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1. Introduction

In the present chapter we concentrate on the exact solution methods
for the Asymmetric T'SP proposed in the literature after the writing
of the survey of Balas and Toth [10]. In Section 2 two specific branch-
and-bound methods, based on the solution of the assignment problem
as a relaxation, are presented and compared. In Section 3 a branch-
and-bound method based on the computation of an additive bound is
described, while in Section 4 a branch-and-cut approach is discussed.
Finally, in Section 5 all these methods are computationally tested on a
large set of instances, and compared with an effective branch-and-cut
code for the symmetric T'SP.

A formal definition of the problem is as follows. Let G = (V, A) be
a given complete digraph, where V' = {1,...,n} is the vertex set and
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A ={(i,j) : i,j € V} the arc set, and let ¢;; be the cost associated with
arc (i,j) € A (with ¢;; = o0 for each i € V). A Hamiltonian directed
cycle (tour) of G is a directed cycle visiting each vertex of V' exactly once,
i.e., a spanning subdigraph G = (V, A) of G such that |A| = n, and G is
strongly connected, i.e., for each pair of distinct vertices 7,5 € V, i < j,
both paths from i to j and from j to ¢ exist in G.

The Asymmetric Traveling Salesman Problem (ATSP) is to find a
Hamiltonian directed cycle G* = (V, A*) of G whose cost Z(i,j)eA* cij is
a minimum. Without loss of generality, we assume ¢;; > 0 for any arc
(i) € A.

The following Integer Linear Programming formulation of AT'SP is
well-known:

(i,5)eA
subject to
D m =1 Jjev (2)
i€V
Y =1 ieV (3)
JjeEV
N> w;>1 SCV:S#D (4)
i€S jeV\S
Tij >0 i,j eV (5)
x;; integer i,jeV (6)

where z;; = 1 if and only if arc (¢, j) is in the optimal tour. Constraints
(2) and (3) impose the in-degree and out-degree of each vertex be equal
to one, respectively, while constraints (4) impose strong connectivity.
Because of (2) and (3), conditions (4) can be equivalently re-written as
the Subtour Elimination Constraints (SECs):

YN i <IS|-1 SCV:S#0 (7)
i€S jes
Moreover, it is well known that one can halve the number of constraints
(4) by replacing them with
ZZ.’I;Z’]‘21 ScV:ref (8)
i€S jeV\S

or with

N> w1 SCV:S#br¢S (9)

€S jeV\S
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where 7 is any fixed vertex.

Several substructures of AT'SP can be pointed out, each associated
with a subset of constraints defining a well-structured relaxation whose
solution value gives a valid lower bound for AT'SP.

Constraints (2), (3) and (5), with objective function (1), define the
well-known min-sum Assignment Problem (AP). Such a problem al-
ways has an integer optimal solution, and requires finding a minimum-
cost collection of vertex-disjoint subtours visiting all the vertices of G.
If an optimal solution of AP determines only one directed cycle, then
it satisfies all constraints (4) and hence is optimal for AT'SP as well.
Otherwise, each vertex subset S whose vertices are visited by the same
subtour, determines a violated constraint (4). Relaxation AP can be
solved in O(n?) time (see, e.g., Lawler [40]).

Constraints (2), (8) and (5), with objective function (1), define the
well-known shortest Spanning r-Arborescence Problem (r-SAP). Such a
problem always has an integer optimal solution, and corresponds to find-
ing a minimum-cost spanning subdigraph G = (V, A) of G such that (i)
the in-degree of each vertex is exactly one, and (ii) each vertex can
be reached from the root vertex r. If an optimal solution of r-SAP
leaves each vertex with out-degree equal to one, then it satisfies all con-
straints (3) and hence is optimal for ATSP as well. Otherwise, each
vertex having out-degree different from one, determines a violated con-
straint (3). Relaxation r7-SAP can be solved in O(n?) time by finding the
shortest spanning arborescence rooted at vertex r, and by adding to it a
minimum-cost arc entering vertex r. Efficient algorithms for the shortest
arborescence problem have been proposed by Edmonds [21], Fulkerson
[30], Tarjan [50], and Camerini, Fratta and Maffioli [12, 13]; an efficient
implementation of Tarjan’s algorithm can be found in Fischetti and Toth
[27]. Fischetti [22] described a modified O(n?)-time method to compute
an improved lower bound not depending on the root vertex r.

A third substructure, corresponding to constraints (3), (9) and (5),
with objective function (1), defines the shortest Spanning r-Antiarbore-
scence Problem (r-SAAP). Such a problem can easily be transformed
into r-SAP by simply transposing the input cost matrix, hence it can be
solved in O(n?) time.

In order to obtain tighter lower bounds, two enhanced relaxations,
r-SADP and r-SAADP, can be introduced.

Relaxation r-SADP is obtained from r-SAP by adding constraint (3)
for ¢ = r, ie., Zjev zrj = 1, which imposes out-degree equal to one
for the root vertex r. Such a problem can be transformed into r-SAP
(and hence solved in O(n?) time) by considering a modified cost matrix
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obtained by adding a large positive value M to costs ¢,; for all j € V,
the optimal value of 7-SADP being v(r-SAP) — M.

Relaxation r-SAADP is obtained in a similar way from r-SAAP, by
adding constraint (2) for j = r, i.e., > ..y i = 1, which imposes in-
degree equal to one for the root vertex r. Such a problem can be solved
in O(n?) time by transforming it into r-SADP through transposition of
the input cost matrix.

2. AP-based branch-and-bound methods

In this section we review the AP-based branch-and-bound algorithms
that have been proposed since the writing of the Balas and Toth [10]
survey. All these algorithms are derived from the lowest-first branch
and bound procedure TSP1 presented in Carpaneto and Toth [17] which
is outlined below.

At each node h of the decision tree, procedure T'SP1 solves a Modi-
fied Assignment Problem (M APy) defined by (1), (2), (3), (5) and the
additional variable-fixing constraints associated with the following arc
subsets:

En = {(i,j) € A : =z is fixed to 0} (excluded arcs)
In = {(i,j) € A : =z is fixed to 1} (included arcs)

M APy, can easily be transformed into a standard AP by properly mod-
ifying the cost matrix so as to take care of the additional constraints.

If the optimal solution to M AP; does not define a Hamiltonian di-
rected cycle and its value LB}, (yielding the lower bound associated with
node h) is smaller than the current optimal solution value, say U B, then
m descending nodes are generated from node h according to the follow-
ing branching scheme (which is a modification of the subtour elimination
rule proposed by Bellmore and Malone [11]).

Let Gp = (Vp, Ap) be a subtour in the optimal M APj, solution having
the minimum number of not included arcs, i.e., such that m := |4, \ I| is
a minimum, and let (s1,%1),...,(Sm,tm) be the non-included arcs of 4,
taken in the same order as they appear along the subtour. The subsets
of the excluded/included arcs associated with the j-th descending node
of the current branching node h, say g(j), are defined as follows (j =

1,...,m) (see also Figure 2.1 for an illustration):
Eyjy = EpnU{(sj,tj)}
Ig(j) = InU{(siyti):i=1,...,5 -1}

Moreover, each subset E,;), j > 1, is enlarged by means of the arc
(tj—1,s1), so as to avoid subtours with just one non-included arc.
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Figure 2.1. Branching on subtour G, = (Vp, Ap), where V, = {a,b,c} and 4, =
{(a’ b)7 (b’ C)’ (C, a)}'

2.1. The algorithm of Carpaneto, Dell’Amico
and Toth

The approach of Carpaneto, Dell’Amico and Toth [16] differs from
that presented in [17] in the following main respects:

a) at the root node of the branch-decision tree, application of a re-
duction procedure to remove from G some arcs that cannot belong
to an optimal tour; in this way the original digraph G can be
transformed into a sparse one, say G = (V, A), allowing the use of
procedures specialized for sparse graphs;

b) use of an efficient parametric technique for the ~solution of the
M AP’s, allowing each M APy, to be solved in O(|A|logn) time;

c) application, at each branching node h, of a subtour merging pro-
cedure to decrease the number of subtours defined by the optimal
M APy, solution.

2.1.1 Reduction procedure. At the root node of the branch-
decision tree, the AP corresponding to the original complete cost matrix,
¢, is solved through the O(n?) primal-dual procedure CTCS presented
in Carpaneto and Toth [18]. Let (u;) and (v;) be an optimal solution of
the dual problem associated with AP, and let LBy be the corresponding
solution value. It is well known that, for each arc (¢,j) € A, the reduced
cost ¢ = cjj — u; — v; > 0 represents a lower bound on the increase
of the optimal AP solution value corresponding to the inclusion of arc
(7,7). If an AT'SP feasible solution of value UB is known, then each arc
(i,5) € A such that ¢;; > UB — LBy can be removed from A, since its
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inclusion in any AT'SP solution cannot lead to a solution value smaller
than UB. The original complete digraph G can thus be reduced into a
sparse one, G = (V, A), where A = {(i,j) € A:¢;; <UB — LBy}.

Value U B can be obtained through any heuristic procedure for AT SP;
in [16] the patching algorithm proposed by Karp [37] is used. An alter-
native way is to compute an “artificial” upper bound by simply setting
UB = a LBy, where a > 1 is a given parameter. However, if at the
end of the branch and bound algorithm no feasible solution of value less
than UB is found, then o LBy is not a valid upper bound, so @ must be
increased and a new run needs to be performed.

2.1.2 Parametric M AP solution. The effectiveness of the
overall AT'SP algorithm greatly depends on the efficiency of the M AP
algorithm used. At each node h of the decision tree, instead of solving
M APy, from scratch, a parametric technique is used which finds only one
shortest augmenting path. Indeed, when generating a descending node
h from its father node k, only one arc, say (s,t), is excluded from the
solution of M AP;. So, to obtain the optimal solution of M AP, from
that of M APy it is only necessary to satisfy constraint (2) for j = ¢ and
constraint (3) for i = s, i.e., one only needs to find a single shortest
augmenting path from vertex s to vertex ¢ in the bipartite graph corre-
sponding to M AP, with respect to the current reduced cost matrix ¢.
Note that the addition of the new included arcs contained in Ip\ I} does
not affect the parametrization, as these arcs already belong to the opti-
mal solution of M AP,. As graph G is sparse, the shortest augmenting
path is found through a procedure derived from the labelling algorithm
proposed by Johnson [33] for the computation of shortest paths in sparse
graphs, which uses a heap queue. Hence, the resulting time complexity
for solving each M APy, is O(| A | log n).

The computation of the shortest augmenting path at each node h is
stopped as soon as its current reduced cost becomes greater or equal
to the gap between the current upper bound value UB and the optimal
value of M AP;.

2.1.3 Subtour merging. Consider a node h of the decision
tree for which several optimal M AP solutions exist. Computational
experience shows that the optimal solution which generally leads to the
smallest number of nodes in the subtree descending from A is that having
the minimum number of subtours. A heuristic procedure which tries to
decrease the number of subtours is obtained by iteratively applying the
following rule.
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Given two subtours G, = (V,, A,) and Gy = (V4, Ap), if there exists an
arc pair (iq,Jq) € Aq and (ip, jp) € Ap such that arcs (ig,jp) and (s, ja)
have zero reduced costs (i.e. ¢,j, = Cij, = 0), then an equivalent
optimal solution to M AP}, can be obtained by connecting subtours G,
and G}, to form a single subtour G, = (V,UV4, AgUA\{ (%4, Ja), (%, Jb) }U
{(ia,Jb), (ib, Ja)})- If, at the end of the procedure, a Hamiltonian directed
cycle is found, then an optimal solution to the AT'SP associated with
node h has been found and no descending nodes need to be generated.

