
Yoyo search: a bisection cutting-plane method

Matteo Fischetti(∗) and Domenico Salvagnin(◦)

(∗) DEI, University of Padova, Italy
(◦) DMPA, University of Padova, Italy

e-mail: matteo.fischetti@unipd.it, salvagni@math.unipd.it

November 20th, 2009

Abstract

Cutting plane methods are widely used for solving convex optimiza-
tion problems and are of fundamental importance, e.g., to provide tight
bounds for Mixed-Integer Programs (MIPs). These methods are made
by two equally important components: (i) the separation procedure
(oracle) that produces the cut(s) used to tighten the current relaxation,
and (ii) the overall search framework that actually uses the generated
cuts and determines the next point to cut. In the last 50 years, a
considerable research effort has been devoted to the study of effective
families of cutting planes, as well as to the definition of sound separa-
tion procedures and selection criteria. However, the search component
was much less studied—at least by the MIP community, where the
“standard” approach almost invariably consists of cutting an optimal
vertex of the current LP relaxation.

In this paper we introduce a new search method that generalizes 1-
dimensional binary search and produces two convergent trajectories of
points—one made by optimal LP vertices as in the standard cutting-
plane method, and the other by “internal” points used to produce
deeper cuts and updated on the fly with no computational overhead.
The method is called yoyo search because the point to be cut swings
in and out of the oracle’s reach. It can be viewed as a simple way to
exploit the internal-point information inside a standard cutting plane
method, hence its implementation within a branch-and-cut scheme is
likely to be less problematic than that using pure interior point meth-
ods such as the analytic center one.

Preliminary computational results are presented, showing that the
yoyo and the standard methods have comparable performance (in terms
of number of cuts generated and computing time) when the separation
procedure is able to generate very tight (facet defining) cuts. When
shallow cuts are generated, instead, our yoyo search outperforms the
standard method, producing much better bounds within significantly
shorter computing times.

Keywords: Mixed-integer programming, cutting planes, binary search, el-
lipsoid and analytic center methods.



1 Introduction

Cutting plane methods are widely used for solving convex optimization prob-
lems and are of fundamental importance, e.g., to provide tight bounds for
Mixed-Integer Programs (MIPs).

Cutting plane methods are made by two equally important components:
(i) the separation procedure (oracle) that produces the cut(s) used to tighten
the current relaxation, and (ii) the overall search framework that actually
uses the generated cuts and determines the next point to cut.

In the last 50 years, a considerable research effort has been devoted to
the study of effective families of cutting planes, as well as to the definition
of sound separation procedures and cut selection criteria [8, 9]. However,
the search component was much less studied, at least in the MIP context
where one typically cuts a vertex of the current LP relaxation, and then
reoptimizes the new LP to get a new vertex to cut (a notable exception
is the recent paper [17] dealing with Benders’ decomposition). The result-
ing approach—sometimes called “the Kelley method” [14]—can however be
rather inefficient, the main so if the separation procedure is not able to
produce strong (e.g., facet defining or, at least, supporting) cuts.

As a matter of fact, alternative search schemes are available that work
with non-extreme (internal) points [11, 12, 20], including the famous ellip-
soid [6,19] and analytic center [3,13,18] methods; we refer the reader to [7]
for an introduction. The convergence behavior of these search methods is
less dependant on the quality of the generated cuts, which is a big advantage
when working with general MIPs where separation procedures tend to satu-
rate and to produce shallow cuts. A drawback is that, at each iteration, one
needs to recompute a certain “core” point, a task that can be significantly
more time consuming than a simple LP reoptimization. In addition, these
methods are allowed to produce invalid cuts based on the objective function
value, that may be problematic to handle in a branch-and-cut context.

