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Abstract. The position of each source and detector “optode” on the scalp, and their relative separations, deter-
mines the sensitivity of each functional near-infrared spectroscopy (fNIRS) channel to the underlying cortex. As
a result, selecting appropriate scalp locations for the available sources and detectors is critical to every fNIRS
experiment. At present, it is standard practice for the user to undertake this task manually; to select what they
believe are the best locations on the scalp to place their optodes so as to sample a given cortical region-
of-interest (ROI). This process is difficult, time-consuming, and highly subjective. Here, we propose a tool,
Array Designer, that is able to automatically design optimized fNIRS arrays given a user-defined ROI and certain
features of the available fNIRS device. Critically, the Array Designer methodology is generalizable and will be
applicable to almost any subject population or fNIRS device. We describe and validate the algorithmic meth-
odology that underpins Array Designer by running multiple simulations of array design problems in a realistic
anatomical model. We believe that Array Designer has the potential to end the need for manual array design,
and in doing so save researchers time, improve fNIRS data quality, and promote standardization across the field.
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is an optical
technique that is used to monitor functional activation in super-
ficial regions of the brain.1,2 Oxy- and deoxyhemoglobin are the
principal absorbers of light in the near-infrared range, but human
tissues are also relatively transparent to light at these wave-
lengths. Changes in the measured intensity of light that is emit-
ted by a source on the scalp and backscattered to a detector
placed nearby can be used to recover concentration changes
of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) occur-
ring in the superficial cortex.3 Each source and detector placed
close enough to one another such that a measurement can be
made is considered a “channel.” The depth into tissue to
which a given channel is sensitive is a function of the distance
between the source and detector on the scalp. Shorter distances
(less than ∼10 mm) will result in channels that almost solely
probe the extracerebral layers in the adult,4 whereas larger dis-
tances will demonstrate increasing relative sensitivity to the
brain at the expense of a reduction in the signal-to-noise
ratio (SNR) of the measured signal5 (simply because of the
lower number of photons that will reach the detector). For
the adult population, it has been shown that a good compromise
between cortical sensitivity and SNR can be achieved with most
fNIRS devices using a source–detector distance of ∼30 mm.6,7

Source and detector (or “optode”) positions on the scalp,
and their relative separations, determine the sensitivity of
each fNIRS channel to the underlying cortex.8 As a result,
the exact positioning of optodes on the scalp is critical to
every fNIRS experiment. It remains extremely rare for any
fNIRS system to provide enough sources and detectors to
adequately cover the whole scalp and thus sample the whole
superficial cortex.9 Even where commercial systems provide
the option of whole-scalp coverage, it is unusual to see
fNIRS papers that employ the number of fibers required to
achieve this,10 principally because of the significant ergonomic
challenge of covering the full scalp with fiber optics. Instead, it
is a standard practice for users to manually select what they
believe are the best locations on the scalp to place their avail-
able optodes so as to sample the underlying cortical region-of-
interest (ROI).

Solving this “array design problem” and creating a high-
quality array for an fNIRS experiment is a complicated, multi-
factorial problem, which requires significant technical and
neuroanatomical knowledge. It is the first, and arguably the
most important, step in the preparation of an fNIRS experiment,
and because of changes in the ROI and differences in head cir-
cumference at different ages, it usually has to be performed
again for every new fNIRS study and for every new population.

The most common methodology for the design of fNIRS
arrays is to exploit the scalp-brain correspondences computed
for the standard EEG 10-20 reference system11 (or its higher
density derivatives). The 10-20 positions can be used as a
proxy for a given brain ROI, and fNIRS channels can be located
around those positions. This methodology has previously been
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described in both adults11,12 and infants.13,14 Another approach is
to employ a neuronavigation system to identify the scalp pro-
jection of a particular brain area of interest, identified by its
MNI coordinates, and to position the midpoint of each channel
over this projection. This method was generalized by Cutini
et al.,15 who suggested the use of a physical model of the
ICBM-152 MNI template for the neuronavigation procedure.
Both of these methods are, however, highly subjective: once
the scalp positions associated with a given brain ROI are iden-
tified, users must manually position their optodes to yield fNIRS
channels that they think best align with the identified scalp loca-
tions. They also assume that centering an fNIRS channel over a
point on the cortex will provide the highest sensitivity to that
point, which is not necessarily true in a complex, multicompart-
ment geometry like the human head.