The above subtour-merging procedure is always applied at the root
node of the decision tree. As to the other nodes, it is applied only if the
total number of zero reduced cost arcs at the root node is greater than
a given threshold S (e.g., 8 = 2.5n). Indeed, the procedure is typically
effective only if the subdigraph corresponding to the zero reduced-cost
arcs contains a sufficiently large number of arcs. (Computational exper-
iments have shown that an adaptive strategy, which counts the number
of zero reduced-cost arcs at each node and then decides on the opportu-
nity to apply the procedure, often gives worse results than the threshold
method above.)

2.2, The algorithms of Miller and Pekny

Effective procedures for the solution of the AT'S P have been proposed
by Miller and Pekny in the early nineties [43, 44, 48, 47]. These methods
are also based on the general approach presented in Carpaneto and Toth
[17], the main differences and similarities between them being discussed
below.

In [43], Miller and Pekny presented a preliminary algorithm which is
a parallelization of the approach of Carpaneto and Toth, improved with
the application of the patching heuristic [37] at the root node.

The algorithm presented in [47] represents a substantial improvement
of the original parallel procedure. The M AP’s at the nodes are solved
through an O(n?) parametric procedure which computes a single aug-
menting path using a d-heap. Moreover, the patching algorithm is ap-
plied at the root node, and to the other nodes with decreasing frequency
as search progresses. In addition, the branch-and-bound phase is pre-
ceded by a sparsification of the cost matrix obtained by removing all the
entries with cost greater than a given threshold A. A sufficient condition
is given to check whether the optimal solution obtained with respect to
the sparse matrix is optimal for the original matrix as well.

The algorithm presented in [48] is a modification of that presented in
[47], obtained with the application, at each node, of an exact procedure
to find a Hamiltonian directed cycle on the subdigraph defined by the



8 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

arcs with zero reduced cost. The most sophisticated version of the Miller
and Pekny codes appears to be that presented in [44], which includes all
the improvements previously proposed by the authors.

The similarities among the approach of Carpaneto, Dell’Amico and
Toth [16] and the algorithms of Miller and Pekny are the following: (a)
the branching rule is that proposed in [17]; (b) the M AP’s at the vari-
ous branching nodes are solved through an O(n?) procedure; and (c) the
patching algorithm is applied at the root node. The two approaches dif-
fer in the following aspects: (a) for the sparsification phase, [16] proposes
a criterion based on the comparison between the reduced costs given by
the initial AP and the gap between lower and upper bound; (b) an effi-
cient technique to store and retrieve the subproblems is proposed in [16]
so that the exploration of the branch-decision tree is accelerated; and
(c) a fast heuristic algorithm to find a Hamiltonian directed cycle on the
subdigraph defined by the arcs with zero reduced cost is applied in [16].

Comparing the computational results obtained by Miller and Pekny
with those presented in [16], it appears that the latter code is slower
than the algorithm presented in [44] for small cost ranges (and random
instances), but it seems to be faster for large cost ranges. On the whole,
the two methods exhibit a comparable performance.

3. An additive branch-and-bound method

This section describes the solution approach proposed by Fischetti
and Toth [26], who embedded a more sophisticated bounding procedure
within the standard branch-and-bound method of Carpaneto and Toth
[17]. Observe that AP, r-SADP and r-SAADP relaxations (as defined
in Section 1) are complementary to each other. Indeed, AP imposes
the degree constraints for all vertices, while connectivity constraints are
completely neglected. Relaxation r-SADP, instead, imposes reachability
from vertex r to all the other vertices, while out-degree constraints are
neglected for all vertices different from r. Finally, 7-SAADP imposes
reachability from all the vertices to vertex r, while in-degree constraints
are neglected for all vertices different from r. A possible way of com-
bining the three relaxations is to apply the so-called additive approach
introduced by Fischetti and Toth [25].

3.1. An additive bounding procedure

An additive bounding procedure for AT'SP can be outlined as follows.
Let £, £®3) ... £@ be ¢ bounding procedures available for ATSP.
Suppose that, for h = 1,2,...,¢ and for any cost matrix ¢, procedure
L™ (%), when applied to the ATSP instance having cost matrix ¢, re-
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turns its lower bound §(") as well as a so-called residual cost matrix c(?)
such that:

i) cg.l) >0 for each i,j € V;

ii) §5(h) Z(z’,j)eA cg.l)zij < Z(i,j)eA Cijrij for each feasible
ATSP solution z.

The additive approach generates a sequence of AT'SP instances, each
obtained by considering the residual cost matrix corresponding to the
previous instance and by applying a different bounding procedure. A
Pascal-like outline of the approach follows.

ALGORITHM ADDITIVE:
1. input: cost matrix c;
2. output: lower bound ¢ and the residual-cost matrix c(q);

begin
3. initialize ¢® :=¢, §:=0;
4. for h:=1to g do
begin
5. apply L") (ch=1), thus obtaining value §(*)
and the residual cost matrix c(h);
6. §:=86+60"
end
end.

An inductive argument shows that the values § computed at step 6
give a non decreasing sequence of valid lower bounds for AT'SP. More-
over, the final residual-cost matrix ¢(? can be used for reduction pur-
poses.

Related approaches, using reduced costs for improving lower bounds
for AT'SP, are those of Christofides [19] and Balas and Christofides [8].
For a comparison of the additive approach with the restricted Lagrangean
approach of Balas and Christofides, the reader is referred to [26].

Note that, because of condition ii) above, each bounding procedure
L™ of the sequence introduces an incremental gap y(» = v(h_l)(ATS P)—
(v (ATSP) 4 6() > 0, where v(¥)(ATSP) denotes the optimal solu-
tion value of the ATSP instance associated with cost matrix ¢*). Tt
follows that the overall gap v between v(ATSP) and the final lower
bound 6 = > 9_, 6®) cannot be less than > 7_, v

Procedures £, £2) .. £@ can clearly be applied in a different
sequence, thus producing different lower bound values and residual costs.
As a heuristic rule, it is worthwhile to apply procedures £ according
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to increasing (estimated) percentage incremental gaps, so as to avoid
the introduction of high percentage incremental gaps at the beginning
of the sequence, when the current value v(*) (ATSP) is still large.

A key step of the above algorithm is the computation of the residual
costs. Since all the bounding procedures considered in [26] are based
on linear programming relaxations, valid residual cost matrices can be
obtained by computing the reduced cost matrices associated with the
corresponding L P-dual optimal solutions.

Reduced costs associated with the AP relaxation can easily be ob-
tained without extra computational effort. As to the reduced costs for
r-SAP, those associated with the arcs not entering the root vertex r
are the reduced costs of the shortest spanning arborescence problem
(which can be computed in O(n?) time through a procedure given in
[27]), while those associated with the arcs entering r are obtained by
subtracting their minimum from the input costs. Reduced costs for
problems r-SAAP, r-SADP and r-SAADP can be obtained in a similar
way.

Here is an overall additive bounding algorithm, subdivided into four
stages.

ALGORITHM ADD-ATSP:
1. input: cost matrix c;
2. output: lower bound § and the residual-cost matrix cC;

begin
Stage 1:
3. solve problem AP on the original cost matrix c¢ and
let ¢ be the corresponding reduced cost matrix;
0 :=v(AP);
Stage 2:
4. solve problem 1-SAP on cost matrix ¢ and update

¢ to become the corresponding reduced cost matrix;
d:=386+v(1-SAP);

5. solve problem 1-SAAP on cost matrix ¢ and update
¢ to become the corresponding reduced cost matrix;
d:=0+v(1-SAAP);

Stage 3:
6. for r:=1tondo
begin
7. solve problem r-SADP on cost matrix ¢ and

update ¢ to become the corresponding reduced
cost matrix;

d:=6+v(r-SADP)
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end;
Stage 4:
8. for r :=1ton do
begin
9. solve problem r-SAADP on cost matrix ¢ and
update ¢ to become the corresponding reduced
cost matrix;
d:=40+v(r-SAADP)
end
end.

Let Gy = (V, Ap) denote the spanning subdigraph of G defined by the
arcs whose current reduced cost is zero.

At Stage 1, the bounding procedure based on the AP relaxation is
applied. After this stage, each vertex in G has at least one entering and
leaving arc; however, Gy is not guaranteed to be strongly connected.

At Stage 2, one forces the strong connectivity of Gy by applying the
bounding procedures based on 1-SAP and 1-SAAP. Indeed, after step
4 each vertex can be reached from vertex 1 in GGy, whereas after step 5
each vertex can reach vertex 1.

The current spanning subdigraph Gy may at this point contain a
tour, in which case lower bound § cannot be further increased through
an additive approach. If such a tour has been detected, it corresponds
to a heuristic solution to AT'SP, whose optimality can be checked by
comparing its original cost with lower bound §. More often, however,
spanning subdigraph Gy is non-Hamiltonian.

Let the forward and backward star of a node h in a given digraph
G = (V',A") be defined as {j € V' : (h,j) € A’} and {i € V' : (i,h) €
A'}, respectively. We say that a vertex r € V is a forward articulation
point of Gy if none of the vertices of its forward star can reach all other
vertices in V' \ {r} without passing through vertex r. Analogously, a
vertex r € V is said to be a backward articulation point of Gy if none of
the vertices of its backward star can be reached from all the other vertices
in V' \ {r} without passing through vertex r. Clearly, the existence of
a forward or backward articulation point is a sufficient condition for G
to be non-Hamiltonian.

A related concept is that of (undirected) articulation point: a vertex
r is an articulation point of Gy if the underlying undirected subdigraph
of Gy induced by vertex subset V' \ {r} has more than one connected
component. Notice that concept of forward (or backward) articulation
is stronger than that of (undirected) articulation. Indeed, if vertex r is
an (undirected) articulation point of Gy, then it is also a forward and a
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backward articulation point of Gy, while the opposite does not always
hold.

The existence of a forward (resp. backward) articulation point r of
Gy can be exploited to increase the current lower bound é by solving
relaxation 7-SADP (resp. r-SAADP). Indeed, in this case no zero cost 7-
arborescence (resp. r-antiarborescence) in which r has out-degree (resp.
in-degree) equal to one, exists with respect to the current reduced costs
Cij. Accordingly, for each vertex r one applies bounding procedures
based on relaxations 7-SADP (at Stage 3) and r-SAADP (at Stage 4),
so as to increase the current lower bound ¢ in case the root vertex r
is a forward or backward articulation point, respectively. After each
execution of steps 7 and 9, the current vertex r is guaranteed not to
be a forward or backward articulation point of the current graph Gy,
respectively.

The overall time complexity of algorithm ADD-ATSP is O(n?), the most
time-consuming steps being step 3 (O(n?®)), and steps 7 and 9 (O(n?)),
which are executed n times.

The tightness of the final lower bound ¢ greatly depends on the re-
duced costs obtained after each lower bound computation. In particular,
consider the LP-dual of AP, defined by:

v(D-AP) = maxz (ui + v4)
i€V
subject to
Cij—ui—UjZO 1,7 €V

and let (u, v) be the dual optimal solution found at step 3. For each
vertex h € V, let L be the cost of the shortest path from vertex 1
to vertex h, computed with respect to the current reduced costs ¢;; =
cij —u; — ;. It is known (see, e.g., [38]) that an alternative dual optimal
solution (u*,v*) is given by u} = u; — L; and v} = v;+ L; for each i € V.
(Indeed, one has ),y (uj +v;) = Doy (W +v;) while, for each j € V,
Cij — Ui — v;-‘ = Cij + L; — fj > 0 follows from the definition of Lj’s as
costs of shortest paths.) Now, let ¢j; = ¢;j —u; —v] be the reduced costs
associated with this alternative dual optimal solution. One can easily
verify that the cost P;, of any simple path from vertex h to vertex k
(computed with respect to c*), is equal to Ppy, + L, — Ly, where Py, is
the cost of the same path computed with respect to ¢. Therefore, ¢c* can
be viewed as a biased reduced-cost matrix obtained from ¢ by reducing
the cost of the paths emanating from vertex 1, while increasing the cost
of the paths towards vertex 1.