In this paper we introduce a hybrid search method, called yoyo search,
that generates two convergent trajectories of points—one made by optimal
LP vertices as in the standard method, and the other by “internal” points
used to produce deeper cuts and updated on the fly with no computational
overhead. The new method can therefore be viewed as a simple way to ex-
ploit the internal-point information inside a standard cutting plane method,
hence its implementation within branch-and-cut scheme is likely to be less
problematic than that using pure internal point methods. The method is
described in Section 2.

Computational results are presented in Section 3, showing that the yoyo
the standard methods have comparable performance—in terms of number
of cuts generated and computing time—when the separation procedure is
able to generate very tight (facet defining) cuts. When shallow cuts are
generated, instead, our yoyo search outperforms the standard method, in

1



that it produces much tighter bounds within shorter computing times.

2 Yoyo search

Let us consider a MIP of the form

min{cTx : Ax ≤ b, xj ∈ Z ∀j ∈ J}

and let P := {x ∈ Rn : Ax ≤ b} denote the associated LP relaxation
polyhedron. In addition, let us assume the oracle structure allows one to
define a “cut closure”, P1, obtained by intersecting P with the half-spaces
induced by all possible inequalities returned by the oracle. Cutting plane
methods are meant to compute z1 := min{cTx : x ∈ P1}, with P1 described
implicitly through the oracle.

Our search method works with two points: an “internal” (possibly non
optimal) point q ∈ P1, and an optimal vertex x∗ of P (possibly not in P1).
By construction, the final (unknown) value z1 belongs to the uncertainty
interval [cTx∗, cT q], i.e., at each iteration both a lower and an upper bound
on z1 are available. If the two points q and x∗ coincide, the cutting plane
method ends. Otherwise, we apply a bisection step over the line segment
[x∗, q], i.e., we invoke the separation procedure in the attempt of cutting the
middle point y := (x∗ + q)/2. If a violated cut is returned, we add it to the
current LP that is reoptimized to update x∗, hopefully reducing the current
lower bound cTx∗. Otherwise, we update q := y, thus improving the upper
bound and actually halving the current uncertainty interval.

The method is called “yoyo search” because the point y to be cut swings
between inside and outside P1. Note that for 1-dimensional problems (P ⊂
R1), yoyo and binary search methods coincide. An outline of this basic
scheme is given in Figure 1.

The basic scheme can easily be improved in its final iterations. Indeed,
it may happen that x∗ already belongs to P1, but the search is not stopped
because the internal point q is still far from x∗. A simple fix is to count the
number of consecutive updates to q, say k, and to try and separate directly
x∗ in case k > 3. If the separation is unsuccessful, then we can terminate the
search, otherwise we reset counter k and continue with the usual strategy of
cutting the middle point y.

A graphical representation of the two different type of iterations arising
during the search is given in Figure 2. The algorithm starts with the pair
(x0, q0). At the first iteration, the separation of the middle point y0 is
unsuccessful, and thus the internal point is updated to q1. In the second
iteration, a cut violated by the middle point y1 is found and added to P ,
obtaining the new vertex x1. Note that in the first iteration the uncertainty
interval is halved, but this is not the case in the second iteration, where there
is only a small improvement in the lower bound value (for 1-dimensional

2



input : LP ≡ min{cTx : x ∈ P}
input : separation procedure Oracle(y) implicitly defining P1

input : internal point q ∈ P1

output: optimal solution x∗ of min{cTx : x ∈ P1}
x∗:= arg min{cTx : x ∈ P}1

while x∗ 6= q do2

y := (x∗ + q)/23

if Oracle(y) finds a cut αTx ≤ α0 violated by y then4

P := P ∩ {x | αTx ≤ α0}5

x∗:= arg min{cTx : x ∈ P}6

else7

q := y8

end9

end10

Figure 1: Yoyo search.

problems even in this second case the interval would be halved, and the
method would become binary search).