The advent of photon transport simulations16–18 has yielded
the possibility of calculating objective metrics of array quality,
allowing users to quantify the sensitivity of a given channel to a
specified cortical region. Several numerical methods exist to
solve photon transport problems, such as the finite-element
method or Monte Carlo approaches.17,19 These methods provide
numerical solutions to the radiative transport equation (or the
diffusion approximation to the radiative transport equation),
which can be used to calculate the fluence distribution produced
by a source transmitting light into a highly scattering medium.
By taking the product of the source fluence distribution and the
adjoint fluence distribution (that of a detector modeled as a
source), the photon measurement density function (PMDF)
can be calculated.20 The PMDF provides a model of the prob-
ability that a given photon transmitted from the source and mea-
sured at the detector has travelled through a given region of
tissue. This is equivalent to a measurement of how sensitive
a given fNIRS channel will be to a change in chromophore con-
centration in a given region of tissue. These PMDFs (or “sensi-
tivity distributions”) provide an objective measure of the
sensitivity (and therefore experimental utility) of a given fNIRS
channel. Developments in hardware and software have resulted
in a significant drop in the computational cost of these photon
transport simulations, which can now be easily run on most stan-
dard computers.

One of the first attempts to exploit photon transport simula-
tions to assist with the array design problem came with the
implementation of AtlasViewer,21 a toolbox of the fNIRS
processing package Homer2.22 With AtlasViewer, users can
design an array by virtually locating optodes in almost any posi-
tion on the scalp of an atlas (or an individual, MRI-derived) head
model and map the sensitivity of that array on to the cortical
surface. This approach provides an objective measure of an
array’s sensitivity to a given cortical location. However, design-
ing an array with AtlasViewer requires an iterative (and manual)
approach: users design their array, run the photon migration sim-
ulations, map the sensitivity distribution on to the cortical layer,
evaluate the result, and then amend their design and repeat the
process until they adjudge the result to be adequate. This pro-
cedure was also the basis of the methodological paper by
Wijeakumar et al.23 While providing meaningful and objective
input, the AtlasViewer array design process remains subjective
and can be time consuming. It is also worth noting that despite
AtlasViewer’s functionality, no fNIRS study to date has (to our
knowledge) reported any quantified measure of “array quality”
as part of its experimental methods, which hinders interstudy
comparisons.

The question that AtlasViewer seeks to answer is whether
a given array design is sensitive or not to a specific area of
the brain. However, the question a user wishes to answer is
actually the exact inverse: given a brain ROI, what is the opti-
mum array design?

The recently described fOLD toolbox, proposed by Zimeo
Morais et al.,24 goes one step toward answering this question.
This toolbox uses the PMDFs computed for a predefined
grid-style array, allows users to define an ROI, and then outputs
an ordered list of channels from its predefined array that dem-
onstrate the highest sensitivity to that ROI. While easy to use,
this toolbox operates in a highly constrained solution space (i.e.,
the array layout itself is already defined), and it is therefore not
generalizable. It is also important to acknowledge that fNIRS
array design is a combinatorial problem: determining an opti-
mum array design for multiple sources and detectors is not sim-
ply a question of selecting the best individual channels. The
array with the greatest sensitivity to a given brain ROI will
not necessarily include the channel with the single greatest sen-
sitivity to that ROI.

The first (and to our knowledge only) attempt to algorithmi-
cally solve the array design problem was that published by
Machado et al.25 Their aim was to develop a method to compute
an fNIRS array that provides the maximum sensitivity to spe-
cific brain regions that had been identified as the foci of epileptic
discharges in adult epilepsy patients, and to do so using the few-
est number of optodes. They employed a highly constrained
(fNIRS system-specific) solution space that consisted of either
an isometric arrangement with up to 123 potential optode posi-
tions or a subset of the 10-5 EEG system, containing up to 248
potential optode positions. In their paper, Machado et al.25

defined an optimum array as that which provides the highest
total sensitivity to a target ROI. This objective was entirely
appropriate for their stated goal, which was to optimally sample
focal regions within the brains of their patients. However,
although attempting to maximize the total sensitivity may
seem like the correct approach to fNIRS array design, it does
not generalize across the range of common array design
problems.

Since 2012, we have been investigating how to design a tool
that can provide fNIRS users with an optimized array design for
their specific experiment, device, and population, in as uncon-
strained and easily applicable a manner as possible. A prototype
of this tool was presented at the fNIRS 2016 conference in Paris.
In this paper, we describe and validate the algorithmic method-
ology that underpins our tool: Array Designer, which we hope
will end the need for manual array design, and in doing so save
researchers time, improve fNIRS data quality, and promote
standardization across the field.

2 Materials and Methods

2.1 Problem Formulation and Data Preparation

Solving the array design problem requires an anatomically
appropriate head model and a range of potential optode posi-
tions (i.e., a solution space), which must relate to a reference
system that allows users to transfer their solution from software
into the physical world. It also requires the PMDFs of all pos-
sible viable channels (or means of creating them). In addition,
there are a series of variables related to the specific array design
problem. These include the user-defined ROI, how many
sources and detectors are available, and what source–detector
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separations are viable for the user’s fNIRS system. In the fol-
lowing sections, we describe how we formulated the problem
and prepared the necessary data. We also outline the objective
function that Array Designer is designed to maximize.