A new additive bounding algorithm, B-ADD-ATSP (B for biased), can
now be obtained from ADD-ATSP by adding the following step right after
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step 3:

3. compute (on the current reduced cost matrix ¢) the
cost L, of the shortest path from vertex 1 to all
vertices heV;
for each i,j € V do ¢;j :=¢;; + L; — L;

Note that, after step 3’, spanning subdigraph G contains a 1-arbore-
scence, hence step 4 can be omitted in B-ADD-ATSP.

At first glance, algorithm B-ADD-ATSP appears to be weaker than
ADD-ATSP, since a step producing a possible increase on the current lower
bound (step 4) has been replaced by a step which gives no improvement
(step 3’). However, the cost biasing introduced at step 3’ may allow
the subsequent step 5 to increase its contribution to the current lower
bound. Computational experience has shown that B-ADD-ATSP typically
outperforms ADD-ATSP, hence algorithm B-ADD-ATSP is chosen in [26].

As to the experimental computing time of algorithm B-ADD-ATSP, it
can greatly be reduced by the implementation given in [26].

4. A branch-and-cut approach

We next outline the polyhedral method of Fischetti and Toth [28].
Branch-and-cut methods for AT'SP with side constraints have been pro-
posed recently by Ascheuer [3], Ascheuer, Jiinger and Reinelt [5], and
Ascheuer, Fischetti and Grotschel [4], among others. The Fischetti-
Toth method is based on model (1)—(6), and exploits additional classes
of facet-inducing inequalities for the AT'SP polytope P that proved to
be of crucial importance for the solution of some real-world instances.
For each class, we will address the associated separation problem (in its
optimization version), defined as follows: Given a point * > 0 satisfying
the degree equations, and a family F of ATSP inequalities, find a most
violated member of F, i.e., an inequality az < ag belonging to F and
maximizing the degree of violation ax* — ag. The reader is referred to
Chapter 3 of the present book for a polyhedral analysis of the AT'SP
polytope, and to Chapter 4 for the design of branch-and-cut methods
for the symmetric T'SP.

To simplify notation, for any f : A — R and 51,52 C V, we write
f(S1,82) for 3 s, D jes, fij; moreover, we write f(i,S2) or f(S1,1)
whenever S1 = {i} or S2 = {i}, respectively.
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4.1. Separation of symmetric inequalities

An ATSP inequality ax < ap is called symmetric when a;; = oy
for all (¢,5) € A. Symmetric inequalities can be thought of as derived
from valid inequalities for the Symmetric Traveling Salesman Problem
(STSP), defined as the problem of finding a minimum-cost Hamiltonian
cycle in a given undirected graph Gg = (V, E). Indeed, let y. = 1 if
edge e € E belongs to the optimal ST'SP solution; y. = 0 otherwise.
Every inequality ) .. eye < ag for STSP can be transformed into a
valid AT'SP inequality by simply replacing y. by z;; + z;; for all edges
e = (4,j) € E. This produces the symmetric inequality az < aq, where
aij = aji = o ) for all 4,5 € V, i # j. Conversely, every symmetric
ATSP inequality ar < ap corresponds to the valid STSP inequality
Z(i,j)eE Qi Y(i,5) < Qo-

The above correspondence implies that every separation algorithm for
STSP can be used, as a “black box”, for ATSP as well. To this end,
given the AT'SP (fractional) point z* one first defines the undirected
counterpart y* of £* by means of the transformation

Yo ==z;; +zj; foralledgese=(i,j) € B
and then applies the ST'SP separation algorithm to y*. On return, the
detected most violated ST SP inequality is transformed into its ATSP
counterpart, both inequalities having the same degree of violation.
Several exact/heuristic separation algorithms for ST'SP have been
proposed in recent years, all of which can be used for AT'SP; see Chapter
4 of the present book for further details. In [28] only two such separation
tools are used, namely:

i) the Padberg-Rinaldi [45] exact algorithm for SECs; and

ii) the simplest heuristic scheme for comb (actually, 2-matching) con-
straints, in which the components of the graph induced by the
edges e € E with fractional y} are considered as potential handles
of the comb.

4.2. Separation of D} and D; inequalities

The following D,;" inequalities have been proposed by Grotschel and
Padberg [32]:

k k-1 k-1
Tiip + 3 Tigin_y +2 Y Tiiy, + > 2({iz, - in1},in) <k -1 (10)
h=2 h=2 h=3
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where (i1,...,7x) is any sequence of k € {3,...,n — 1} distinct ver-
tices. D,‘c" inequalities are facet-inducing for the AT'SP polytope [23],
and are obtained by lifting the cycle inequality Z(i,j)ec zij < k-1
associated with the subtour C := {(i1, i), (¢k,9k-1),- .-, (i2,%1)}. No-
tice that the vertex indices along C are different from those used in the
original Grotschel-Padberg definition [32], so as to allow for a simplified
description of the forthcoming separation procedure.

As a slight extension of the original definition, we allow for k = 1,2
in the sequel, in which cases (10) degenerates into the valid constraints
Tii, < 0 and x4, + 24,4, < 1, respectively.

The separation problem for the class of Dl‘: inequalities calls for a

vertex sequence (i1,...,%g), 1 < k < n — 1, for which the degree of
violation
k k—1
d)(il, ... ,ik) = .’L';-klik + Z xj;hih—l + 2 Z x:;l’ih
h=2 h=2
k—1
+3 " a*({i, ... in-1}yin) —k+1 (11)
h=3

is as large as possible. This is itself a combinatorial optimization problem
that can be solved by the following simple implicit enumeration scheme.

We start with an empty node sequence. Then, iteratively, we extend
the current sequence in any possible way and evaluate the degree of vio-
lation of the corresponding D,j inequality. The process can be visualized
by means of a branch-decision tree. The root node (level 0) of the tree
represents the empty sequence. Each node at level £ (1 < k < n —1)

corresponds to a sequence of the type (i1,...,i;); when k < n — 2, each
such node generates n — k descending nodes, one for each possible ex-
tended sequence (i1, ...,ik,%x+1). Exhaustive enumeration of all nodes

of the tree is clearly impractical, even for small values of n. On the
other hand, a very large number of these nodes can be pruned (along
with the associated subtrees) by means of the following simple upper
bound computation. Let (i1,...,%%) be the sequence associated with
the current branching node, say p, and let ¢4, denote the maximum
degree of violation so far found during the enumeration. Consider any
potential descendent node of i, associated with a sequence of the type

(%15 -0k, tkt1y---,4m). Then, directly from definition (11) one has
G(i1, - -y ik Gkt 1s - - 8m) S (@51, .00 0k) + 25, g, + [27 (6, V) — 1
m—1
+ Y @ (Vyin) = U =m(in, ..., ik) + 25, 4 (12)

h=k+1
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where we have defined

k k
wlin, - sik) = Y Tha o, + > @ {in, -y in1}yin) —k+ 1
h=2 h=2
Observe that m(i1,...,i) cannot exceed the degree of violation of the

SEC associated with S := {i1,...,ix}; hence one has 7(i1,...,ix) <0
whenever all SECs are satisfied by z*.
According to (12), the only descending nodes of u that need to be

generated are those associated with a sequence (i1,...,4,45+1) such
that

x;'kkik+1 > Omaz — (41, - -5 1k) (13)
Notice that both quantities ¢(i1,...,%) and 7(1,...,i) can paramet-

rically be computed along the branching tree as:
B(i1, ... ix) = (i, . .., ip—1)+a; tog g o {in, .. ik}, ip—1)—1
and

w1, .- 5ik) = m(i, -y ie—1) + g, F @ ({1 ), 0k) — 1

where ¢(i1) := 7(i1) := 0 for all singleton sequences (i1).

Restriction (13) is very effective in practice, and dramatically reduces
the number of nodes typically generated in the enumeration. Never-
theless, in some cases one may be interested in further reducing the
computing time spent in the procedure. To this end, before running the
above-described exact enumeration, one can try a “truncated” version
of it in which each node at level k > 2 generates at most one descending

node, namely the one associated with the sequence (iy,...,%x,igt+1), if
any, where :c;‘kﬂik >0 and z} viga T :c;"k 1i,, 18 as large as possible.

The performance of the overall branch-and-cut algorithm is generally
improved if one generates, at each round of separation, a number of
violated cuts (rather than the most violated one) for each family. In [28],
the most violated D,': inequality associated with a node sequence starting
with 4; is generated for each ¢; € V. This is obtained by searching the
decision tree in a depth-first manner, and resetting to zero the value ¢mqz
of the incumbent best sequence whenever one backtracks to a node at
level 1.

We conclude this section by addressing the following D, inequalities:

k k—1 k—1
Tipip + Z i, g4 T 2 Z Zipi, + Zx(ih, {iz, - ,ih,l}) <k-1 (14)
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where (i1,...,1) is any sequence of k € {3,...,n — 1} distinct nodes.
D, inequalities are valid [32] and facet-inducing [23] for P; they can be
obtained by lifting the cycle inequality Z(i,j) cc Tij < k — 1 associated
with the directed cycle C := {(i1,42),. - ., (tk—1, ik), (k, 1)}

D, inequalities can be thought of as derived from Dl;" inequalities by
swapping the coefficient of the two arcs (7, j) and (j,7) for all 4,5 € V,
i < j. This is a perfectly general operation, called transposition in [32],
that works as follows.

For every a € R4, let o € R4 be defined by: ag;- = ay; for all
(i,7) € A. Clearly, inequality ax < «p is valid (or facet-inducing) for
the AT SP polytope P if and only if its transposed version, a’z < ay,
is. This follows from the obvious fact that o’z = az”, where z € P if
and only if 7 € P. Moreover, every separation procedure for az < ag
can also be used, as a black box, to deal with o’z < ap. To this end
one gives the transposed point (z*)T (instead of z*) on input to the
procedure, and then transposes the returned inequality.

The above considerations show that both the heuristic and exact sep-
aration algorithms designed for D,’: inequalities can be used for D,
inequalities as well.

4.3. Separation of odd CAT inequalities

The following class of inequalities has been proposed by Balas [6]. T'wo
distinct arcs (¢,7) and (u,v) are called incompatible if i = u, or j = v,
or i = v and j = u; compatible otherwise. A Closed Alternating Trail
(CAT, for short) is a sequence T' = {ai,...,a:} of ¢t distinct arcs such
that, for £ = 1,...,t, arc aj is incompatible with arcs a;_; and a1,
and compatible with all other arcs in T' (with ag := a¢ and a1 = aq).
Let 6% (v) and §~ (v) denote the set of the arcs of G leaving and entering
any vertex v € V, respectively. Given a CAT T, a node v is called a
source if |67 (v) NT| = 2, whereas it is called a sink if |6 (v) N T| = 2.
Notice that a node can play both source and sink roles. Let @ be the
set of the arcs (i,7) € A\ T such that ¢ is a source and j is a sink node.
For any CAT of odd length %, the following odd CAT inequality

T -1
Z J)ij S % (15)

(i,5)€TUQ

is valid and facet-defining (except in two pathological cases arising for
n < 6) for the AT'SP polytope [6].