As to the initialization of q ∈ P1, this is a trivial task in many practical
settings. For example, when solving MIPs, any feasible integer solution
can be used. Other examples are given in Section 3, where the particular
structure of the problems at hand allows for a simple formula to define
a suitable q. If all else fails, however, a dedicated phase-1 procedure is
required, that works, e.g., along the following lines. Let

P ′ := {x ∈ P : x satisfies all the cuts produced by the oracle so far}

be the current LP relaxation polyhedron (P ′ = P at the very beginning).
At each iteration, we call a black box solver to find a (hopefully internal)
point q ∈ P ′ to be passed to the separation oracle, until no cut is generated
(hence q ∈ P1, as required). In our computational experience, we found that
applying a fast interior-point algorithm (e.g., IBM-ILOG Cplex barrier) to
the problem with null objective function 0Tx was typically very effective.
Dedicated analytic-center (heuristic) implementations are also possible, that
we plan to investigate in a near future.

An important property of yoyo search is its ability to produce both a
lower and an upper bound on z1, thus allowing for early termination, e.g.,
when the two bounds are close enough, or in branch-and-cut methods when
the upper bound is smaller than the incumbent value and there is no hope
to fathom the current node.

A main advantage of yoyo search over the standard method is that the
point to be cut is typically “well inside” P , so deeper cuts are produced.

3



P

P1

q0

x0

y0 = q1

x1

y1

Figure 2: Yoyo search example.

This is confirmed by our computational experience. A possible drawback is
that the computing time spent within the separation oracle may be affected
by the fact that the point y to be cut can be significantly denser than the LP
optimal vertex x∗. In addition, a non-exact (heuristic) separation oracle can
interfere with yoyo search, in that a point y 6∈ P1 not cut by the oracle can
erroneously lead to an update of q, hence producing wrong upper bounds,
weaker cuts, or even cycling.

With respect to the ellipsoid/analytic-center method, the internal point
q of yoyo search needs not to be recomputed a each iteration (a time con-
suming task), but it is just updated with no overhead in the iterations not
producing a violated cut—those are in a sense the “most successful” ones
in that they halve the uncertainty about z1. Another practically very im-
portant advantage is that the point q needs not to be in the strict interior
of the current LP polyhedron P ′, i.e., a point lying on a face of P ′ is al-
lowed (as already mentioned, this can be exploited to provide an initial
point q with little computational effort). Note that this property is not
shared by the ellipsoid/analytic-center methods, that may need so-called
neutral cuts that are just tight at the point q to be separated and that must
be forced to become slack at the subsequent point q. Finally, whenever
q ∈ P1, the ellipsoid/analytic-center method needs to introduce a (neutral)
cut cTx ≤ cT q, that is however invalid for P1 and hence needs to be removed
in a branch-and-cut context.

4



3 Computational results

To computationally compare the performance of yoyo search with that of
the standard (Kelley’s) cutting plane method, we performed two kinds of
experiments. A comparison with the analytic-center method is planned in
the near future.

3.1 Mimicking different cut behaviors

Our first experiments were meant to analyze the yoyo-search performance in
a controlled environment where we can tune the quality of the cuts returned
by the separation oracle. To this end, we considered the task of solving
to proven optimality a given LP problem with bounded variables, namely
min{cTx : l ≤ x ≤ u,A′x ≤ b′, A′′x = b′′}, by using a cutting plane scheme.
We then define P := {x ∈ Rn : l ≤ x ≤ u,A′′x = b′′}, while the list of all the
remaining constraints (i.e., the rows of A′x ≤ b′) is stored inside the sepa-
ration procedure and can be accessed only through the oracle calls. Given
the point y ∈ P to be separated, the oracle returns a single violated cut
αTx ≤ α0 (if any) defined according to one of the following three selection
scenarios:

A) select a “deepest” violated cut in the list, i.e., a one that maximizes
the Euclidean distance of y from the cut hyperplane;

B) the returned cut is the convex combination (with uniform coefficients)
of the deepest one and of the (at most) first 10 violated or tight cuts
encountered when scanning the list;

C) the cut is first defined as in case B, and then its right-hand side α0 is
weakened so as to half the degree of violation.