2.1.1 Anatomical head model

The optimum array should be calculated in a head model that
is as similar as possible to the population under investigation
or even within a subject-specific head model, if appropriate
(e.g., for clinical applications). Several head models have
been recently proposed that span the neonatal26 and adult
populations.4,21 It is our goal to ultimately allow each user to
select the best head model (or individual head model) for
their study since the methods proposed here are generalizable
to any head model. However, for testing and validation pur-
poses, we decided to employ the adult head model built from
the nonlinear asymmetric MNI-ICBM152 atlas.27 This head
model was built as described in Brigadoi and Cooper4 and
Dempsey et al.28 and can be freely downloaded at Ref. 29.
This package contains high-density scalp surface, gray matter
(GM) surface, and head volume meshes. Note that for the pur-
poses of testing Array Designer, the original GM surface mesh
(number of nodes: 30327) was downsampled by a factor of 2.5
using the iso2mesh toolbox30 to yield a surface mesh of 12,038
nodes. The downsampled GM mesh preserved the critical ana-
tomical details (i.e., the cortical folding) but allowed us to
reduce the computational time required by some of the algo-
rithms we tested.

2.1.2 10-2.5 reference system

Users often employ the 10-5 EEG system,31 which comprises
345 points, as a reference system when positioning their
optodes, i.e., as their solution space. However, the distance
between nearest-neighbor points in the 10-5 system averages
17� 1.9 mm, and consequently, the second nearest neighboring
points often exceed 30 mm. As a result, the density of the 10-5
system is not ideal for fNIRS array design, as arrays typically
include channels between 20 and 50 mm in the adult brain,32

usually with an optimum distance of 30 to 35 mm. Using the
10-5 system therefore inevitably reduces our ability to position
the optodes in an optimum way. In order to increase the solution
space, we computed an increased density version of the 10-5
system: the 10-2.5 system, using the scalp surface mesh intro-
duced above. This system comprises 1092 points and was built

by adding points halfway between two existing 10-5 locations,
computed according to Oostenveld and Praamstra’s definition31

(see Fig. 1). The average distance between neighboring points in
this system is 8.7� 1 mm, which increases the number of posi-
tions that can be paired to yield valuable fNIRS channels. Of
course, it is possible to increase the density of the solution
space arbitrarily, for example, to a 10-1.25 system. However,
these higher density systems will be difficult to translate in prac-
tice since the distance between neighboring points will likely be
less than the precision with which a cap can be prepared and
applied by the experimenter.

2.1.3 PMDF computation

Photonmigration simulations were performedwith the TOAST++
software18 for each of the 10-2.5 points within MATLAB
(Mathworks, Massachusetts). These simulations only need to
be run once for each head model and can then be stored as
described below for repeated use by Array Designer. Using
the MNI-152 head volume mesh, optical properties were
assigned to each tissue type (scalp, skull, cerebrospinal fluid,
gray and white matter) by fitting all published adult values
across the NIR spectrum and selecting the fitted values at
a wavelength of 800 nm.33–35 Fluence distributions were then
computed for each 10-2.5 position in the volume mesh. To
minimize computational burden, rather than computing
every PMDF in the high-density volume mesh, the volumetric
fluence distributions for each 10-2.5 point were first projected
on to the GM surface mesh. We then computed GM surface-
based PMDFs for all viable channels using the adjoint
method. Viable channels were defined as any possible pair
of 10-2.5 points within a maximum distance of 60 mm of
one another (77,995 channels). The PMDFs were calculated
for a given channel by taking the product of the GM-surface
fluence distributions for a selected source and detector, cor-
recting for elemental mesh volumes and normalizing by the
value of the volumetric source fluence distribution at the
detector position or the value of the volumetric detector flu-
ence distribution at the source position (whichever is larger).
This normalization factor is referred to as PMDFnorm. All
PMDF values smaller than 1 × 10−6 times the maximum
value of the PMDF were set to zero to promote the sparsity
of the matrix. The resulting GM surface distribution vectors
each had dimensions of 1 × 12;038 (number of GM nodes).
A total of 77,995 sparse surface PMDF matrices were calcu-
lated and stored in a MATLAB cell array of dimensions
1092 × 1092, each cell being a possible combination between
two 10-2.5 points. When saved to the disk, the full PMDF
data occupied 1.79 Gb of hard drive space.