We next describe a heuristic separation algorithm for the family of
odd CAT inequalities. This algorithm is based on the known fact that
odd CAT inequalities correspond to odd cycles on an auxiliary “incom-



18 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

patibility” graph [6]. Also, the separation algorithm can be viewed as
a specialized version of a scheme proposed by Caprara and Fischetti
[14] for the separation of a subclass of Chvétal-Gomory cuts for general
integer programming problems.

Given the point z*, we set-up an edge-weighted undirected graph
G = (N, E) having a node v, for each arc a € A with 2} > 0, and an
edge e = (vq, 1) for each pair a, b of incompatible arcs, whose weight is
defined as we := 1 — (x}, + x}). We assume that z* satisfies all degree
equations as well as all trivial SECs of the form z;;+x;; < 1; this implies
we > 0 foralle € E.

Let 6(v) contain the edges in E}ncident with a given node v € N. A
cycle C of G is an edge subset of F inducing a connected subdigraph of
G, and such that |C' N d(v)| is even for all v € N. Cycle C is called (i)
odd if |C| is odd; (ii) simple if |C Nd(v)| € {0,2} for all v € N; and (iii)
chordless if the subdigraph of G induced by the nodes covered by C has
no other edges than those in C. 5 ~

By construction, every simple and chordless odd cycle C' in G corre-
sponds to an odd CAT T, where a € T if and only if v, is covered by C.
In addition, the total weight of C is

=S we= Y (-zi-ap)=1]-2) «;

ecC (va,)eC aeT

hence (1 —w(C))/2 gives a lower bound on the degree of violation of the
corresponding CAT inequality, computed as

$(T):=(2 ) zp—I|T|+1)/2

aceTUQ

The heuristic separation algorithm used in [28] computes, for each
e € F, a minimum-weight odd cycle C, that uses edge e. If C, happens
to be simple and chordless, then it corresponds to an odd CAT, say T If,
in addition, the lower bound (1—w(C¢))/2 exceeds a given threshold § =
—1/2, then the corresponding inequality is hopefully violated; hence one
evaluates its actual degree of violation, ¢(T"), and stores the inequality
if ¢(T') > 0. In order to avoid detecting twice the same inequality, edge
e is removed from G after the computation of each Ce.

In order to increase the chances of finding odd cycles that are simple
and chordless, all edge weights can be made strictly positive by adding
to them a small positive value € := 0.001. This guarantees that ties
are broken in favor of inclusion-minimal sets Ce. Notice, however, that
a generic minimum-weight odd cycle C, does not need to be neither
simple nor chordless even in this case, due to the fact that one imposes
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e € C~’~e. For example, C. may decompose into 2 simple cycles, say C~’61
and C?, where C! is of even cardinality and goes through edge e, and
CZ is of odd cardinality and overlaps C; in a node.

The key point of the algorithm is the computation in G of a minimum-
weight odd cycle going through a given edge. Assuming that the edge
weights are all nonnegative, this problem is known to be polynomially
solvable as it can be transformed into a shortest path problem; see Ger-
ards and Schrijver [31]. To this end one constructs an auxiliary bipartite
undirected graph Gg = (N UNj, Eg) obtained from G as follows. For
each v in G there are two nodes in Gp, say v’ and v". For each edge
e = (v1,12) of G there are two edges in Gj, namely edge (v],v4) and
edge (v4,v}), both having weight w,. By construction, every minimum-
weight odd cycle C, of G going through edge e = (11, ;) corresponds in
Gp to a shortest path from v{ to v}, plus the edge (v4,v}). Hence, the
computation of all C,’s can be performed efficiently by computing, for
each v, the shortest path from v] to all other nodes in Nj.

4.4. Clique lifting and shrinking

Clique lifting can be described as follows, see Balas and Fischetti [9]
for details. Let P(G') denote the ATSP polytope associated with a
given complete digraph G' = (V', A’). Given a valid inequality By < By
for P(G'), we define

Brh = max{Bin + Bnj — Bij : 1,5 € V' \{h},i #j} forallheV’

and construct an enlarged complete digraph G = (V, A) obtained from
G’ by replacing each node h € V' by a clique S, containing at least one
node (hence, |V| =37, cyr [Sp| > [V']). In other words (Si,...,S)yr) is
a proper partition of V', in which the h-th set corresponds to the h-th
node in V.

For all v € V, let v € Sy(,). We define a new clique lifted inequality
for P(G), say ar < ap, where ag := fo + > ey Bun(|Sa| — 1) and
@ij = PBu(i)n() for each (i,j) € A. It is shown in [9] that the new
inequality is always valid for P(G); in addition, if the starting inequality
Bz < By defines a facet of P(G'), then ar < «p is guaranteed to be
facet-inducing for P(G).

Clique lifting is a powerful theoretical tool for extending known classes
of inequalities. Also, it has important applications in the design of sepa-
ration algorithms in that it allows one to simplify the separation problem
through the following shrinking procedure [45].

Let S C V, 2 < |S]| < n—2, be a vertex subset saturated by z*, in
the sense that z*(S,S) = |S| — 1, and suppose S is shrunk into a single
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node, say o, and z* is updated accordingly. Let G' = (V’, A") denote the
shrunken digraph, where V' := V' \ SU{c}, and let y* be the shrunken
counterpart of z*. Every valid inequality Sy < By for P(G’) that is
violated by y* corresponds in G to a violated inequality, say az < ay,
obtained through clique lifting by replacing back o with the original set
S. As observed by Padberg and Rinaldi [46], however, this shrinking
operation can affect the possibility of detecting violated cuts on G’, as
it may produce a point y* belonging to P(G’) even when z* ¢ P(QG).

For instance, let n := 4 and z; == 1/2 if (4, ) € {(1,2),(1,4),(2,1),
(2,3),(3,1),(3,4),(4,2),(4,3)}; zj; = 0 otherwise. One readily checks
that z* ¢ P(G), as z* violates, e.g., the Dy inequality 12 + T23 + 31 +
2291 < 2. On the other hand, shrinking the saturated set S := {1,2}
produces a digraph G’ with vertex set V' := {7,3,4}, and a point y*
with y; = 1/2 for all (4, j) € A". But then y* is the convex combination
of the characteristic vectors of the two tours (o, 3,4) and (0,4, 3), hence
y* cannot be cut off by any linear inequality as it belongs to P(G').

The above example shows that shrinking has to be applied with some
care. There are however simple conditions on the choice of S that guar-
antee y* ¢ P(G'), provided z* ¢ P(G) as in the cases of interest for
separation.

The simplest such condition concerns the shrinking of I-arcs (i.e.,
arcs (4,j) with zj; = 1), and requires S = {i,j} for a certain node
pair ¢,j with zj; = 1. To see the validity of the condition, assume by
contradiction that y* € P(G'). This implies y* = Y0, A\yy*, where
yl,...,yM are characteristic vectors of tours in G', and Ai,...,A\p are
nonnegative multipliers with Zkle Ar =1. For each k € {1,...,M} we
define z* as the characteristic vector of the tour of G obtained from y*
by replacing node o with the arc (i,7). Then, by construction, z* =
SOV Az, which contradicts the assumption «* ¢ P(G).

It is known that 1-edges cannot be shrunk for STSP, instead. In this
respect AT'SP behaves more nicely than STSP, in that the informa-
tion associated with the orientation of the arcs allows for more powerful
shrinkings. Here is a polyhedral interpretation of this behavior.

In the separation problem, we are given a point x* which satisfies
the valid inequality x;; < 1 with equality, and we want to separate it
from the ATSP polytope, P. The above discussion shows that this is
possible if and only if z* can be separated from F := {z € P : z;; = 1},
hence F' can replace P insofar the separation of x* is concerned. This
property is perfectly general, and applies to any nonempty face F of
any polytope P. Indeed, let F := {z € P : Bz = [y} # 0 be the face
of P induced by any valid inequality Sx < By for P, and assume that
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Bx* = By. If * cannot be separated from F', then z* € F C P, hence
it cannot be separated from P too. Conversely, suppose there exists a
valid inequality ax < aqg for F' which is violated by z* by the amount
6" := ax® — ag > 0. Then for a sufficiently large value M the “lifted”
inequality (o + MB)x < ap + M By is valid for P, but violated by z* by
the amount (a + MpB)z* — (ag + M By) = az* — ap = 6* > 0.

The different behavior between the asymmetric and symmetric TSP
polytopes then has its roots in the basic property that fixing z;; = 1
for some ATSP arc (i,j) yields again an ATSP instance — obtained
by contracting (Z,j) into a single vertex whereas the same construction
does not work when fixing y. = 1 for some ST SP undirected edge e.
In polyhedral terms, this means that the face F' of the AT'SP polytope
induced by z;; < 11is in 1-1 correspondence with the ATSP polytope on
n—1 nodes. Hence, in the asymmetric case, the face F' can be interpreted
again as an ATSP polytope on a shrunken graph, whereas for STSP a
similar interpretation is not possible.

In [28] 1-arc shrinking is applied iteratively, so as to replace each path
of 1-arcs by a single node. As a result of this pre-processing on z*, all
the nonzero variables are fractional. Notice that a similar result cannot
be obtained for the symmetric TSP, where each 1-edge chain can be
replaced by a single 1-edge, but not by a single node.

More sophisticated shrinking procedures have not been used in [28].
The above discussion suggests however other cases in which a saturated
set S can be shrunk. For instance, suppose there exist 3 distinct nodes
i, j and k such that «7; + 2}, = 1 and m’;k + x,’;j =1, 1e, zj; = x’]*-k =pu
and zp; = zj; =1 — p for some 0 < p < 1. We claim that in this case
the saturated set S = {7, j} can be shrunk. Indeed, the given point z*
satisfies the valid AT'SP inequality Sz := zi; + j; + Tjp + T < Bo := 2
with equality, hence from the above discussion one can replace P with
its face F := {& € P : Bz = [y}. Now, every extreme point of F
corresponds to a tour using either the path {(¢,7),(4,k)} or the path
{(k,j),(J,7)}. This property induces a 1-1 correspondence between the
extreme points of F' and those of the AT'SP polytope in which ¢ and j
have been shrunk into a single node.

4.5. Pricing with degeneracy

Pricing is an important ingredient of branch-and-cut codes, in that it
allows one to effectively handle LP problems involving a huge number
of columns. Let

z :=min{cx : Mz = b,z > 0} (16)
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be the LP problem to be solved. M is an m X | A| matrix whose columns
are indexed by the arcs (i,j) € A. The first 2n —1 rows of M correspond
to the degree equations (2)-(3) (with the redundant constraint z(1,V) =
1 omitted), whereas the remaining rows, if any, correspond to some of
the cuts generated through separation. Notation “=” stands for “=" for
the first 2n — 1 rows of M, and “<” for the remaining rows. Let Mz’;
denote the entry of M indexed by row h and column (z, ).

In order to keep the size of the LP as small as possible, the following
pricing scheme is commonly used. We determine a (small) core set of
arcs, say A, and decide to temporarily fix z;; = 0 for all (¢,5) € A\ A.
We then solve the restricted LP problem

% :=min{éz : M& = b, > 0} (17)

where & %, and M are obtained from ¢, z, and M, respectively, by
removing all entries indexed by A\ A.

Assume problem (17) is feasible, and let #* and @* be the optimal
primal and dual basic solutions found, respectively. Clearly, Z > z. We
are interested in easily-checkable conditions that guarantee Z = z, thus
proving that * (with &;; := 0 for all (¢,j) € A\ A) is an optimal basic
solution to (16), and hence that its value Z is a valid lower bound on
v(AT'SP). To this end we compute the LP reduced costs associated with
4*, namely

m
Cij = Cijj — ZM:;&Z for (Z,]) €A
h=1

and check whether ¢;; > 0 for all (4,j) € A. If this is indeed the case,
then Z = z and we are done. Otherwise, the current core set A is enlarged
by adding (some of) the arcs with negative reduced cost, and the whole
procedure is iterated. This iterative solution of (17), followed by the
possible updating of A, is generally referred to as the pricing loop.