Scenario A simulates the availability of an “almost ideal” separation proce-
dure that is able to detect a deep (typically facet-defining) cut at each call.
Scenario B simulates a more realistic scenario where the separation proce-
dure is still able to define reasonably good cuts, though it may be tricked by
the presence of alternative violated or tight constraints. Finally, scenario C
simulates a common situation where the returned cut is not supporting P1.

Our testbed is made by the root node relaxation of 19 MIPLIB-2003 [1]
instances (namely: a1c1s1, aflow40b, arki001, atlanta-ip, cap6000, dano3mip,
gesa2-o, gesa2, liu, manna81, mkc, momentum1, momentum2, msc98-ip,
mzzv11, mzzv42z, net12, seymour, and sp97ar) and of 14 set covering in-
stances taken from the ORLIB [4] (scpclr11, scpclr12, scpclr13, scpcyc08,
scpnrg1, scpnrg2, scpnrg3, scpnrg4, scpnrg5, scpnrh1, scpnrh2, scpnrh3,
scpnrh4, and scpnrh5). These instances were chosen because they have a
reasonable number of inequalities, both in absolute terms and with respect
to the number of linear equations (if any).

5



For all instances, our yoyo search was initialized with an internal point q
found with the previously-described phase 1 algorithm (the cuts generated
during this phase were discarded before moving to the next phase, i.e. they
were not passed to the yoyo search, hence the associated computing time
is not reported). Note that for the set covering instances in our testbed,
the first point q = (1/2, · · · , 1/2) is always inside P1 (because each row is
covered by at least 2 columns), so no phase 1 iterations were needed.

The outcome of this first set of experiments in reported in Table 1, where
at most 10,000 iterations (i.e., calls to the oracle) were allowed. Column
%Cl.Gap reports the percentage of gap closed (100% meaning the LP was
solved to proven optimality); all computing times are expressed in CPU
seconds. As expected, the standard method (std) worked quite well under
scenario A, but its performance degraded steeply under scenarios B and C.
Yoyo search had an identically good performance under scenario A, but it
was much more effective under scenario B (about 10 times faster than std on
the set covering instances), and closed considerably more gap under scenario
C (on average, about 68% instead of 35% for miplib instances). Tables 2 and
3 give more details on the runs on set covering instances under scenarios B
and C, respectively, and also report the number of iterations (cuts) needed
to close 90%, 95%, and 99% of the initial gap, respectively.

itr time %Cl.Gap

testbed scenario std yoyo std yoyo std yoyo

scp
A 360.2 381.8 7.04 7.60 100.0 100.0
B 6,248.4 871.5 1,558.59 157.85 100.0 100.0
C 10,000.0 3,471.0 1,936.75 903.18 92.2 100.0

miplib
A 761.2 738.2 5.37 4.76 100.0 100.0
B 8,720.0 3,442.1 267.59 144.95 46.0 77.7
C 10,000.0 6,207.2 171.96 221.87 34.7 68.1

Table 1: Comparing yoyo search (yoyo) and the standard cutting plane
method (std) on three different separation scenarios; we report geometric
means for iterations and CPU times, and arithmetic means for the closed
gap.

3.2 Yoyo search with Benders’ cuts

In our second set of experiments, we considered a classical Benders’ de-
composition approach [5] where the separation oracle solves a certain cut-
generating LP (known as the Benders slave). Note that the exploitation of
some internal point information, albeit quite different from what presented