As mentioned above, the relative sensitivity of an fNIRS
channel to the brain increases with source–detector separation6

while the measured intensity of light (and thus the SNR)
decreases. If one does not account for this decrease in SNR,
any array optimization method that seeks to maximize sensitiv-
ity will always attempt to maximize source–detector separa-
tions, which will have little practical utility. It was therefore
necessary to design an approach that allows the PMDFs calcu-
lated in the above simulations to be weighted to account for the
dynamic range of the fNIRS system of a given user, and thus
account for this critical SNR consideration. To achieve this,
Array Designer computes a weighting factor that is applied
to each PMDF. This weighting factor is computed on the
basis of two user-defined inputs. These are the maximum

Fig. 1 10-2.5 system. In magenta, all points of the 10-2.5 system, our
solution space, are visualized over the adult MNI152 scalp surface
mesh.
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permissible source–detector separation (maxRho) and the
source–detector separation that the user considers the best bal-
ance between maximizing source–detector separation and SNR
(maxGoodRho). The idea of the weighting factor is to penalize
channels that have a greater separation than maxGoodRho, and
to set to zero the PMDFs associated with source–detector sep-
aration channels that exceed maxRho. To determine these
weighting factors, we first compute the ratio of the PMDFnorm
for all channels with a separation greater than maxGoodRho to
the average PMDFnorm value for all channels with a separation
equal to maxGoodRho. This calculation yields values that decay
exponentially as source–detector separation increases beyond
maxGoodRho. We then computed a linear fit to the logarithm
of these values as a function of source–detector separation.
Last, the weighting function for a given source–detector distance
(SDi) was calculated by taking the exponential of the slope coef-
ficient of this linear fit (a, which is negative), multiplied by the
difference between SDi and maxGoodRho. The weighting factor
(WPMDF) can thus be defined as follows:
EQ-TARGET;temp:intralink-;sec2.1.3;63;288

WPMDFðiÞ

¼

8><
>:
1 SDi ≤ maxGoodRho

ea�ðSDi−maxGoodRhoÞ maxGoodRho < SDi ≤ maxRho

0 SDi > maxRho

Figure 2 shows the weighting factor WPMDF as a function
of source–detector separation for two different values of
maxGoodRho and maxRho.

2.1.4 User inputs

Array Designer requires certain inputs to allow the problem to
be defined. While we have designed our methods to be general-
izable, such that in the future, it will be possible for the user to
select their preferred head-model, at present, we consider the
head model and the unweighted PMDFs to be fixed. The
remaining user-settable parameters that together define each
array design problem are then as follows:

nS is the number of source optodes available;
nD is the number of detector optodes available;
minRho is the minimum source–detector distance allowed

for a viable channel;
minRhoOpt is the minimum physical distance allowed

between any two optodes;
maxGoodRho is the maximum source–detector distance

that reliably produces data with a good SNR;
maxRho is the maximum source–detector distance

allowed for a viable channel;
ROI is a binary mask in the GM surface space that defines

the areas of the cortex under investigation.

Note that minRho and minRhoOpt are both required:
minRhoOpt can be thought of as the physical size of the optodes
and is thus the closest any two optodes can be placed. This must
be independent of the minimum channel separation (minRho),
primarily because of the issue of detector saturation. For exam-
ple, if one has 10-mm diameter optodes, but a detector may
become saturated when <20 mm from a source, a good array
design algorithm must have the option to place two or more
detectors at between 10 and 20 mm from one another, and/or
two or more sources at 10-20 mm from one another while simul-
taneously ensuring no source is less than 20 mm from any
detector.

2.1.5 Objective function

In their pioneering work, Machado et al.25 chose to maximize
the total sensitivity of an array to the ROI. That is to say,
their objective function was simply the sum of all the PMDF
values that fall inside the ROI, over all channels within an
array. Machado et al.25 also failed to account for the system
SNR, as described above, meaning that their algorithm likely
sought to maximize source–detector separation wherever pos-
sible. This approach was appropriate for their purpose, which
was to cover small, focal ROIs in patients with epilepsy using
a relatively constrained solution space. However, it is not ideal
for general fNIRS applications. Maximizing the total sensitivity
will tend to encourage the clustering of channels over the loca-
tion within the ROI that is closest to the surface. If the ROI is
focal, this is the optimum result. However, if the ROI is spatially
extended (as is usually the case in fNIRS applications), maxi-
mizing the sensitivity alone will yield inappropriate results.

Maximizing the mean or the median of the sensitivity distri-
bution over the ROI also yields suboptimal results. Maximizing
the mean value produces identical results as when maximizing
the total sensitivity (as one is simply dividing the objective func-
tion by a constant). The same is effectively true of maximizing
the median sensitivity since any ROI that contains both shallow
and deep nodes (i.e., over gyri and sulci), will always yield a
distribution of sensitivities that is highly skewed. As a result,
an algorithm attempting to maximize the median sensitivity
over the ROI will tend to continue to increase the sensitivity
to the shallowest nodes and skew the distribution upward as
far as possible.

Ideally, an optimum array should have two concurrent fea-
tures: (1) it should provide the highest sensitivity to the given
ROI and (2) it should cover as much of the ROI as possible. We
therefore developed an objective function that accounts for both
of these features. We define our objective function as follows:

Source-detector distance (mm)
0 10 20 30 40 50 60

W
P

M
D

F
 (

ar
b.