According to common computational experience, the first iterations
of the pricing loop tend to add a very large number of new columns to
the LP even when Z = z, due to the typically high primal degeneracy of
(17).

As an illustration of this behavior, consider the situation arising when
the first LP is solved at the root node of the branching tree. In this case
(16) contains the 2n—1 degree equations only, hence its optimal solution,
z*, can be computed efficiently through any AP code. Suppose we now
initialize the core set A to contain the n arcs chosen in the optimal AP
solution. In order to have an LP basis, we add n—1 additional arcs to 4,
chosen so as to determine an (2n — 1) X (2n — 1) nonsingular matrix M.
By construction, problem (17) has a unique feasible solution — namely,
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the characteristic vector of the optimal AP solution found — hence we
know that Z = z holds in this case. However, depending on the possibly
“wrong” choice of the last n — 1 arcs in the core set, the solution @* can
be dual infeasible for (16), i.e., a usually very large number of reduced
costs C;; are negative. Iterating the pricing procedure produces a similar
behavior, and a long sequence of pricings is typically required before all
arcs price-out correctly.

The above example shows that checking the reduced-cost signs can
lead to an overweak sufficient condition for proving Z = z. The standard
way to cope with this weakness consists in a more careful initialization of
the core set, e.g., by taking the 15 smallest-cost arcs leaving each node.

We next describe a different technique, called AP pricing in [28], in
which the pricing condition is strengthened by exploiting the fact that
any feasible solution to (16) cannot select the arcs with negative re-
duced cost in an arbitrary way, as the degree equations —among other
constraints— have to be fulfilled. The technique is related to the so-
called Lagrangian pricing introduced independently by Lobel [41] as a
powerful method for solving large-scale vehicle scheduling problems.

Let us consider the dual solution @* to (17) as a vector of Lagrangian
multipliers, and the LP reduced costs ¢;; as the corresponding Lagrangian
costs. In this view, standard pricing consists of solving the following
trivial relaxation of (16):

LBy := minf[ex + @*(b— Mz)] = @*b + mincz (18)
>0 >0

where 4*b = Z by LP duality. Therefore one has Z + min,>gcr < z < Z,
from which Z = z in case ming>ocx = 0, i.e., ¢;; > 0 for all 7,5. The
strengthening then consists in replacing condition > 0 in (18) by

€ F(AP) := {z € {0,1}* : 2(i,V) = x(V,i) = 1 for all i € V}
In this way we compute an improved lower bound on z, namely

LBy := 4*b4+ min cxr =24+ Aup
z€F(AP)

where A 4p 1= mingcp(4p) ¢ is computed efficiently by solving the AP
on the Lagrangian costs ¢;;. As before, Z+A4p < 2z < Z, hence Ayp =0
implies Z = z. When Ap < 0, instead, one has to iterate the procedure,
after having added to the core set A the arcs in A\ A that are selected
in the optimal AP solution found.

The new approach has two main advantages, namely: (1) an improved
check for proving Z = z; and (2) a better rule to select the arcs to be
added to the core arc set. Moreover, LBy always gives a lower bound on z
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(and hence on v(ATSP)), which can in some cases succeed in fathoming
the current branching node even when A 4p < 0. Finally, the nonnega-
tive AP reduced cost vector ¢ available after solving min,¢ F(AP)CT can
be used for fixing z;; = 0 for all (i, j) € A such that LBy +C;; is at least
as large as the value of the best known AT SP solution.

The new pricing scheme can be adapted to other problems having an
easily-solvable relaxation. For example, in Fischetti and Vigo [29] the
approach is applied to the resource constrained arborescence problem,
the relaxation used for pricing being in this case the min-sum arbores-
cence problem. Unlike AP, the latter problem involves exponentially
many constraints, hence the pricing scheme can in some cases also de-
tect violated cuts that are not present in the current LP, chosen from
among those implicitly used during the solution of the relaxation. In
other words, variable-pricing also produces, as a by-product, a heuristic
“pricing” of some exponential classes of cuts, i.e., a separation tool.

AP pricing requires the computation of all reduced costs ¢;;, e.g.,
through the following “row-by-row” scheme. We initialize ¢;; := ¢;; for
all (¢,j) € A and then consider, in sequence, the rows h of M with
@y # 0. For each such row h, we determine the set Aj := {(i,j) € A :
Mz’; # 0}, and update ¢;; := ¢;; — &;‘le’; for (i,7) € Ap. Because of the
simple combinatorial structure of most cuts, the (implicit) construction
of Ap, can typically be carried out in O(|Ap|) time, hence the overall time
spent for computing all reduced costs is O(n?) for the initialization, plus
O(> 41 |Ap]) for the actual reduced-cost computation (notice that this
latter term is linear in the number of nonzero entries in M).

A drawback of the AP pricing is the extra computing time spent for
the AP solution, which can however be reduced considerably through the
following strategy [28]. After each LP solution we compute the reduced
costs ¢;; and determine the cardinality p of A~ := {(4,j) € A :¢; < 0}.
If p = 0, we exit the pricing loop. If 0 < p < n/10, we use standard
pricing, i.e., we update A:= AU A~ and repeat. If p > n/10, instead,
we resort to AP pricing, and solve the AP problem on the reduced costs.
We also determine (through a technique described, e.g., in [28]) the arc
set @ containing the 2n — 1 arcs defining an optimal LP basis for this
AP problem, and compute the corresponding nonnegative reduced costs
¢;; for all (z,j) € A. We then remove from @Q all the arcs already in
A, and enlarge Q by iteratively adding arcs in (i,5) € A\ (AU Q) with
G = 0, until no such arc exists, or |Q| > 50 + n/3. In this way Q
contains a significant number of arcs that are likely to be selected in
(16). We finally update A := AU Q (even in case A p = 0), and repeat
(if Agp < 0) or exit (if Agp = 0) the pricing loop.
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4.6. The overall algorithm

The algorithm is a lowest-first branch-and-cut procedure. At each
node of the branching tree, the LP relaxation is initialized by taking all
the constraints present in the last LP solved at the father node (for the
root node, only the degree equations are taken). As to variables, one
retrieves from a scratch file the optimal basis associated with the last
LP solved at the father node, and initializes the core variable set, A, by
taking all the arcs belonging to this basis (for the root node, A contains
the 2n — 1 variables in the optimal AP basis found by solving AP on the
original costs ¢;;). In addition, A contains all the arcs of the best known
ATSP solution. Starting with the above advanced basis, one iteratively
solves the current LP, applies the AP pricing (and variable fixing) pro-
cedure described in Section 4.5, and repeats if needed. Observe that the
pricing/fixing procedure is applied after each LP solution.

On exit of the pricing loop (case A gp = 0), the cuts whose associated
slack exceeds 0.01 are removed from the current LP (unless the number
of these cuts is less than 10), and the LP basis is updated accordingly.
Moreover, separation algorithms are applied to find, if any, facet-defining
AT S P inequalities that cut off the current LP optimal solution, say x*.
As a heuristic rule, the violated cuts with degree of violation less than
0.1 (0.01 for SECs) are skipped, and the separation phase is interrupted
as soon as 20 + |n/5| violated cuts are found.

One first checks for violation the cuts generated during the processing
of the current or previous nodes, all of which are stored in a global data-
structure called the constraint pool. If some of these cuts are indeed
violated by x*, the separation phase ends. Otherwise, the Padberg-
Rinaldi [45] MINCUT algorithm for SEC separation is applied, and the
separation phase is interrupted if violated SECs are found. When this is
not the case, one shrinks the 1-arc paths of z* (as described in Section
4.4), and applies the separation algorithms for comb (Section 4.1), D,‘:
and D} (Section 4.2), and odd CAT (Section 4.3) inequalities. In order
to avoid finding equivalent inequalities, D3 inequalities (which are the
same as D inequalities), are never separated, and odd CAT separation
is skipped when a violated comb is found (as the class of comb and odd
CAT inequalities overlap). When violated cuts are found, one adds them
to the current LP, and repeats.

When separation fails and z* is integer, the current best ATSP so-
lution is updated, and a backtracking step occurs. If z* is fractional,
instead, the current LP basis is saved in a file, and one branches on
the variable z;; with 0 < zj; < 1 that maximizes the score o(i,j) =
Cij -min{x;‘j, 1-— x;"]} As a heuristic rule, a large priority is given to the
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variables with 0.4 < z7; < 0.6 (if any), so as to produce a significant
change in both descending nodes.

As a heuristic tailing-off rule, one also branches when the current z*
is fractional and the lower bound did not increase in the last 5 (10 for
the root node) LP /pricing/separation iterations.

A simple heuristic algorithm is used to hopefully update the current
best optimal AT'S P solution. The algorithm is based on the information
associated with the current LP, and consists of a complete enumeration
of the Hamiltonian directed cycles in the support graph of z*, defined
as G* := (V,{(4,j) € A: zj; > 0}). To this end Martello’s [42] implicit
enumeration algorithm HC is used, with at most 100+ 10n backtracking
steps allowed. As G* is typically very sparse, this upper bound on
the number of backtrackings is seldom attained, and HC almost always
succeeds in completing the enumeration within a short computing time.
The heuristic is applied whenever SEC separation fails, since in this case
G* is guaranteed to be strongly connected.

5. Computational experiments

The algorithms described in the previous sections have been compu-
tationally tested on a large set of AT'SP instances namely:

» 42 instances by Cirasella, Johnson, McGeoch and Zhang [20]; the
instances in this set are randomly generated to simulate real-world
applications arising in many different fields;

» 5 scheduling instances provided by Balas [7];
» 2 additional real-world instances (ftv180 and uk66);

m 10 random instances whose integer costs are uniformly generated
in range [1,1000];

all the 27 AT SP instances collected in TSPLIB [49].

For a detailed description of the first 42 instances the reader is referred
to [20], while details for the ones in the TSPLIB can be found in the
associated web page [49]. The 5 instances provided by Balas come from
Widget, a generator of realistic instances from the chemical industry
developed by Donald Miller. Instance ftv180 represents pharmaceutical
product delivery within Bologna down-town and is obtained from the
TSPLIB instance ftv170 by considering 10 additional vertices in the
graph representing down-town Bologna. Finally, instance uk66 is a real-
world problem arising in routing applications and has been provided us
by Kousgaard [39].
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All instances have integer nonnegative costs, and are available, on
request, from the authors. For each instance we report in Table 2.1 the
name (Name), the size (n), the optimal (or best known) solution value
(OptVal), and the source of the instance (source).

Three specific AT'SP codes have been tested: (1) the AP-based branch
and-bound CDT code [15], as described in Section 2.1; (2) FT-add code,
corresponding to the additive approach [26] described in Section 3; and
(3) FT-b&c code, corresponding to the branch-and-cut algorithm [28]
described in Section 4.

In addition, the branch-and-cut code Concorde by Applegate, Bixby,
Chvétal and Cook [1] has been considered, as described in Chapter 4 .
This code is specific for the symmetric T'S P, so symmetric instances have
to be constructed through one of the following two transformations:

m the 3-node transformation proposed by Karp [36]. A complete
undirected graph with 3n vertices is obtained from the original
complete directed one by adding two copies, n + ¢ and 2n + i, of
each vertex ¢ € V, and by (i) setting to 0 the cost of the edges
(¢,n + i) and (n +4,2n + i) for each ¢ € V, (ii) setting to ¢;; the
cost of edge (2n+1i,7) Vi,j € V, and (iii) setting to +oc the costs
of all the remaining edges;

» the 2-node transformation proposed by Jonker and Volgenant [34]
(see also Junger, Reinelt and Rinaldi [35]). A complete undirected
graph with 2n vertices is obtained from the original complete di-
rected one by adding a copy, n + %, of each vertex ¢ € V, and by
(i) setting to 0 the cost of the edge (i,n + ¢) for each i € V, (ii)
setting to c;; + M the cost of edge (n +14,j) Vi,j € V, where M is
a sufficiently large positive value, and (iii) setting to +oo the costs
of all the remaining edges. The transformation value nM has to
be subtracted from the ST'SP optimal cost.

