(f), i.e., T ∗ consists
of three neutral 2-cycles whose non-neutral nodes are joined in a 3-cycle.

Proposition 5.7. If n = 6 and T = T ∗, then the odd CAT inequality (5.4) does not define
a facet of PA or P .

Here is the main result of this section.

Theorem 5.8. For all n ≥ 6 the odd CAT inequality (5.4) defines a facet of PA and P
(except in case n = 6 and T = T ∗).

The proof of this theorem relies heavily on the following property of all nontrivial facet
defining inequalities for P [1].

Theorem 5.9. Suppose αx ≤ α0 defines a facet of P . Let X be the matrix whose rows are
the incidence vectors of tours in G satisfying αx = α0, and for any p, q ∈ V let A(p, q) be
the set of columns (i, p), i ∈ V \ {p, q}, and (q, j), j ∈ V \ {p, q}, of X. Then the submatrix
of X consisting of the columns in A(p, q) has rank |A(p, q)| − 1; i.e., 2n − 3 if p = q and
2n − 5 if p 
= q.

6 Source-destination inequalities

We now describe a class of facet inducing inequalities introduced in [4] that properly gener-
alizes several known classes of facets of the ATS polytope; the reader is referred to [4] for
further details. We first introduce the primitive (i.e., clone free) members of the family.

Let (S, D, W, I, E, Q) be a partition of V with the following properties: S is the (possibly
empty) set of sources; D is the (possibly empty) set of destinations; H := W ∪ I is the
(nonempty) handle, with 0 ≤ |W | ≤ 1 and |I| = s ≥ 1; I := {i1, . . . , is}; E := {e1, . . . , es};
Tj := {ij , ej} for j = 1, . . . , s are the teeth; 0 ≤ |Q| ≤ 1; and |S| + |D| + s is odd.

Theorem 6.1. The (primitive) source-destination (SD) inequality

x(S ∪ H, D ∪ H) +
s∑

j=1

x(Tj , Tj) ≤ 1

2
(|S| + |D| + 2|H| + s − 1) (6.1)

is valid for P and P̃ and has Chvátal rank 1.

Proof. Multiplying the following inequalities by 1
2
, adding them up and rounding down

all coefficients produces (6.1): x(i, V ) ≤ 1 for i ∈ S ∪ H , x(V, j) ≤ 1 for j ∈ D ∪ H , and
x(Tj , Tj) ≤ 1 for j = 1, . . . , s.�

Figure 6.1 illustrates the support graph of an SD inequality on 9 nodes. Note that the
nodes in S, although interchangeable, are not clones, because the arcs joining them to each
other have coefficients equal to 0, instead of 1.

A primitive SD inequality becomes a comb inequality when |S| = |D| = 0 and s ≥ 3, a
C2 inequality when |S| = |D| = 1 and s ≥ 3, a T2 inequality when |S| = |D| = 1, W = ∅
and s = 1, and an odd CAT inequality when |S| = |D| (with W 
= ∅ only if s ≥ 5, or |S| ≥ 2,
or |S| = 1 and s ≥ 3).

We now address the cases in which SD inequalities are not facet inducing.
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Figure 6.1: The support graph of a primitive SD inequality.

Theorem 6.2. The primitive SD inequalities do not define facets of P in the following 3
pathological cases, all arising when |S| = |D| and n ≤ 6:

(a) s = 3, S = D = W = Q = ∅ (hence n = 6),

(b) n ≥ 5, s = 1, |S| = |D| = 1 (hence n ∈ {5, 6}),
(c) s = 1, S = D = ∅, |W | = |Q| = 1 (hence n = 4).

Moreover, when |S| 
= |D| we have the following result.

Theorem 6.3. Let αx ≤ α0 be any primitive SD inequality with ||S|−|D|| > max{s−3, 0}.
Then αx ≤ α0 does not define a facet of P .

On the other hand, in all cases not covered by the previous theorems the SD-inequalities
do define facets of P :

Theorem 6.4. Let αx ≤ α0 be any primitive SD inequality, different from those of Theo-
rem 6.2 and satisfying ||S| − |D|| ≤ max{s − 3, 0}. Then αx ≤ α0 defines a facet of both P
and P̃ .