)

0

0.2

0.4

0.6

0.8

1

Fig. 2 Examples of the weighting factor W PMDF, as a function of
source–detector separation. The red line shows WPMDF for
a maxGoodRho set to 30 mm and a maxRho of 40 mm. For the
blue line, maxGoodRho ¼ 35 mm and maxRho ¼ 50 mm. W PMDF
is always equal to 1 for all PMDFs with source–detector separations
smaller thanmaxGoodRho and zero for all PMDFswith source–detec-
tor separations greater than maxRho. Note that the smallest possible
source–detector distance is 4.2 mm, which is the smallest distance
between any two 10-2.5 points.
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EQ-TARGET;temp:intralink-;e001;63;752 arg max
A

½SA þ cW � CA�; (1)

where

EQ-TARGET;temp:intralink-;e002;63;715SA ¼
P

n∈ROI PMDFiðnÞ
Smax

(2)

and

EQ-TARGET;temp:intralink-;e003;63;664CA ¼ Nthresh

Ntot

: (3)

Here, SA is the normalized total sensitivity and CA is the nor-
malized coverage of the ROI provided by array A. The compo-
nent SA is computed as the sum over ROI nodes of the sensitivity
distribution of the selected set of channels (i), divided by the
sum over ROI nodes of the maximum sensitivity achieved
when maximizing the SA term only (Smax), as was performed
by Machado et al.25 The component SA will therefore always
assume values between 0 and 1, where 1 corresponds to an
array with a sensitivity equal to that achieved when sensitivity
is the only consideration.

The component CA was computed as the ratio between
Nthresh (the number of nodes of the ROI with a total sensitivity
exceeding a predefined coverage threshold Cthresh) and Ntot,
the total number of nodes within the ROI. The user-defined
parameter coverage weight (cW) allows the importance of the
coverage component of the objective function to be selected.
Setting cW to zero is equivalent to maximizing the total array
sensitivity only, with no consideration of coverage. Setting
cW to a nonzero positive value will force the algorithm to simul-
taneously maximize the proportion of the ROI that exceeds a
minimum sensitivity and is therefore considered “covered.”
This has the effect of forcing the array to spread out over the
ROI. The coverage threshold (Cthresh) was defined as follows:

EQ-TARGET;temp:intralink-;sec2.1.5;63;373Cthresh ¼
log

�
100þpthresh

100

�
actvol
V̂

� Δμa
;

where pthresh is the measured change in intensity signal that
users should expect to be measurable with their system (e.g.,
1%), actvol is an approximate volume over which a hemo-
dynamic response can be expected to occur, V̂ is the median
Voronoi volume across nodes of the GM mesh and Δμa is the
approximate change in absorption coefficient expected during
a hemodynamic response. The coverage threshold defines
when a node can be considered as covered by a given array.
Here, we considered a node to be covered when a change in
Δμa by 10% (∼0.001 mm−1) in a block of tissue of 1 cm3

(actvol) will yield a change in intensity in the measured fNIRS
signal larger than 1% (pthresh).

2.2 Array Designer Algorithm: GRASP

The greedy randomized adaptive search procedure (GRASP)36,37

is a metaheuristic algorithm commonly applied to combinatorial
optimization problems. GRASP is an iterative process: at each
iteration, a greedy randomized solution is constructed and tenta-
tively improved through local search. Each greedy randomized
solution is constructed incrementally by adding elements (opto-
des) to the current array solution from a list of candidates ranked
by a greedy function. To obtain variability, the best candidate

elements are put into a restricted candidate list, from which
one is chosen at random.

Here, we implemented two GRASP metaheuristics: the first
for the simpler case of maximizing the total sensitivity, which
was only needed to allow normalization of the sensitivity term in
the objective function of Eq. (1); and the second for maximizing
both the normalized total sensitivity and the normalized cover-
age of the ROI.

GRASP begins with a construction heuristic and an empty
solution, in which no optode is placed. The algorithm then
ranks all possible source–detector pairs according to their con-
tribution to the total sensitivity and chooses one randomly
among the top five pairs. GRASP then iteratively tries to add
a source or a detector (alternating between the two). The objec-
tive contribution of adding a source (detector) in each of the
available positions is computed (using the objective function
with only the sensitivity term or that containing both SA and
CA terms, depending on the case), and the positions are ranked
accordingly. A source (detector) is then added to the array sol-
ution by randomly selecting one from the top five ranked posi-
tions. Note that after adding each source/detector, the set of
candidate positions is updated to take in to account minRho,
minRhoOpt, and maxRho. This process is then iterated until
the required numbers of sources and detectors are placed.