6



itr

problem method 90% 95% 99% %Cl.Gap totTime totItr

scpclr11 std 917 1,293 2,197 100.0 263.37 2,958
yoyo 148 195 252 100.0 12.75 381

scpclr12 std 2,267 3,466 5,138 100.0 979.38 5,808
yoyo 61 96 233 100.0 146.91 474

scpclr13 std 1,883 3,031 5,952 99.9 8,970.94 10,000
yoyo 93 125 352 100.0 920.21 983

scpnrg1 std 4,205 5,364 6,657 100.0 2,091.78 7,626
yoyo 602 736 1,009 100.0 238.65 1,283

scpnrg2 std 3,986 4,904 6,294 100.0 1,963.68 7,223
yoyo 555 734 973 100.0 217.06 1,243

scpnrg3 std 3,256 4,322 5,522 100.0 1,551.54 6,659
yoyo 465 595 876 100.0 203.06 1,195

scpnrg4 std 4,229 5,126 6,449 100.0 1,651.24 7,475
yoyo 568 687 959 100.0 254.43 1,274

scpnrg5 std 4,072 5,183 6,584 100.0 2,091.61 7,760
yoyo 552 697 972 100.0 310.91 1,288

scpnrh1 std 2,631 3,454 4,416 100.0 1,225.83 5,199
yoyo 247 330 491 100.0 99.37 728

scpnrh2 std 2,779 3,770 5,284 100.0 2,118.16 6,504
yoyo 286 384 540 100.0 142.48 802

scpnrh3 std 2,606 3,445 4,629 100.0 1,563.01 5,656
yoyo 287 396 545 100.0 154.62 798

scpnrh4 std 2,712 3,469 4,548 100.0 1,193.22 5,530
yoyo 304 451 604 100.0 120.10 850

scpnrh5 std 2,482 3,484 4,739 100.0 1,298.52 5,724
yoyo 258 372 527 100.0 100.22 761

Table 2: Set covering results under scenario B.

in the present paper, is not new in the Benders framework, as demonstrated
by the seminal paper of Magnanti and Wong [15] and by the recent work
of Naoum-Sawaya and Elhedhli [17]. As in the previous setting, our order
of business was to solve by cutting planes the root-node LP relaxation of
the MIP instance at hand. According to [16], this is a useful way for warm-
starting the pool of cuts in a standard Benders’ decomposition scheme.

Our testbed is made by instances of the so-called multicommodity-flow
network design problem [2], where one has to allocate capacity to the arcs
of a given network by ensuring that all commodities can simultaneously be
routed from source to destination. This problem, as well as many other
network design problems, is well suited for a Benders’ approach because
there is natural partition between first-stage integer variables (arc capacities
to setup) and second-stage continuous variables (network flows)—see [10] for
a recent survey on the subject.

7



itr

problem method 90% 95% 99% %Cl.Gap totTime totItr

scpclr11 std 3,470 5,473 - 98.8 807.25 10,000
yoyo 249 316 757 100.0 706.28 4,087

scpclr12 std 7,723 - - 93.6 946.48 10,000
yoyo 73 171 740 100.0 1,160.06 3,885

scpclr13 std 7,136 - - 93.8 2,399.71 10,000
yoyo 123 187 1,064 100.0 8,872.70 4,804

scpnrg1 std - - - 86.7 2,179.87 10,000
yoyo 773 1,007 1,613 100.0 1,027.77 4,255

scpnrg2 std - - - 88.7 1,913.55 10,000
yoyo 749 993 1,511 100.0 766.45 4,138

scpnrg3 std 9,773 - - 90.4 1,863.02 10,000
yoyo 631 925 1,536 100.0 983.29 3,931

scpnrg4 std - - - 86.6 1,986.56 10,000
yoyo 755 1,022 1,576 100.0 941.53 4,007

scpnrg5 std - - - 87.9 2,170.59 10,000
yoyo 697 956 1,472 100.0 1,031.12 3,783

scpnrh1 std 7,767 - - 94.4 2,133.01 10,000
yoyo 349 489 886 100.0 496.20 2,633

scpnrh2 std 8,491 - - 93.2 2,344.62 10,000
yoyo 383 577 938 100.0 638.84 2,825

scpnrh3 std 7,361 - - 95.0 2,874.08 10,000
yoyo 398 592 957 100.0 636.59 2,905

scpnrh4 std 7,534 9,873 - 95.2 2,108.84 10,000
yoyo 387 550 883 100.0 469.17 2,506

scpnrh5 std 7,900 - - 94.2 2,896.72 10,000
yoyo 314 464 797 100.0 456.18 2,449

Table 3: Set covering results under scenario C.