We now consider the application to the primitive SD inequality αx ≤ α0 of the clique
lifting procedure described in Section 3.1. To this end it is sufficient to compute the values
δk defined in Theorem 3.4, thus obtaining δk = 0 if k ∈ Q, δk = 2 if k ∈ I, and δk = 1
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otherwise. This leads to the following (clique lifted) SD inequality:

x(S ∪ H, H ∪ D) +
s∑

i=1

x(Ti, Ti) +
σ∑

i=1

x(Si, Si) +
δ∑

i=1

x(Di, Di)

≤ |H| +
s∑

i=1

(|Ti| − 1) +
σ∑

i=1

(|Si| − 1) +
δ∑

i=1

(|Di| − 1)

+
σ + δ − s − 1

2

where (H, T1, . . . , Ts) defines a comb with a possibly even number s of teeth, S and D are
disjoint subsets of V \ (H ∪ T1 ∪ · · · ∪ Ts) which are partitioned properly into S = ∪σ

i=1Si

and D = ∪δ
i=1Di, and σ + δ + s is an odd number.
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Figure 6.2: A general SD inequality

A general inequality of this type is illustrated in Figure 6.2, where the shaded regions
represent cliques, while single and double lines represent coefficients of 1 and 2, respectively.

It can readily be shown that SD inequalities properly generalize the Tk, comb, C2, and
odd CAT inequalities. Indeed, the Tk inequalities can be obtained starting from a primitive
SD inequality with s = 1, |S| = |D| = 1, W = ∅ and introducing clones of nodes e1 and
q ∈ Q. Comb inequalities arise trivially from the case S = D = ∅ through the cloning of
any node. C2 inequalities can be derived from the case |S| = |D| = 1 and s ≥ 3, by adding
clones of the nodes in V \ (S ∪ D). Finally, the odd CAT inequalities are obtainable from

31



primitive SD inequalities with |S| = |D| by introducing clones of w ∈ W and at most one
clone for each node in S ∪ D.

We now address the possibility that two given (facet-defining) SD inequalities define
the same facet of P , i.e., that they are equivalent. To this end we derive and compare
their canonical form, as described at the end of Section 4. In view of Theorems 4.4 and
4.6 we will assume that the two SD inequalities to be compared are primitive. Then let
αx ≤ α0 be any primitive SD inequality associated with the node partition (S, D, W, Q, I :=
{i1, . . . , is}, E := {e1, . . . , es}) and with tooth set T := {{ij, ej} : j = 1, . . . , s}, and consider
any primitive SD inequality α′x ≤ α′

0, different from αx ≤ α0 and associated with the
node partition (S ′, D′, W ′, Q′, I ′ := {i′1, . . . , i′s}, E ′ := {e′1, . . . , e′s}) and with tooth set T ′ :=
{{i′j, e′j} : j = 1, . . . , s′}.
Theorem 6.5. Two SD inequalities αx ≤ α0 and α′x ≤ α′

0 are equivalent if S ′ = D,
D′ = S, Q′ = W , W ′ = Q, I ′ = E, E ′ = I, and T ′ = T .

The equivalence established in Theorem 6.5 was known earlier for comb inequalities, i.e.,
when |S| = |D| = 0; note that it also holds for the C2 and odd CAT inequalities.

A known case of equivalence not completely covered by Theorem 6.5 arises when n = 4
and |S| = |D| = s = 1, i.e. when considering T2 inequalities on 4 nodes (see Figure 4.1). We
give the corresponding result for the sake of completeness.

Theorem 6.6. Let n = 4, and assume |S| = |D| = s = 1 and |S ′| = |D′| = s′ = 1. W.l.o.g.
let S = {1}, i1 = 2, D = {3}, and e1 = 4. Then α′x ≤ α′

0 is equivalent to αx ≤ α0 if and
only if one of the following 4 cases occurs: (1) S ′ = {1}, i′1 = 2, D′ = {3}, and e′1 = 4;
(2) S ′ = {4}, i′1 = 1, D′ = {2}, and e′1 = 3; (3) S ′ = {3}, i′1 = 4, D′ = {1}, and e′1 = 2;
(4) S ′ = {2}, i′1 = 3, D′ = {4}, and e′1 = 1.