All tests have been executed on a Digital Alpha 533 MHz with 512 MB of
RAM memory under the Unix Operating System, with Cplex 6.5.3 as LP
solver. In all tables, we report the percentage gaps corresponding to the
lower bound at the root node (Root), the final lower bound (fLB), and
the final upper bound (fUB), all computed with respect to the optimal
(or best known) solution value. Moreover, the number of nodes of the
search tree (Nodes), and the computing time in seconds (Time) are given.

5.1. Code tuning

In this section we analyze variants of the above mentioned codes with
the aim of determining, for each code, the best average behavior.
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Table 2.1. ATSP instances.

Name n OptVal source Name n OptVal source
coin100.0 | 100 10360 [20] balas84 84 199 [7]
coin100.1 100 10600 [20] balas108 | 108 152 [7]
coin100.2 | 100 10980 [20] balas120 | 120 286 [7]
coin100.3 100 10540 [20] balas160 | 160 397 (7]
coin100.4 [100 10440 [20] balas200 | 200 403 [7]
coin316.10 | 316 32400* [20] ftv180 181 2918 this Chapter
cranel00.0 |100 7777997 [20] uk66 66 2791 [39]
cranel00.1 100 7615069 [20] ran1000.0 | 1000 7897 ¢;; € [1,1000]
cranel00.2 |100 8062054 [20] ran1000.1 | 1000 8003 ¢;; € [1,1000]
cranel00.3 | 100 7018782 [20] ran1000.2 | 1000 7991 ¢;; € [1,1000]
cranel00.4 |100 7786309 [20] ran1000.3 | 1000 7956 c¢;; € [1,1000]
crane316.10 (316 13132907 [20] ran1000.4 | 1000 8014 ¢;; € [1,1000]
disk100.0 |100 17471906 [20] ran500.0 | 500 5507 ¢i; € [1,1000]
disk100.1 100 18186198 [20] ran500.1 | 500 5398 ¢;; € [1,1000]
disk100.2 100 15568681 [20] ran500.2 | 500 5394 ¢;; € [1,1000]
disk100.3 |100 18326394 [20] ran500.3 | 500 5354 ¢;i; € [1,1000]
disk100.4 |100 17862733 [20] ran500.4 | 500 5337 ¢ij € [1,1000]
disk316.10 |316 28904480 [20] brl7 17 39 TSPLIB
rtilt100.0 100 9465148 [20] ft53 53 6905 TSPLIB
rtilt100.1 100 9623330 [20] ft70 70 38673 TSPLIB
rtilt100.2 100 9411004 [20] ftv33 34 1286 TSPLIB
rtilt100.3 100 9584646 [20] ftv35s 36 1473 TSPLIB
rtilt100.4 100 10265172 [20] ftv38 39 1530 TSPLIB
rtilt316.10 |316 16738334 [20] ftv44 45 1613 TSPLIB
shop100.0 [100 143019 [20] ftv47 48 1776 TSPLIB
shop100.1 | 100 147815 [20] ftv55 56 1608 TSPLIB
shop100.2 [100 148602 [20] ftv64 65 1839 TSPLIB
shop100.3 [100 148413 [20] ftv70 71 1950 TSPLIB
shop100.4 | 100 144270 [20] ftv90 91 1579 TSPLIB
shop316.10 |316 427004 [20] ftv100 101 1788 TSPLIB
stilt100.0 100 15214154 [20] ftv110 111 1958 TSPLIB
stilt100.1 100 15543791 [20] ftv120 121 2166 TSPLIB
stilt100.2 100 15199456 [20] ftv130 131 2307 TSPLIB
stilt100.3 100 15499387 [20] ftv140 141 2420 TSPLIB
stilt100.4 100 16303671 [20] ftv150 151 2611 TSPLIB
stilt316.10 |316 26815314* [20] ftv160 161 2683 TSPLIB
super100.0 |100 785 [20] ftv170 171 2755 TSPLIB
super100.1 |100 780 [20] krol24p 100 36230 TSPLIB
super100.2 | 100 780 [20] p43 43 5620 TSPLIB
super100.3 | 100 776 [20] rbg323 323 1326 TSPLIB
super100.4 |100 809 [20] rbg358 358 1163 TSPLIB
super316.10 | 316 2109 [20] rbg403 403 2465 TSPLIB

rbgd43 443 2720 TSPLIB

ry48p 48 14422 TSPLIB

*best know solution value.
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CDT code. No specific modifications of this code have been imple-
mented.

FT-add code. The original implementation emphasized the lower boun-
ding procedures. As in the CDT code, improved performances of the
overall algorithm have been obtained by using the patching heuristic of
Karp [37] (applied at each node), and the subtour merging operation
described in Section 2.1.3. This leads to a reduction of both the num-
ber of branching nodes and the overall computing time; in particular,
instances balas84 and ftv160 could not be solved by the original code
within the time limit of 1,000 CPU seconds.

FT-b&c code. A new branching criterion, called Fractionality Persis-
tency (FP) has been tested. Roughly speaking, the FP criterion gives
priority for branching to the variables that have been persistently frac-
tional in the last LP optimal solutions determined at the current branch-
ing node. This general strategy has been proposed and computationally
analyzed in [24]. Table 2.2 compares the original and modified codes
on a relevant subset of instances when imposing a time limit of 10,000
CPU seconds. According to these results, the FP criterion tends to avoid
pathological situations due to branching (two more instances solved to
optimality), and leads to a more robust code.

Concorde code. The code has been used with default parameters by
setting the random seed parameter (“-s 123”) so as to be able to re-
produce each run. Both ATSP-to-STSP transformations have been
tested by imposing a time limit of 10,000 CPU seconds. For the 2-node
transformation, parameter M has been set to 1,000,000 (but for the in-
stances with n = 1,000 and for instance rtilt316.10, for which we
used M = 100,000 so as to avoid numerical problems). The comparison
of the results obtained by Concorde by using the two transformations is
given in Table 2.3 (first two sections), where the same (hard) instances of
Table 2.2 are considered. According to these results, no dominance ex-
ists between the two transformations with respect to neither the quality
of the lower bound at the root node nor the computing time. However,
by considering the average behavior, the 2-node transformation seems
to be preferable.

Although a fine tuning of the Concorde parameters is out of the scope
of this section, Table 2.3 also analyzes the code sensitivity to the “chunk
size” parameter (last three sections), which controls the implementation
of the local cuts paradigm [2] used for separation (see Chapter 4 for
details). In particular, setting this size to 0 (“~C 0”) disables the gener-
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Table 2.2. FT-b&c without and with Fractionality Persistency (10,000 seconds time
limit).

FT-b&c FT-b&c + FP
%Gap %Gap
Name Root fLB fUB|Nodes Time|Root fLB fUB|Nodes Time
coin100.0 0.40 — - 41 12.4| 0.40 — — 41 8.6
coin316.10 1.04 0.53 0.19 1296 10000.5| 1.04 0.47 0.19 1407 10000.2
cranel00.2 1.35 - - 829 297.3| 1.35 - - 707 204.8
cranel(0.4 1.73 - - 1005 210.1| 1.73 - - 751 117.6
crane316.10 | 0.62 0.10 0.01 2894 10000.0| 0.62 0.11 0.06 2851 10000.2
rtilt100.0 0.80 - - 417 197.2| 0.80 - - 501 227.6
rtilt100.4 0.11 — - 13 5.4| 0.11 — — 13 4.6
rtilt316.10 0.25 0.04 0.00 1439 10000.1| 0.25 - - 1727 8887.1
stilt100.0 1.10 — — 173 65.6| 1.10 — — 171 49.2
stilt100.3 1.73 - - 377 157.0| 1.73 - - 325 141.3

stilt100.4 1.58 - - 2211 1457.7| 1.58 - - 1925 1299.5
stilt316.10 | 2.35 1.67 19.59 1235 10000.1| 2.35 1.66 19.59 1205 10000.3

balas84 1.01 - 93 36.3| 1.01 - 61 15.7
balas108 1.97 - - 215 89.8 | 1.97 - - 267 89.0
balas120 1.05 - - 662  506.2| 1.05 - - 1339 1276.3
balas160 1.26 - - 437 5224 1.26 - - 737 6711
balas200 1.24 - - 1241 1801.2| 1.24 - - 1495 17128
ftv180 1.20 0.51 0.00 5226 6911.1°| 1.20 - - 939  366.0
ran1000.0 0.00 - - 1 3.6| 0.00 - - 1 3.4
ran1000.1 0.00 - - 3 25.6 | 0.00 - - 3 23.5
ran1000.2 0.00 - - 14 103.2| 0.00 - - 14 150.7
ranl1000.3 0.01 - - 17 98.3| 0.01 - - 11 62.2
ran1000.4 0.01 - - 16 203.0| 0.01 - - 18 148.7
ran500.3 0.02 - - 59 55.4| 0.02 - - 65 55.0

°execution aborted for search-tree space limit.

ation of the “local” cuts and lets Concorde behave as a pure ST'SP code,
whereas options “-C 16” (the default) and “-C 24” allow for the gen-
eration of additional cuts based on the “instance-specific” enumeration
of partial solutions over vertex subsets of size up to 16 and 24, respec-
tively. In this way, we aimed at analyzing the capability of the “local”
cuts method to automatically generate cuts playing an important role for
the AT'SP instance to be solved. The results of Table 2.3 show that the
“local” cuts (“-C 16” and “-C 24”) play a very important role, allowing
one to solve to optimality difficult instances (e.g., instances balas120,
balas160, and balas200 are solved with chunk equal to 16, and remain
unsolved without “local” cuts). Not surprisingly, the main exception
concerns the uniformly-random instances (ran1000) for which even the
AP bound is already very tight. Among the chunk sizes, even after the
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Table 2.3. Sensitivity of Concorde to 3- and 2-node transformations and to the chunk

size parameter.