We generated two different types of random instances of the above net-
work design problem, namely grid and random, according to the underlying
network topology. We considered two different scenarios: in the feas case,
routing costs were set to zero and only feasibility cuts were generated by
the Benders separation procedure, while in the opt case each unit of flow
had a cost of 1 on each arc, hence both feasibility and optimality Benders’
cuts were generated. For these instances, the initial internal point was easily
computed as q = (1000, . . . , 1000).

The outcome of our experiments is reported in Table 4, showing that
yoyo search was about twice as fast as the standard method in producing
the root-node LP bound, and required about 1/3 iterations (i.e., cuts)—both
of them using exactly the same separation procedure.

8



4 Conclusions

We have investigated the search component of a cutting plane method. The
standard search method commonly used for MIP problems is to cut an
optimal vertex of the current LP relaxation. In that setting, however, the
effectiveness of the resulting cutting plane method heavily depends on the
availability of strong cuts, which is unfortunately not always the case when
general MIPs are considered.

We have addressed the issue of designing an effective cutting plane
scheme where the separation procedure is invoked to cut an “internal” (i.e.,
nonextreme) point of the current relaxation. The ellipsoid and analytic cen-
ter methods are examples of such a scheme, that however are seldom used
within a branch-and-cut MIP solution framework—though encouraging re-
sults have been reported very recently. Our approach is instead to keep the
current MIP machinery (fast LP reoptimizations instead of interior point
recomputations) and to modify the standard search method by exploiting
the internal-point information to produce deeper cuts.

A possible implementation of the above idea is the yoyo-search scheme
described in the present paper, where a sequence of internal points is gener-
ated with no computational overhead (except for the definition of the very
first one, which is often an easy task). Computational results have been
reported, showing that the new approach outperforms the standard one,
mainly when shallow cuts are generated.

9



itr time #cuts
problem std yoyo std yoyo std yoyo

g 5 5 f 1 155 83 24.76 11.01 154 71
g 5 5 f 2 137 75 25.85 14.91 136 63
g 5 5 f 3 131 81 15.97 9.80 130 68
g 5 5 f 4 129 80 15.16 11.21 128 68
g 5 5 f 5 126 88 17.29 11.97 125 76
g 5 5 o 1 454 142 22.91 12.32 905 253
g 5 5 o 2 389 109 22.19 9.56 774 189
g 5 5 o 3 399 138 25.82 19.97 795 249
g 5 5 o 4 581 149 64.68 29.07 1158 271
g 5 5 o 5 270 83 5.15 4.87 538 145
g 5 6 f 1 220 108 216.99 152.43 219 97
g 5 6 f 2 205 113 220.59 132.33 204 101
g 5 6 f 3 73 60 9.49 5.42 72 50
g 5 6 f 4 137 106 106.53 105.55 136 93
g 5 6 f 5 109 100 62.34 66.99 108 88
g 5 6 o 1 731 136 129.91 60.64 1459 251
g 5 6 o 2 535 127 73.11 26.50 1064 226
g 5 6 o 3 463 104 56.29 22.29 922 184
g 5 6 o 4 473 122 81.44 44.01 943 217
g 5 6 o 5 197 144 37.80 50.39 393 259
r 20 5 f 1 148 89 28.04 16.36 147 75
r 20 5 f 2 120 62 15.02 6.16 119 49
r 20 5 f 3 188 103 44.45 25.03 187 88
r 20 5 f 4 106 69 14.75 7.37 105 56
r 20 5 f 5 852 133 452.02 62.76 851 119
r 20 5 o 1 523 85 12.76 3.98 1042 141
r 20 5 o 2 390 65 5.93 2.74 778 105
r 20 5 o 3 1056 124 66.74 11.04 2055 219
r 20 5 o 4 317 75 6.16 2.66 626 125
r 20 5 o 5 331 62 11.85 2.60 657 101
r 25 5 f 1 150 91 116.19 71.55 149 78
r 25 5 f 2 425 132 642.62 191.29 424 117
r 25 5 f 3 1418 231 3,591.81 644.01 1418 216
r 25 5 f 4 97 76 27.33 17.40 96 63
r 25 5 f 5 134 86 36.97 17.79 133 73
r 25 5 o 1 915 150 106.53 29.49 1823 273
r 25 5 o 2 780 114 62.78 15.64 1546 206
r 25 5 o 3 2041 241 441.66 111.01 4080 447
r 25 5 o 4 1728 196 469.09 77.34 3450 359
r 25 5 o 5 851 124 162.98 50.40 1675 222