We now show that, with the one exception of the pathology pointed out in Theorem 6.6,
all the equivalences among facet-defining primitive SD inequalities are covered by Theo-
rem 6.5. We will do this by transforming the generic primitive facet-inducing SD inequality
αx ≤ α0 to its canonical form βx ≤ β0. Following the procedure stated at the end of
Section 4, for all h ∈ V we compute:

αhh :=

⎧⎨
⎩

0 if h ∈ Q,
2 if h ∈ I,
1 otherwise,

Δ :=
n∑

h=1

αhh = 3s + |W | + |S| + |D|,

rh :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + |D| + |W | + s if h ∈ S,
1 if h ∈ D,
|W | + s + |D| if h ∈ W,
0 if h ∈ Q,
|W | + |D| + s + 2 if h ∈ I,
2 if h ∈ E,

ch :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if h ∈ S,
1 + |S| + |W | + s if h ∈ D,
|W | + s + |S| if h ∈ W,
0 if h ∈ Q,
|W | + |S| + s + 2 if h ∈ I,
2 if h ∈ E.

Recall that |S|+ |D|+ |W |+ |Q|+2s = n. The canonical form βx ≤ β0 is then computed
as βij := σ(Δ+nαij−ri−cj−ε), i, j ∈ V , where σ > 0 and ε are defined in the normalization
step. It is therefore not difficult to prove the following:

Theorem 6.7. Let n ≥ 5. Two distinct facet-inducing primitive SD inequalities are equiv-
alent only in the case covered by Theorem 6.5.
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7 Lifted cycle inequalities

In this section we investigate the family of lifted cycle inequalities for the ATS polytope, and
establish several properties that earmark it as one of the most important among the families
of asymmetric facet inducing inequalities known to date.

Unless otherwise stated, all directed cycles considered in this section are simple. Let
S ⊂ N , S = {i1, i2, . . . , is}, and let C := {(i1, i2), (i2, i3), . . . , (is−1, is), (is, i1)} be a directed
cycle visiting all the nodes in S. For the sake of simplicity, we will use ij+1 and ij−1 to denote
the successor and the predecessor, respectively, of node ij in the cycle (hence is+1 ≡ i1 and
i0 ≡ is). A chord of C is an arc (ih, ik) ∈ A such that ik 
= ih+1. Let R denote the set of
chords of C. For every subset F ⊆ A, let P̃ (F ) := {x ∈ P̃ : xa = 0 ∀a ∈ F}. It is well
known [15] that x(C) ≤ |C| − 1 defines a facet of the polytope P̃ (R). Moreover, let R =
{a1, a2, . . . , am}; then the lifted cycle inequality

αx := x(C) +
m∑

i=1

αai
xai

≤ α0 := |C| − 1

defines a facet of P̃ [15, 18] where the lifting coefficients αai
(i = 1, . . . , m) are sequentially

computed as the maximum value such that inequality αx ≤ α0 is valid for P̃ ({ai+1, . . . , am}).
It is well known that (a) different sequences {ai; i = 1, . . . , m} may lead to different in-
equalities αx ≤ α0, and (b) the value of a given coefficient is largest if lifted first, and is a
monotone nonincreasing function of its position in the lifting sequence (with the position of
the other coefficients kept fixed). In the case of lifted cycle inequalities αx ≤ α0, it is also
easily seen that αai

∈ {0, 1, 2} for i = 1, . . . , m.
We will study the lifted cycle inequalities on P̃ rather than P , since P̃ is full dimensional,

and the following result holds by virtue of Corollary 2.10.

Theorem 7.1. Any lifted cycle inequality for P̃ whose defining cycle has at most n−3 arcs,
induces a facet of P .

Unless otherwise stated, all results in the present section are from [6].