Once a complete solution has been constructed, GRASP tries
to improve upon it via a local search. For both objectives of
interest, a 1-opt neighborhood is applied first, in which we
remove a single source (or detector) and try to find a better posi-
tion for it while keeping all other optodes in place. Again, when
adding or removing an optode, the set of positions that are fea-
sible is updated to account for the distance constraints. If the
current solution is locally optimal according to this neighbor-
hood, a more expensive neighborhood is then searched. In
the simpler case of maximization of just the total sensitivity,
a flip-float neighborhood, as described by Glover et al.38 for
the bipartite Boolean quadratic programs problem, was imple-
mented. The idea is that for a fixed set of sources (or detectors),
the optimal set of detectors (sources) can be easily computed in
a greedy fashion (technically, this is true only if there are no
incompatibilities or distance constraints: however, the logic
can be heuristically extended to take these additional constraints
into account). Thus, the neighborhood is defined by removing
one source (detector), testing each possible new position, and
recomputing the optimal set of detectors (sources) in each
case. For the more complicated objective function [Eq. (1)],
it is no longer true that for a fixed set of sources, the set of opti-
mal detectors can be greedily computed (even if we ignore the
distance constraints). The flip-float neighborhood therefore can-
not be implemented efficiently. In this case, a more traditional
2-opt neighborhood was implemented, where at each iteration,
a source–detector pair is removed and the algorithm tries to find
a better position for the two optodes simultaneously.

2.3 Comparison with Manual, Single-Distance
Arrays

In order to determine the efficacy of our proposed solution to the
array design problem, it is necessary to compare our results with
those achieved by a traditional, manual approach. To provide
this comparison, we chose to create single-distance (i.e., alter-
nating grid-style) arrays that approximate the arrays that are still
used by many fNIRS systems. First, we found the center-of-
mass of each ROI. We then determined the 10-2.5 positions
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that yielded an array that was positioned over the ROI center-of-
mass and which had each first-nearest-neighbor source–detector
distance as close as possible to 30 mm. A single-distance array
was manually constructed in this fashion for each of the simu-
lated array design problems described in Sec. 2.5. Note that
these manual arrays were built to emulate standard single-
distance arrays. When nS and nD are large (or approximately
equal), these arrays tend to form alternating grids. However,
when nS ≪ nD, these arrays were built to simulate a star pattern
with a central source (or sources) surrounded by many detectors.

2.4 Algorithms for Comparison

In order to determine the efficacy of our proposed solution to the
array design problem, it is also clearly necessary to compare our
results with those achieved by the prior published attempt to
algorithmically solve the array design problem, i.e., that of
Machado et al.25 However, Machado’s mixed integer problem
(MIP) optimization method is incompatible with the simultane-
ous maximization of sensitivity and coverage. As a result, we
decided to validate our approach as follows: first, we would re-
create Machado’s MIP algorithm (MIPMACH), with the same
objective function and formulation, as described in their
paper (see Sec. 2.4.1). We would then create a new MIP formu-
lation that follows similar optimization methodology but
enables the simultaneous maximization of sensitivity and cover-
age (MIPNEW—see Sec. 2.4.2). This new MIP formulation
would then be tested and validated to ensure that it performs
comparably to Machado’s formulation when coverage is
ignored. In this comparison, the objective function used by
MIPMACH and MIPNEW will be exactly the same, whereas the
MIP formulation will be different. Having tested the efficacy
of MIPNEW when coverage is ignored, the solutions generated
by this new MIP formulation will be compared with MIPMACH

when MIPNEW is set to optimize for both sensitivity and cover-
age. This comparison should demonstrate the advantages of
employing this combined objective function. Once these
steps are complete, MIPNEW can appropriately be used as a
benchmark against which to test Array Designer’s GRASP
algorithm.

MIP is a well-established paradigm for mathematical optimi-
zation problems. An arbitrary MIP problem is defined by a finite
number of variables, some of which are constrained to take only
integer variables, a finite number of linear constraints, and a lin-
ear objective function. While constrained at first sight, the para-
digm is flexible enough to encode a lot of optimization problems
of theoretical and practical interest. More importantly, the para-
digm is now a mature technology, and many general-purpose
MIP solvers are available, both commercial and open-source.
One of the advantages of the MIP paradigm is the availability
of bounds on the optimum objective value. These bounds pro-
vide a measure of how far a given solution is from optimal.

2.4.1 Machado MIP formulation

The mathematical formulation of MIPMACH is reported in
Appendix. This model maximizes the total sensitivity only
and exploits the fact that the total sensitivity is a linear function.
Furthermore, it is not necessary for this model to compute the
sensitivity at each individual node in the ROI, as it aims to maxi-
mize only the sum of the sensitivity over all the nodes within the
ROI. As a result, this sum can be precomputed. Note that the
system SNR consideration described in Sec. 2.1.3 above is

accounted for by the weighting of the PMDFs (i.e., it is solved
by amending the data parsed to each algorithm rather than
amending the algorithms themselves). As a result, while
MIPMACH employs the exact algorithm described by Machado
et al.,25 our application of it here will yield arrays that do not
simply pursue maximized source–detector separations and
will thus provide a better comparator for our algorithms.