(3-node) Concorde -s 123 -C 16

(2-node) Concorde -s 123 -C 16

%Gap %Gap
Name Root fLB fUB |Nodes Time | Root fLB fUB | Nodes Time
¢0in100.0 0.30 - - 25 185.7| 0.29 - - 25 106.3
coin316.10 | 0.80 0.31 0.06 227 10139.1| 0.85 0.33 0.25 233 10101.2
cranel00.2 | 0.69 - - 39 347.5| 0.94 - - 41 355.5
cranel(00.4 1.29 - - 23 238.9| 1.27 — — 27 277.4
crane316.10 | 0.34 — — 287 5142.3 | 0.34 — — 255 4287.2
rtilt100.0 0.92 — — 23 191.7| 0.94 — — 23 129.2
rtilt100.4 0.22 - - 15 60.8| 0.27 - - 9 26.8
rtilt316.10 | 0.08 - - 27 543.3 | 0.12 - - 37 593.5
stilt100.0 0.92 - - 99 760.9 | 0.83 - - 69 524.3
stilt100.3 1.49 - - 7 769.8 | 1.39 - - 75 662.5
stilt100.4 1.16 — — 209 2271.5| 1.21 — — 179 1695.3
stilt316.10 1.99 1.40 7.68 253 10140.0| 2.07 1.44 2.25 283 10132.0
balas84 1.01 - - 31 106.8 | 1.01 - - 25 78.0
balas108 2.63 - - 497 1534.8 | 2.63 - - 423 1416.0
balas120 1.05 - - 633 5694.7 | 1.05 - - 755 7186.9
balas160 1.26 - - 541 6716.8 | 1.26 - - 739 7848.0
balas200 0.50 - - 123 1392.3| 0.74 - - 239 2294.2
ftv180 0.65 - - 21 337.0| 0.69 - - 29 236.2
ran1000.0 0.00 — — 61 1146.6 | 0.00 — — 21 219.2
ran1000.1 0.00 - - 35 689.7 | 0.00 - - 19 191.7
ran1000.2 0.00 - - 27 767.8 | 0.00 - - 95 900.4
ran1000.3 0.01 - - 429 7569.0 | 0.01 - - 343 3977.2
ran1000.4 0.05 0.00 0.04 445 10129.7| 0.01 — — 379 3122.2
ran500.3 0.02 - - 79 579.4| 0.04 - - 75 232.4

(2-node) Concorde -s 123 -C 0

(2-node) Concorde -s 123 -C 24

%Gap %Gap
Name Root fLB fUB |Nodes Time | Root fLB fUB |Nodes Time
coin100.0 0.82 - - 49 88.4| 0.28 - - 15 364.5
coin316.10 1.15 0.42 0.06 567 10026.0| 0.73 0.41 0.25 77 10957.5
cranel(0.2 2.00 - - 141 272.0| 0.44 — — 15 1096.7
cranel(00.4 1.96 - - 79 158.2| 0.88 - - 17 1148.5
crane316.10 | 0.98 - - 771 5303.3 | 0.30 - - 119 4931.6
rtilt100.0 1.50 - - 59 124.6 | 1.04 - - 29 836.9
rtilt100.4 0.58 — — 9 26.4| 0.17 — — 3 257.4
rtilt316.10 0.26 - - 51 304.5| 0.06 - - 13 2826.3
stilt100.0 1.64 - - 203 333.3| 0.70 - - 39 2465.9
stilt100.3 2.24 - - 535 1272.5| 1.19 - - 65 3433.6
stilt100.4 2.03 - - 737 2350.9| 0.95 - - 129 6688.3
stilt316.10 2.27 1.74 5.44 841 10041.3| 1.85 1.37 0.00 75 10663.4
balas84 1.01 - - 17 15.2| 1.01 — — 33 547.5
balas108 2.63 - - 1023 1269.9| 2.63 - - 343 4110.5
balas120 2.10 0.00 1.40 2849 10007.3| 1.05 — — 221 6244.1
balas160 2.02 0.25 4.03 2165 10007.1| 1.01 0.00 2.27 273 10129.5
balas200 2.48 0.74 5.96 1955 10008.0| 0.50 - - 99 2918.8
ftv180 1.58 - - 91 204.0 | 0.38 - - 17 955.9
ranl1000.0 0.00 - - 11 145.2 | 0.00 — — 11 186.7
ran1000.1 0.00 - - 15 136.9| 0.00 - - 21 230.7
ran1000.2 0.00 - - 3 79.5| 0.00 - - 33 354.1
ran1000.3 0.03 - - 387 2836.9 | 0.01 - - 393 5065.2
ran1000.4 0.01 - - 153 957.1| 0.01 - - 177 1749.7
ran500.3 0.04 - - 93 225.9| 0.04 - - 103 538.8
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2-node transformation, the best choice appears to be the default (“-C
16”) which gives the best compromise between the separation overhead
and the lower bound improvement. We have also tested chunk sizes 8
and 32, without obtaining better results. (The 3-node transformation
exhibits a similar behavior.)

5.2. Code comparison

A comparison of the four algorithms, namely CDT, FT-add (modified
version), FT-b&c (“+ FP” version) and Concorde (“(2-node) -C 16”
version), is given in Tables 2.4, 2.5, 2.6 and 2.7 on the complete set of 86
instances. As to time limit, we imposed 1,000 CPU seconds for CDT and
FT-add, and 10,000 CPU seconds for FT-b&c and Concorde. The smaller
time limit given to the first two algorithms is chosen so as to keep the
required search-tree space reasonable, but it does not affect the compar-
ison with the other algorithms: according to preliminary computational
experiments on some hard instances, either the branch-and-bound ap-
proaches solve an instance within 1,000 CPU seconds, or the final gap is
too large to hope in a convergence within 10,000 seconds.

As to the lower bound at the root node, the tables show that the
additive approach obtains significantly better results than the AP lower
bound, but is dominated by both cutting plane approaches. In its pure
STSP version (“-C 0”), the Concorde code obtains a root-node lower
bound which is dominated by the FT-b&c one, thus showing the effective-
ness of addressing the AT'SP in its original (directed) version. Of course,
one can expect to improve the performance of FT-b&c by exploiting ad-
ditional classes of AT'S P-specific cuts such as the lifted cycle inequalities
described in Chapter 3 . As to Concorde, we observe that the use of
the “local” cuts leads to a considerable improvement of the root-node
lower bound. Not surprisingly, this improvement appears more substan-
tial than in the case of pure ST'SP instances: in our view, this is again
an indication of the importance of exploiting the structure of the orig-
inal asymmetric problem, which results into a very special structure of
its STSP counterpart which is not captured adequately by the usual
classes of ST'SP cuts (comb, clique tree inequalities, etc.).

As to the overall computing time, for the randomly generated in-
stances (ran) the most effective code is CDT, which also performs very
well on shop and rbg instances. Code FT-add has, on average, better
performance than CDT (solving to optimality, within 1,000 CPU seconds,
8 more instances), never being, however, the best of the four codes on
any instance.
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Table 2.4. Comparison of branch-and-bound codes. Time limit of 1,000 seconds.

CDT FT-add
%Gap %Gap
Name Root fLB fUB| Nodes Time|Root fLB fUB| Nodes Time
coin100.0 12.93 5.41 23.17 192324 1000.0| 4.28 0.77 0.19 185361 1000.0
coinl100.1 15.66 9.62 21.51 210379 1000.0| 3.68 1.89 1.51 154925 1000.0
coin100.2 14.57 7.65 18.40 215216 1000.0| 5.24 1.82 0.36 162688 1000.0
coin100.3 20.68 12.52 20.49 214915 1000.0| 5.02 1.33 0.57 166505 1000.0
coinl100.4 13.03 6.70 14.37 219186 1000.0| 5.91 1.34 1.72 167641 1000.0
coin316.10 |14.94 12.22 19.14 229130 1000.0| 6.96 5.19 14.01 13470 1000.0
cranel00.0 8.55 1.58 8.08 164790 1000.0| 4.09 0.19 0.00 168273 1000.0
cranel00.1 5.57 1.48 3.43 170445 1000.0| 3.12 0.16 0.00 170634 1000.0
cranel(00.2 |10.30 2.41 8.41 165701 1000.0| 5.84 1.06 0.37 103956 1000.0
cranel00.3 7.02 0.65 3.87 155420 1000.0| 3.38 - - 8643 40.7
cranel(00.4 8.69 4.20 13.79 162903 1000.0| 4.78 2.11 2.15 96990 1000.0
crane316.10 | 8.75 5.76 8.14 180724 1000.0| 3.66 2.93 1.93 9940 1000.3
disk100.0 3.00 - - 5360 0.7 2.31 - - 538 0.9
disk100.1 434 041 1.81 151974 1000.0| 2.81 — - 12706 29.6
disk100.2 2.75 - - 465 0.0| 2.17 - - 167 0.7
disk100.3 1.33 - - 4909 0.7] 1.28 - - 738 1.5
disk100.4 2.12 - — 143 0.0 1.47 — — 74 0.3
disk316.10 1.21 - - 3397 2.1 0.76 - - 502 43.5
rtilt100.0 22.59 13.19 10.62 238487 1000.0( 7.52 2.93 3.00 96426 1000.0
rtilt100.1 20.83 12.29 18.83 224840 1000.0| 7.38 2.73 1.98 109535 1000.0
rtilt100.2 23.34 13.36 18.82 215193 1000.0| 6.73 2.64 3.30 105315 1000.0
rtilt100.3 18.86 10.28 26.64 247630 1000.0| 3.27 1.76 1.13 115796 1000.0
rtilt100.4 13.52 7.11 14.05 213573 1000.0| 3.89 0.83 0.94 108540 1000.0
rtilt316.10 |18.39 15.14 19.11 207103 1000.0| 9.07 6.06 11.95 8314 1000.2
shop100.0 0.28 — — 64 0.0| 0.14 — — 81 0.4
shop100.1 0.67 - - 3234 1.0 0.38 - - 587 2.8
shop100.2 0.98 - - 1345 0.4| 0.41 - - 990 5.2
shop100.3 0.36 - - 604 0.2| 0.17 - - 872 2.9
shop100.4 0.35 - - 217 0.1| 0.28 - - 273 1.3
shop316.10 0.16 - — 1228 3.1 0.11 — — 661 91.1
stilt100.0 22.15 11.36 21.47 213441 1000.0| 9.32 2.52 1.62 97255 1000.0
stilt100.1 19.34 10.55 24.20 213919 1000.0| 6.49 2.78 2.49 103875 1000.0
stilt100.2 23.61 11.21 24.43 199478 1000.0| 9.81 3.23 2.84 110778 1000.0
stilt100.3 17.30 8.86 24.97 198401 1000.0| 7.05 3.77 2.91 116219 1000.0
stilt100.4 13.19 7.35 22.05 202776 1000.0| 6.93 2.19 0.60 99972 1000.0
stilt316.10 |16.36 14.05 24.21 174030 1000.0| 9.82 6.70 16.39 6508 1000.1
super100.0 0.25 - - 36 0.0 0.13 - - 11 0.1
super100.1 1.28 - - 38 0.0| 0.26 - - 72 0.2
super100.2 1.79 - - 169 0.1| 0.64 - - 68 0.2
super100.3 0.90 - - 69 0.1] 0.39 - - 122 0.3
super100.4 0.25 - - 6 0.0| 0.25 - - 16 0.1
super316.10 | 1.33 0.57 3.37 103934 1000.0| 0.52 - - 8515 236.7
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Table 2.5. Comparison of branch-and-cut codes. Time limit of 10,000 seconds.