7.1 Two-liftable chord sets

In this section we characterize those sets of chords that can get a coefficient 2 in the lifting
process. We first note that a given lifted cycle inequality αx ≤ α0 obtained, say, via the
chord sequence a1, . . . , am, can always be obtained via an equivalent chord sequence in which
all the chords with coefficient 2 appear (in any order) at the beginning of the sequence, while
all the chords with coefficient 0 appear (in any order) at the end of the sequence. We call
any such chord sequence canonical. Indeed, consider swapping the positions in the lifting
sequence of two consecutive chords. Clearly, either (a) their coefficients remain unchanged,
or (b) the coefficient of the chord moved to the left increases and the other one decreases.
Case (b) cannot occur when a chord with coefficient 2 is moved to the left, or a chord with
coefficient 0 is moved to the right. Therefore a sequence of swaps of the above type leads to
the desired canonical form.
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For any arc set F , we denote by V (F ) the set of nodes spanned by F . Given a cycle C
and a chord (i, j), we denote by Cij the shorter of the two cycles contained in C ∪{(i, j)}. A
given set H ⊂ R is called 2-liftable if there exists a chord sequence producing a lifted cycle
inequality αx ≤ α0 such that αa = 2 for all a ∈ H . Because of the above property, such a
sequence can w.l.o.g. be assumed to be canonical. It then follows that H is 2-liftable if and
only if αx := x(C) + 2x(H) ≤ |C| − 1 is a valid inequality for P̃ (R \H). We will show that
in order to impose this condition it is necessary and sufficient to forbid the presence in H of
certain patterns of chords.

Two distinct arcs (i, j) and (u, v) are called compatible when there exists a tour containing
both, i.e., when i 
= u, j 
= v, and (i, j) and (u, v) do not form a 2-cycle. Two arcs that are
not compatible are called incompatible. Given a chord (ia, ib) of C, we call internal w.r.t.
(ia, ib) the nodes ib, ib+1, . . . , ia; external the nodes ia+1, . . . , ib−1. Thus the internal nodes
w.r.t. (ia, ib) are those of V (Ciaib), and the external ones are those of V (C)\V (Ciaib). Given
two chords (ia, ib) and (ic, id), we say that (ic, id) crosses (ia, ib) if they are compatible and
nodes ic and id are not both internal or both external w.r.t. (ia, ib); see Figure 7.1 for an
illustration. Note that (ic, id) crosses (ia, ib) if and only if (ia, ib) crosses (ic, id), i.e., the
property is symmetric. Two chords that do not cross each other are called noncrossing.
Thus all incompatible pairs are noncrossing.

We define a noose in C ∪ R as a simple alternating (in direction) cycle Q := {a1, b1,
a2, b2, . . . , aq, bq} of 2q ≥ 4 distinct arcs ai ∈ R and bi ∈ C (i = 1, . . . , q), in which
all adjacent arcs in the sequence (including bq and a1) are incompatible and all chords are
pairwise noncrossing (see Figure 7.2).

Theorem 7.2. A chord set H ⊂ R is 2-liftable if and only if C ∪ H contains no pair of
crossing chords and no noose.

An immediate consequence of Theorem 7.2 is that the set of 2-liftable chords is never
empty for |C| ≥ 3. It then follows that the subtour elimination inequalities, in which every
chord has a coefficient 1, are not sequentially lifted inequalities (they can be obtained from
the corresponding cycle inequality by simultaneous lifting). Any chord that is lifted first in
a sequential lifting procedure must get a coefficient 2.

We might note at this point that we have touched upon an important point of difference
between the symmetric and asymmetric TS polytopes. In the case of the STS polytope,
the subtour elimination inequalities are the only kinds of lifted cycle inequalities: whichever
chord is lifted first, it gets a coefficient of 1, and so does the chord that is lifted last.

Assigning a chord (i, j) the coefficient αij = 2 forces to 0 the coefficients of several other
chords.

Theorem 7.3. Let (ia, ib) be a chord of C such that αiaib = 2. Then the following chords
must have coefficient 0 (see Figure 7.3):

(i) (ij , ia+1) for all j = b, b + 1, . . . , a − 1;

(ii) (ib−1, i�) for all � = b + 1, b + 2, . . . , a.

Corollary 7.4. If the chord (ia, ia+2) has coefficient 2, then all chords incident with node
ia+1 must have coefficient 0.
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Figure 7.1: Crossing and noncrossing chords. The internal nodes w.r.t. (ia, ib) are marked
with +, and the chords are drawn in double lines.
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Figure 7.2: A noose Q with q = 4.
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Figure 7.3: The dashed lines represent chords with coefficient 0.
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7.2 Maximally 2-lifted cycle inequalities

Given a lifted cycle inequality with a given set of 2-liftable chords and a corresponding set of
chords with coefficients forced to 0, the size of the remaining coefficients depends in general
on the lifting sequence. Next we characterize a class of lifted cycle inequalities whose 0-1
coefficients are largely sequence-independent.