2.4.2 New MIP formulation

The modelMIPMACH cannot be easily extended to take the cov-
erage part of the objective function into account. For this reason,
a different formulation was devised. The mathematical formu-
lation of MIPNEW is reported in Appendix. In this new model,
the number of variables is quadratic in the number of possible

Fig. 3 The five example ROIs used to test the performance of each
approach: (a) ROI 1, (b) ROI 2, (c) ROI 3, (d) ROI 4, and (e) ROI 5.
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positions at which to place an optode. Other two variables, one
binary encoding the coverage part of the objective and one
continuous encoding the sensitivity part of the objective, are
required for each node of the ROI. Since this new model
aims to maximize both sensitivity and coverage, it is necessary
to compute and record the sensitivity at each individual node in
the ROI. As a result, this model is expected to be less efficient
than MIPMACH.

2.5 Simulations and Validation Methods

The performance of the GRASP algorithm, of the two MIP algo-
rithms, and of the manual single-distance arrays was tested and
compared by running a range of array design simulations. The
simulation parameters comprised the ROI, the number of
sources (nS) and detectors (nD), and the cW value. To minimize
the number of necessary simulations, the following parameters
were kept fixed in all simulations, which we felt was reasonable
given the results of altering these parameters are highly
predictable: minRho (15 mm), minRhoOpt (10 mm), maxRho
(60 mm), and maxGoodRho (30 mm). Cthresh was computed
to be equal to 0.1528 mm for our downsampled GM mesh.

Five example ROIs were defined on the GM surface mesh.
These five ROIs varied in shape and extent, so as to fully test the
performance of each algorithm in a range of realistic scenarios
(see Fig. 3): ROI 1 was based on a small single spherical region
with a 10 mm radius over the left frontal cortex; ROI 2 on a
single spherical region with a 20 mm radius over the left frontal
cortex; ROI 3 on an extended 3-D ellipsoid region over the left
frontal, motor and parietal cortex; ROI 4 on two distinct spheri-
cal regions, each with a 20 mm radius, one located in the left
frontal cortex and the other in the right parietal cortex; and ROI
5 was based on a small spherical region with a 20 mm radius
located in the right parietal cortex and an extended 3-D ellipsoid
region over the left frontal, motor and parietal cortex. All ROIs
were defined by finding the GM surface nodes that are contained

within these volumetric shapes. As a result, each ROI incorpo-
rates both gyri and sulci.

The number of sources and detectors was simulated to be
1, 2, 4, 8, or 16, with nD ≥ nS in all cases, under the reciprocity
assumption that the same solution should be obtained when
using n sources and m detectors or m sources and n detectors.
The cW parameter, which is only relevant for the GRASP and
MIPNEW formulations, assumed one of the following values: 0,
1, 2, 3, 5, and 10. For the GRASP and our MIP formulation,
therefore, a total of 450 different simulations were performed
(5ROIs × 15 source–detector combinations × 6 cW values),
while for the original MIP formulation and the manual sin-
gle-distance arrays, a total of 75 simulations were performed
(5ROIs × 15 source–detector combinations). Each algorithm
was given a maximum of 1 h to find a solution in each simu-
lation. Each MIP simulation was performed using the IBM
CPLEX Optimizer software 12.7.139 on a Linux desktop with
Intel Core i5 750 running at 2.67 GHz and 8 Gb of RAM.
Each GRASP simulation was performed on a standard 2014
Apple MacBook Pro with 8 Gb of RAM.

Four metrics were employed to compare the results of these
simulations: the time required by the algorithm to converge
(which is obviously not available for the manual single-distance
arrays), the total sensitivity of the resulting array to the ROI, the
ratio of the total sensitivity of an array to the maximum total
sensitivity achieved by any algorithm or method, and the per-
centage of ROI nodes covered by the array.

3 Results

3.1 Comparison of Manual Single-Distance Arrays
and Array Designer

Figure 4 shows examples of the manually constructed, single-
distance arrays in all five simulated ROIs. Figure 5 shows a
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scatter plot of the solution sensitivity for all the manual single-
distance array simulations against the solution sensitivity
achieved by Array Designer at two example cWs (cW ¼ 0 on
the left and cW ¼ 10 on the right). Each point in the scatter
plot is color-coded by the ratio of the coverage obtained by
the two approaches. Figure 5 shows that Array Designer is
always able to achieve considerably better sensitivity than the
manual single-distance arrays for all cWs. When coverage is
not strongly optimized (i.e., when cW is small), manual sin-
gle-distance arrays tend to achieve higher coverage values com-
pared to Array Designer in large ROIs but at the expense of a
lower sensitivity.