FT-b&c + FP (2-node) Concorde -s 123 -C 16
%Gap %Gap

Name Root fLB fUB|Nodes Time|Root fLB fUB |Nodes Time
¢0in100.0 0.40 - - 41 8.6| 0.29 - - 25 106.3
coinl100.1 0.47 — — 29 5.9| 0.30 — - 7 49.1
c0in100.2 0.45 - - 25 9.1 0.13 - - 3 40.4
coin100.3 0.19 — — 9 2.8| 0.08 — — 3 21.2
coinl100.4 0.48 — — 17 4.9 1.05 — - 7 64.1
coin316.10 | 1.04 0.47 0.19 1407 10000.2| 0.85 0.33 0.25 233 10101.2
cranel00.0 | 0.32 - - 7 1.4| 0.00 - - 1 6.5
cranel00.1 | 0.28 - - 7 1.5| 0.01 - - 3 15.9
cranel(0.2 1.35 — — 707 204.8 | 0.94 — - 41 355.5
cranel00.3 | 0.03 - - 3 0.5| 0.00 - - 1 3.4
cranel00.4 | 1.73 - - 751 117.6| 1.27 - - 27 277.4
crane316.10 | 0.62 0.11 0.06 2851 10000.2 | 0.34 — - 255 4287.2
disk100.0 0.22 — — 11 1.0| 0.14 — — 3 7.1
disk100.1 0.35 — — 29 2.9| 0.32 — - 21 40.4
disk100.2 0.04 - - 3 0.3| 0.04 - - 3 5.6
disk100.3 0.00 - - 1 0.1| 0.00 - - 1 2.5
disk100.4 0.00 - - 3 0.3]| 0.15 - - 3 9.3
disk316.10 | 0.03 - - 5 5.6 0.04 - - 7 31.1
rtilt100.0 0.80 — — 501 227.6| 0.94 — — 23 129.2
rtilt100.1 0.24 - - 23 6.8| 0.09 - - 5 26.7
rtilt100.2 0.00 - - 1 0.4 0.00 - - 1 8.1
rtilt100.3 0.32 — — 19 4.2 1 0.00 — - 1 19.3
rtilt100.4 0.11 — — 13 4.6 | 0.27 — - 9 26.8
rtilt316.10 0.25 - — 1727 8887.1| 0.12 - - 37 593.5
shop100.0 0.01 - - 7 0.7| 0.03 - - 13 28.8
shop100.1 0.02 - - 13 1.4| 0.02 - - 17 39.7
shop100.2 0.02 — — 11 1.1| 0.02 — - 7 17.7
shop100.3 0.03 — — 17 1.6| 0.03 — — 15 24.4
shop100.4 0.02 - - 5 0.5 0.01 - - 9 16.7
shop316.10 | 0.01 — — 17 14.3| 0.01 — - 15 122.2
stilt100.0 1.10 - - 171 49.2| 0.83 - - 69 524.3
stilt100.1 1.29 — — 167 57.1| 1.13 — - 23 221.4
stilt100.2 0.57 - - 15 6.1 0.22 - - 5 56.9
stilt100.3 1.73 - - 325 141.3 | 1.39 - - 75 662.5
stilt100.4 1.58 — - 1925 1299.5| 1.21 — - 179 1695.3
stilt316.10 2.35 1.66 19.59 1205 10000.3| 2.77 1.44 2.25 283 10132.0
super100.0 | 0.00 - - 6 0.5| 0.00 - - 7 6.0
super100.1 | 0.00 - - 1 0.2| 0.00 - - 9 8.5
super100.2 | 0.00 - - 1 0.1| 0.00 - - 1 1.7
super100.3 | 0.00 - - 1 0.2| 0.00 - - 1 3.5
super100.4 | 0.00 - - 1 0.1| 0.00 - - 5 6.1
super316.10 | 0.00 - - 4 3.9| 0.00 - - 1 14.9
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Table 2.6. Comparison of branch-and-bound codes. Time limit of 1,000 seconds.

CDT FT-add
%Gap %Gap
Name Root fLB fUB| Nodes Time|Root fLB fUB| Nodes Time
balas84 14.07 5.53 34.17 192409 1000.0| 5.53 - - 612994 986.6
balas108 25.00 14.47 53.95 166420 1000.0| 9.87 1.97 0.66 164537 1000.0
balas120 21.68 12.24 36.71 154920 1000.0(13.29 7.34 7.34 122080 1000.0
balas160 19.40 10.58 43.83 148006 1000.0|11.34 8.31 13.35 70260 1000.0
balas200 15.63 12.66 47.64 141847 1000.0| 8.68 6.70 21.09 47711 1000.0
ftv180 5.07 0.65 2.06 150773 1000.0| 4.28 0.62 0.10 64938 1000.0
uk66 72.91 5.84 35.51 193383 1000.0|31.71 - - 50005 152.1
ran1000.0 0.00 - - 61 0.7 0.00 - - 811 94.2
ran1000.1 0.05 - - 50 0.7 0.05 - - 97 9.1
ran1000.2 0.09 - - 182 3.9( 0.09 - - 1022 90.0
ran1000.3 0.05 - - 73 1.1| 0.05 - - 795 429
ran1000.4 0.07 - - 87 1.5| 0.07 - - 577  48.5
ran500.0 0.00 - - 15 0.1 0.00 - - 1 0.3
ran500.1 0.06 — — 11 0.1 0.06 — — 12 1.1
ran500.2 0.15 — — 58 0.2 0.15 — — 160 3.1
ran500.3 0.06 - - 52 0.1| 0.06 - - 263 6.6
ran500.4 0.07 - - 37 0.1 0.07 - - 85 4.6
brl7 100.00 - — 43879 3.6| 0.00 - - 11 0.0
ft53 14.11 5.53 15.28 154920 1000.0| 1.56 - - 131 0.2
ft70 1.80 - - 2624 0.4 0.57 - - 220 0.3
ftv33 7.85 - - 81 0.0 3.73 - - 120 0.1
ftv35 6.25 - - 428 0.0 3.53 - - 647 0.2
ftv38 6.01 - - 424 0.0 3.01 - - 854 0.3
ftv44 5.70 — — 214 0.0 4.46 — — 289 0.1
ftva7 6.98 - - 585 0.1 3.49 - - 1026 0.4
ftv55 10.76 - - 6989 1.1| 6.59 - - 3253 1.5
ftv64 6.42 - - 4552 0.8 4.89 - - 2553 1.3
ftv70 9.44 - - 10328 3.3| 6.92 - - 4347 3.7
ftvo0 6.33 - - 4220 0.7 3.17 - - 1670 2.5
ftv100 6.60 - - 27700 16.6| 3.91 - - 11089 29.6
ftv110 5.87 - — 14393 5.0 4.49 - - 12931 38.4
ftv120 6.51 - - 35382 50.1| 5.77 - - 32600 99.4
ftv130 4.46 - — 5888 6.4 3.77 - - 3512 16.6
ftv140 4.92 - - 11128 13.9| 4.26 - - 7083 38.8
ftv150 3.91 - - 2645 3.1| 3.03 - - 2778 17.0
ftv160 4.58 - — 49169 93.8| 4.03 - - 38007 316.2
ftv170 4.50 0.36 1.96 155326 1000.0| 4.14 0.18 0.00 85236 1000.0
krol24p 6.22 1.20 10.95 166664 1000.0| 2.73 - - 18909 135.7
p43 97.37 95.62 0.09 186698 1000.0| 0.37 0.30 0.02 321417 1000.0
rbg323 0.00 - - 1 0.1 0.00 - - 1 0.3
rbg358 0.00 - - 1 0.1| 0.00 - - 1 0.5
rbg403 0.00 - - 1 0.1 0.00 - - 1 1.0
rbg443 0.00 — — 1 0.1 0.00 — — 1 1.2
ry48p 13.21 1.27 0.00 196577 1000.0| 2.94 — — 22825 20.3
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Table 2.7. Comparison of branch-and-cut codes. Time limit of 10,000 seconds.

FT-b&c + FP (2-node) Concorde -s 123 -C 16
%Gap %Gap

Name Root fLB fUB|Nodes Time|Root fLB fUB | Nodes Time
balas84 1.01 - - 61 15.7| 1.01 - - 25 78.0
balas108 | 1.97 - - 267  89.0| 2.63 - - 423 1416.0
balas120 | 1.05 - - 1339 1276.3| 1.05 - - 755 7186.9
balas160 | 1.26 - - 737 671.1| 1.26 - - 739 7848.0
balas200 1.24 — — 1495 1712.8| 0.74 — — 239 2294.2
ftv180 1.20 - - 939 366.0| 0.69 - - 29 236.2
uk66 2.29 - - 47 5.7 1.47 - - 17 66.1
ran1000.0| 0.00 — — 1 3.4 0.00 — — 21 219.2
ran1000.1| 0.00 - - 3 23.5| 0.00 - - 19 191.7
ranl1000.2 | 0.00 - - 14 150.7| 0.00 - - 95 900.4
ran1000.3 | 0.01 - - 11 62.2| 0.01 - - 343 3977.2
ran1000.4 | 0.01 - - 18 148.7| 0.01 - - 379 3122.2
ran500.0 | 0.00 - - 1 0.8| 0.00 - - 5 29.2
ran500.1 | 0.00 - - 1 1.8| 0.00 - - 1 20.0
ran500.2 | 0.00 - - 4 31.4] 0.00 - - 11 52.7
ran500.3 | 0.02 - - 65 55.0| 0.04 - - 75 232.4
ran500.4 | 0.00 - - 2 3.4 0.02 - - 15 53.8
brl7 0.00 — — 1 0.0| 0.00 — — 1 0.2
ft53 0.00 - - 1 0.1| 0.00 - - 1 0.6
ft70 0.02 - - 5 0.2 0.01 - - 3 3.2
ftv33 0.00 - - 1 0.0| 0.00 - - 1 0.3
ftv35 0.88 - - 9 0.4| 0.68 - - 5 9.0
ftv38 0.85 - - 13 0.6 | 0.52 - - 5 14.5
ftv44 0.37 - - 9 0.5| 0.12 - - 3 9.1
ftv47 1.01 — — 11 0.5| 0.62 — — 11 23.4
ftv55 0.81 - - 35 14| 0.44 - - 3 9.0
ftv64 1.36 - - 29 2.6| 0.33 - - 7 20.8
ftv70 0.92 — — 11 1.1| 0.26 — — 3 17.8
ftv90 0.25 - - 5 0.5| 0.06 - - 3 14.7
ftv100 0.39 - - 21 2.2| 0.00 - - 1 12.6
ftv110 0.77 - - 77 7.4 0.05 - - 3 25.6
ftv120 0.97 — — 123 13.1| 0.28 — — 7 54.4
ftv130 0.35 - - 7 1.6| 0.00 - - 1 16.6
ftv140 0.25 - - 9 2.1| 0.00 - - 3 25.6
ftv150 0.27 - - 21 2.6 0.00 - - 5 27.0
ftv160 0.67 - - 17 3.8| 0.30 - - 7 55.7
ftv170 0.87 — — 15 4.1 0.40 — — 3 41.9
krol24p 0.04 - - 3 1.0| 0.00 - - 1 9.9
p43 0.16 — — 141 9.3| 0.16 — — 13 22.7
rbg323 0.00 - - 1 0.4| 0.00 - - 3 23.9
rbg358 0.00 - - 1 0.5| 0.00 - - 3 29.3
rbg403 0.00 - - 1 1.3| 0.00 - - 5 49.3
rbg443 0.00 - - 1 1.4| 0.00 - - 3 34.5
ry48p 0.53 - - 7 0.8 0.35 - - 5 22.9
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Codes FT-b&c and Concorde turn out to be, in general, the most effec-
tive approaches, the first code being almost always faster than the second
one, though it often requires more branching nodes. We believe this is
mainly due to the faster (AT'SP-specific) separation and pricing tools
used in FT-b&c. Strangely enough, however, FT-b&c does not solve to
optimality instance crane316.10 which is, instead, solved by Concorde
even in its pure ST SP version “-C 0”; see Table 2.3. This pathological
behavior of FT-b&c seems to derive from an unlucky sequence of wrong
choices of the branching variable in the first levels of the branching tree.

Not surprisingly, the Concorde implementation proved very robust
for hard instances of large size, as it has been designed and engineered
to address very large STSP instances. On the other hand, FT-b&c was
implemented by its authors to solve medium-size AT'SP instances with
up to 200 vertices, and exploits neither sophisticated primal heuristics
nor optimized interfaces with the LP solver. In our view, the fact that
its performance is comparable or better than that of Concorde “-C 16”
(and considerably better than that of the pure ST'SP Concorde “-C
0”) is mainly due to the effectiveness of the ATSP-specific separation
procedures used. This suggests that enriching the Concorde arsenal of
STSP separation tools by means of AT'SP-specific separation proce-
dures would be the road to go for the solution of hard AT'SP instances.
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