A set Q2 of 2-liftable chords is termed maximal if no set of the form Q2 ∪ {(i, j)},
(i, j) ∈ R \ Q2, is 2-liftable. A lifted cycle inequality whose set of chords with coefficient 2
is maximal 2-liftable, will be called a maximally 2-lifted cycle inequality.

Proposition 7.5. The maximum cardinality of a 2-liftable chord set is |C| − 2.

Notice that not all sequentially lifted cycle inequalities are maximally 2-lifted. Examples
of (facet inducing) lifted cycle inequalities having a single chord with coefficient 2 are shown
in Figure 7.4. (For the first graph of that figure, the appropriate lifting sequence is (3, 2),
(1, 4), (3, 1), (4, 2) etc.).

1

1

2

3

4

4

5

2 3

Figure 7.4: Support graphs of two lifted cycle inequalities having a single chord with coeffi-
cient 2.

On the other hand, we can identify some large classes of maximally 2-lifted cycle in-
equalities with useful properties. The next theorem gives a sufficient condition for a given
inequality related to a cycle C to be a (facet defining) lifted cycle inequality for P̃ .

Theorem 7.6. Let αx ≤ α0 be an inequality with αij = 1 for all arcs (i, j) of a given cycle
C of length |C| = α0 + 1 ≤ n− 1, where αij ∈ {0, 1, 2} for all chords (i, j) of C, and αij = 0
for all other arcs. Let Qt := {(i, j) ∈ R : αij = t} for t = 0, 1, 2, and assume the following
conditions hold:
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(a) Q2 is a maximal 2-liftable set;

(b) all 0 coefficients are maximal, i.e., αij = 0 implies the existence of x∗ ∈ P̃ such that
αx∗ = α0 and x∗

ij = 1;

(c) the inequality αx ≤ α0 is valid for P̃ .

Then αx ≤ α0 is a maximally 2-lifted cycle inequality, hence facet defining for P̃ .

A particularly friendly (and, it turns out, rich) class of lifted cycle inequalities is that for
which Q0 := {(i, j) ∈ R : αij = 0} is just the set of chords whose coefficients are forced to 0
by the conditions of Theorem 7.3. For this class condition (b) holds automatically, and the
only condition to be checked is the inequality validity (c).

Corollary 7.7. Let αx ≤ α0 and let Qt := {(i, j) ∈ R : αij = t} for t = 0, 1, 2. If Q2 is a
maximal 2-liftable set and Q0 is the set whose coefficients are forced to 0 by the conditions
of Theorem 7.3, then αx ≤ α0 is a (facet defining) lifted cycle inequality for P̃ if and only if
it is valid for P̃ .

One familiar subclass of this class is that of the D+
k and D−

k inequalities. Another subclass
will be introduced in the sequel.

7.3 Maximally 2-lifted cycle inequalities of rank 1

In this section we introduce two new classes of lifted cycle inequalities of Chvátal-rank 1.
We start by pointing out that the pattern of 2-liftable chords in a rank 1 inequality has to
satisfy an additional condition (besides those required for 2-liftability): it has to define a
nested family of node sets in the following sense. A family F of sets is nested if for every
S1, S2 ∈ F , either S1 ⊆ S2, or S2 ⊆ S1, or S1 ∩ S2 = ∅. Given a cycle C and a chord (ia, ib)
of C, recall that Ciaib denotes the shorter of the two cycles contained in C ∪ {(ia, ib)}.
Theorem 7.8. Let αx ≤ α0 be a lifted cycle inequality with cycle C, chord set R and
Q2 := {(i, j) ∈ R : αij = 2}. If αx ≤ α0 is of Chvátal rank 1, then V (C) and the node sets
V (Ciaib) for all (ia, ib) ∈ Q2 form a nested family.