geom.mean 314 105 50.74 22.86 441 129

Table 4: Benders’ results.

10



References

[1] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations
Research Letters, 34(4):1–12, 2006. See http://miplib.zib.de.

[2] A. Atamturk and D. Rajan. On splittable and unsplittable flow capac-
itated network design arc-set polyhedra. Mathematical Programming,
92:315–333, 2002.

[3] D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex
programming that uses analytic centers. Mathematical Programming,
69:1–43, 1995.

[4] J. Beasley. OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11):1069–1072, 1990.
See http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

[5] J. Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4:238–252, 1962.

[6] R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method: a
survey. Operations Research, 29(6):1039–1091, 1981.

[7] S. Boyd and L. Vandenberghe. Localization and cutting-plane meth-
ods. available at http://www.stanford.edu/class/ee364b/notes/
localization_methods_notes.pdf, 2007.

[8] G. Cornuéjols. Valid inequalities for mixed integer linear programs.
Mathematical Programming, 112(1):3–44, 2008.

[9] G. Cornuéjols and C. Lemaréchal. A convex analysis perspective on
disjunctive cuts. Mathematical Programming, 106(3):567–586, 2006.

[10] A. Costa. A survey on Benders decomposition applied to fixed-
charge network design problems. Computers & Operations Research,
32(6):1429–1450, 2005.

[11] J. Elzinga and T. J. Moore. A central cutting plane algorithm for the
convex programming problem. Mathematical Programming, 8:134–145,
1975.

[12] J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Complexity analysis of an interior
cutting plane method for convex feasibility problems. SIAM Journal
on Optimization, 6:638–652, 1996.

[13] J.-L. Goffin and J.-P. Vial. On the computation of weighted analytic
centers and dual ellipsoids with the projective algorithm. Mathematical
Programming, 60:81–92, 1993.



[14] J. E. Kelley. The cutting plane method for solving convex programs.
Journal of the SIAM, 8:703–712, 1960.

[15] T. Magnanti and R. Wong. Accelerating Benders decomposition: algo-
rithmic enhancement and model selection criteria. Operations Research,
29:464–484, 1981.

[16] D. McDaniel and M. Devine. A modified Benders’ partitioning algo-
rithm for Mixed Integer Programming. Management Science, 4:312–
319, 1977.

[17] J. Naoum-Sawaya and S. Elhedhli. An interior-point branch-and-cut
algorithm for mixed integer programs. Technical report, Department
of Management Sciences, University of Waterloo, 2009.

[18] Y. Nesterov. Cutting plane algorithms from analytic centers: efficiency
estimates. Mathematical Programming, 69(1):149–176, 1995.

[19] S. Tarasov, L. Khachiyan, and I. Erlikh. The method of inscribed
ellipsoids. Soviet Mathematics Doklady, 37:226–230, 1988.

[20] Y. Ye. Interior Point Algorithms: Theory and Analysis. John Wiley,
New York, 1997.

12