An implication of the above theorem is that rank-1 lifted cycle inequalities form a very
special subclass indeed: for every (ia, ib) ∈ Q2, the path from ib to ia in C never meets the
tail of any chord in Q2 before meeting its head. This implies, among other things, that Q2

cannot contain a 2-cycle.
Theorem 7.8 gives a necessary condition for αx ≤ α0 to be of Chvátal rank 1. Interest-

ingly, this condition is not sufficient, as shown by the following example. Consider the cycle
C and the 2-liftable set of chords of Figure 7.5. One can easily see that node sets V (Ciaib)
for (ia, ib) ∈ Q2 form a nested family, as required in Theorem 7.8. However, no lifted cycle
inequality αx ≤ α0 with the 2-chord pattern of Figure 10 can be of rank 1, as certified by
the point x∗ with x∗

ij := 2
3

for all (i, j) ∈ C \ {(i5, i6)}, x∗
ij := 1

3
for all (i, j) ∈ Q2 \ {(i9, i2)},

x∗
ij := 0 for all other arcs. Indeed, x∗ satisfies all degree and subtour elimination inequalities,

but αx∗ = 28
3

> α0 + 1 = 9. This implies [30] that αx ≤ α0 cannot be of rank 1.
We now introduce two new large classes of maximally 2-lifted cycle inequalities of Chvátal

rank 1.
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Figure 7.5: Counterexample for the converse of Theorem 7.8.

Theorem 7.9. Let C be the cycle visiting in sequence the nodes i1, . . . , ik for some 4 ≤ k ≤
n − 1. Then the shell inequality

αx := x(C) +
∑

3≤j≤k

j odd

x({ij+1, . . . , ik, i1}, ij)

+
k∑

j=3

xi1ij +
∑

3≤j≤k−1

j odd

xij+1ij ≤ k − 1 =: α0

is a rank-1 maximally 2-lifted cycle inequality, hence facet defining for P̃ . (See Figure 7.6.)

Theorem 7.10. Let w, a1, . . . , aka, b1, . . . , bkb
, be distinct nodes with ka, kb ≥ 1, kb ∈ {ka, ka+

1}, and ka+kb+1 ≤ n−1. Let C be the directed cycle visiting, in sequence, nodes w, b1, b2, . . . ,
bkb

, aka, aka−1, . . . , a1, w, and define F :=
⋃ka

i=1{(ai, bj) : i ≤ j ≤ i + 1, j ≤ kb}. Then the
fork inequality

αx := x(C) + x(F ) +
∑ka

i=1

∑kb

j=1 xaibj
+∑ka−1

i=1 x(ai, {ai+1, . . . , aka}) +
∑kb−1

j=1 x({bj+1, . . . , bkb
}, bj) ≤ ka + kb =: α0

is a rank-1 maximally 2-lifted cycle inequality, hence facet defining for P̃ (see Figure 7.7).
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Figure 7.6: Support graphs of two shell inequalities.

7.4 Maximally 2-lifted cycle inequalities of unbounded rank

We next establish an important property of the family of lifted cycle inequalities.

Theorem 7.11. The family of lifted cycle inequalities contains members of unbounded Chvátal
rank.

Proof. Let C be a cycle with node set i1, . . . , ik, k ≥ 8 even, and consider the nonmaximal
2-liftable chord set Q := {(i1, i3), (i3, i5), . . . , (ik−1, i1)}. Let αx ≤ α0 be any lifted cycle
inequality associated with C and such that αij = 2 for all (i, j) ∈ Q. We claim that
for any subset S of the set Veven := {i2, i4, . . . , ik} of even nodes, the subtour elimination
inequality associated with V (C)\S must have a positive multiplier in any Chvátal derivation
of αx ≤ α0. Since the number of subsets S is exponential in k (which in turn is bounded
only by n), it then follows from Chvátal, Cook, and Hartmann [9] that for any M > 0 there
exists a lifted cycle inequality in a sufficiently large digraph, whose Chvátal rank is at least
M .

To prove the claim, we assume by contradiction that there exists a Chvátal derivation
of αx ≤ α0 in which the SEC associated with some S∗ := V (C) \ S with S ⊆ Veven has
0 multiplier. Then αx ≤ α0 must be valid for the polytope P̃ ∗ defined as the convex hull
of points x ∈ {0, 1}A satisfying the degree inequalities and all the SEC’s except for the
one associated with S∗. But here is a point x∗ ∈ P̃ ∗ with αx∗ = |C| > α0 that violates
αx ≤ α0, whose support A∗ is constructed as follows: start with A∗ := C and then, for each
ij ∈ S, remove from A∗ the two arcs incident with ij (having coefficient 1), and add the arc
(ij−1, ij+1) ∈ Q (which has coefficient 2).�

Next we introduce a large family of maximally 2-lifted cycle inequalities whose set Q2

of 2-lifted chords is of the type used for the proof of Theorem 7.11, and which therefore
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Figure 7.7: Support graphs of two fork inequalities.
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contains members with unbounded Chvátal rank. Notice that, in addition, these inequalities
satisfy the condition of Corollary 7.7.

Theorem 7.12. Let C be the cycle visiting in sequence the nodes i1, i2, . . . , i4k for some
integer k ≥ 2 satisfying 4k ≤ n − 1. Further, let S1 := {ij ∈ N(C) : j is odd}, and
C1 := {(i1, i3), (i3, i5), . . . , (i4k−1, i1)}. Then the curtain inequality

αx := x(C) + x(S1, S1) + x(C1) +

2k−1∑
j=3

j odd

(xiji4k−j+2
+ xi4k−j+2ij ) ≤ 4k − 1 =: α0

is a maximally 2-lifted, hence facet defining, cycle inequality for P̃ .

Proof. Let Qt := {(i, j) : αij = t} for t ∈ {0, 1, 2}. Clearly, Q2 has no crossing chords
and no nooses, so it is 2-liftable. Also, |Q2| = |C|/2 + (|C| − 4)/2 = |C| − 2, hence Q2 is
maximal. Further, Q0 consists precisely of those chords whose coefficient is forced to 0 by the
conditions of Corollary 7.4. Hence by Corollary 7.7, we only have to show that the curtain
inequality is valid for P̃ . From the properties of the 2-liftable chord set Q2, the inequality
x(C)+ 2x(Q2) ≤ 4k− 1 is valid for P̃ (R \Q2). Thus the curtain inequality is satisfied by all
x ∈ P̃ such that x(Q1) = 0. Now let x ∈ P̃ be such that x(Q1) ≥ 1. Then subtracting this
inequality from the sum of the 2k indegree inequalities and the 2k outdegree inequalities for
the odd nodes i1, i3, . . . , i4k−1, produces an inequality βx ≤ 4k− 1, with β ≥ α. This proves
the validity of the curtain inequality for P̃ .�

The pattern of chords with coefficient 2 in a curtain inequality is illustrated in Figure 7.8,
where odd and even nodes are marked by + and −, respectively. The chords with coefficient
1 are all those (not shown in the figure) joining pairs of odd nodes.

k = 2

i5
+

− −

−−

+

+

i2

i12

k = 3

−

−

+

+ − +

−

+

−

+−+
+

i2
i3

i1

i6

i1

Figure 7.8: 2-liftable chord sets of curtain inequalities.
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Figure 7.9: Support graphs of curtain inequalities for |C| = 5, 6, 7.

The class of curtain inequalities can be extended to cycles of length |C| 
= 0 (mod 4).
The corresponding graphs for |C| = 5, 6, 7 are shown in Figure 7.9.

For the cases |C| = 1 (mod 4) and |C| = 3 (mod 4) we have the following.

Theorem 7.13. Let C be the cycle visiting in sequence the nodes i1, . . . , i4k+1 for some
integer k, 2 ≤ k ≤ (n − 2)/4. Further, let S1 := {ij ∈ V (C) : j is odd }, and P1 :=
{(i1, i3), (i3, i5), . . . , (i4k−1, i4k+1)}. Then the curtain inequality

αx := x(C) + x(S1, S1) + x(P1) +

2k−1∑
j=3

j odd

(xij i4k−j+2
+ xi4k−j+2ij ) + xi1i4k+1

≤ 4k =: α0

is a maximally 2-lifted, hence facet defining, inequality for P̃ .

Proof. Parallels the proof of Theorem 7.12. As in that case, we only have to show that the
inequality is satisfied by all x ∈ P̃ such that x(Q1) ≥ 1. Let x have this property. Then
adding

• the outdegree inequalities for nodes i1, i3, . . . , i4k−1

• the indegree inequalities for node i3, i5, . . . , i4k+1

• 1/2 times the outdegree inequality for node i4k+1

• 1/2 times the indegree inequality for node i1

• 1/2 times the inequality −x(Q1) ≤ −1
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we obtain an inequality βx ≤ 4k + 0.5, with β ≥ α. Rounding down the coefficients on both
sides then yields an inequality that implies αx ≤ 4k.�

Theorem 7.14. Let C be the cycle visiting in sequence the nodes i1, . . . , i4k+3 for some
integer k, 2 ≤ k ≤ (n − 4)/4. Further, let S1 := {ij ∈ N(C) : j is odd}, and P1 :=
{(i1, i3), (i3, i5), . . . , (i4k+1, i4k+3)}. Then the curtain inequality

αx := x(C) + x(S1, S1) + x(P1) +

2k−1∑
j=1

j odd

(xij i4k−j+2
+ xi4k−j+2ij) −

4k+1∑
j=3

j odd

xi4k+3ij ≤ 4k + 2 := α0

is a maximally 2-lifted, hence facet defining, inequality for P̃ .

Proof. As in the case of Theorem 7.12, Q2 can easily be seen to be a maximal 2-liftable chord
set. Also, from Theorem 7.3, all chords incident from or to even nodes have 0 coefficients.
Further, from the same theorem as it applies to the 2-chord (i4k+1, i1), all chords incident
from i4k+3 have 0 coefficients. Finally, to prove validity, the inequality can be shown to be
satisfied by all x ∈ P̃ such that x(Q1) ≥ 1 by adding (1) the outdegree inequalities for nodes
i1, i3, . . . , i4k+1; (2) the indegree inequalities for nodes i1, i3, . . . , i4k+3; and (3) the inequality
−x(Q1) ≤ −1.�

Finally, for the case |C| = 2 (mod 4) we have a stronger result, i.e., we can identify a
larger class of facet defining inequalities that contains as a special case the curtain inequality
with |C| = 2 (mod 4).

Theorem 7.15. Let C be an even length cycle visiting nodes i1, . . . , i|C|, with |C| ≤ n − 1.
Define the cycle C1 := {(i1, i3), (i3, i5), . . . , (i|C|−1, i1)} and let S1 be the node set of C1. Then
for any maximally 2-liftable chord set Q2 containing C1, the inequality

αx := x(C) + x(S1, S1) + x(Q2) ≤ |C| − 1

is a maximally 2-lifted, hence facet defining, inequality for P̃ .

Proof. Since Q2 is maximally 2-liftable, every x ∈ P̃ (R \ Q2) satisfies x(C) + 2x(Q2) ≤
|C|−1. Moreover, Q0 consists precisely of those chords whose coefficient is forced to 0 by the
conditions of Theorem 7.3. Thus by Corollary 7.7, we only need to prove that the inequality
of the theorem is valid for P̃ . Clearly, all x ∈ P̃ such that x(Q1) = 0, where Q1 is the set
of chords with coefficient 1, satisfies the inequality. Now let x ∈ P̃ be such that x(Q1) ≥ 1,
and note that |S1| = |C|/2. Then adding up (1) the outdegree inequalities for nodes i ∈ S1;
(2) the indegree inequalities for nodes i ∈ S1; and (3) the inequality −x(Q1) ≤ −1, we obtain
an inequality βx ≤ |C| − 1, where β ≥ α.�

The curtain inequality for |C| = 2 (mod 4) is then a special case of the inequality of
Theorem 7.15.

Corollary 7.16. Let C be the cycle visiting in sequence the nodes i1, i2, . . . , i4k+2 for some
integer k ≥ 2 satisfying 4k + 2 ≤ n − 1. Further, let S1 := {ij ∈ V (C) : j is odd}, and
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C1 := {(i1, i3), (i3, i5), . . . , (i4k+1, i1)}. Then the curtain inequality

αx := x(C) + x(S1, S1) + x(C1) +
2k−1∑
j=3

j odd

(xij i4k−j+2
+ xi4k−j+2ij ) + xi1i4k+1

≤ 4k + 1 =: α0

is a maximally 2-lifted, hence facet defining, cycle inequality for P̃ .
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