3.2 Comparison of MIPMACH and MIPNEW
Approaches

As described above, the first step in the algorithmic validation
of our solution to the array design problem was to compare the
MIP approaches proposed by Machado et al.25 (MIPMACH), with
the new formulation of the MIP approach (MIPNEW) that is able
to simultaneously maximize both sensitivity and coverage. To
highlight the necessity of this, Fig. 6 shows examples of the

solutions obtained with MIPMACH in all five simulated ROIs.
In the cases with extended ROIs (3, 4, and 5), even when
using a relatively high number of sources and detectors
(eight sources and eight detectors), the algorithm promotes
a focused array solution that covers an area where the highest
sensitivity can be achieved (i.e., where the cortex is closest to the
scalp), rather than covering the whole ROI. When the ROI con-
sists of multiple, noncontiguous regions, MIPMACH tends to
cover only one of them (whichever is the more superficial).
In the example shown in Fig. 6, it can be seen that MIPMACH

produces very similar results for each ROI, irrelevant of its
shape or extent. Note that the most common source–detector
distance in each solution is close to the value of maxGoodRho
(30 mm), which illustrates the impact of the SNR weighting
function described in Sec. 2.1.3.

3.2.1 Comparison of MIPMACH and MIPNEW with cW ¼ 0

This comparison is designed to examine whether the two MIP
formulations provide different solutions when applied to exactly
the same problem, with the same objective function. The results
of this comparison are depicted in Fig. 7. The two MIP
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formulations take comparable periods of time to converge. Our
new MIP formulation MIPNEW tends to take longer to reach
a solution compared to MIPMACH when the solution can be
reached quite quickly (within 20 s). When the solution takes
longer to find, MIPNEW tends to be faster than MIPMACH.
In terms of the total sensitivity of the arrays created by the
two MIP formulations, they achieve identical results in 70 of
the 75 simulations [Fig. 7(c)]. The largest observed relative
deviation in array sensitivity between the MIPNEW and
MIPMACH solutions was 3.7%.

3.2.2 Comparison of MIPMACH and MIPNEW with cW > 0

This comparison is intended to highlight the difference between
the solutions achieved when employing the objective function
designed by Machado et al.25 and those obtained using our
objective function that takes into account both the sensitivity
and coverage of the ROI. Figure 8 shows a scatter plot of the
solution coverage for allMIPNEW simulations (at all cW) against
the solution coverage achieved by MIPMACH. Each point in the
scatter plot is color-coded by the ratio of the sensitivities
obtained by the two MIP formulations. Figure 8 shows that
MIPNEW is able to achieve significantly better coverage than
MIPMACH but at the expense of total sensitivity.

3.3 Comparison between MIPNEW and Array
Designer (GRASP)

Having demonstrated that MIPNEW performs almost identically
toMIPMACH when cW ¼ 0 and is able to improve coverage, we

were able to use MIPNEW as a benchmark against which to val-
idate the Array Designer (GRASP) approach for simulations
with any cW value. Figure 9 provides a comparison between
Array Designer and MIPNEW for all simulations. Figure 9(a)
demonstrates that the GRASP algorithm is dramatically faster
than MIPNEW, always converging in less than 350 s. The
Array Designer approach also provides objective function val-
ues that are greater than or equal to that ofMIPNEW in 318 of the
450 simulations and very similar to MIPNEW in the remaining
132 simulations [Figs. 9(b) and 9(c)]. In the worst case, Array
Designer produced a solution with an objective function value
equal to 88% that of MIPNEW, whereas in the best case, it
achieved a value 136% that of the MIPNEW.

Figure 10 shows a series of example array solutions, for the
five different ROIs, obtained with Array Designer and cW ¼ 1.
The GRASP algorithm promotes the spreading of the array over
the ROI and is even able to build solutions for noncontiguous
regions. These results should be compared to those achieved by
MIPMACH and depicted in Fig. 6. Figure 11 shows further exam-
ples of Array Designer’s solutions, in this case with cW ¼ 3.
Note in both figures the prevalence of solutions that include
dual rows of sources and dual rows of detectors arranged in adja-
cent lines and arcs. These “super-row” designs are evidently
common among optimized array solutions, despite the fact
that they have never previously been proposed as an appropriate
array layout solution (at least not to our knowledge).

3.4 Effect of Coverage Weight (cW)

The cW parameter allows the user to define the relative impor-
tance of the coverage component of the objective function.
Figure 12 shows the effect of varying cW on the array solutions
produced using Array Designer for a single example ROI (ROI
3). Setting cW to zero is equivalent to solving the same formu-
lation proposed by Machado et al.,25 and results in a clustered,
focal array over the shallowest cortical region within the ROI.
This array covers less than 50% of the nodes in the ROI. Setting
cW ¼ 1 increases the coverage to 72%, and higher values of cW
further increase the proportion of ROI nodes that are covered.
With cW set to 10, the coverage approaches 90%. Note that
because of the convoluted nature of the human cortex, there
are likely to be deep cortical nodes in almost all ROIs, and
thus achieving a coverage of 100% is likely to be rare.

4 Discussion
The design of an array layout is one of the first steps a researcher
must undertake before starting an fNIRS study. Some fNIRS
devices do offer fixed, predefined optode positions, but because
the number of available optodes is almost always limited, and
because the brain ROIs are study-specific, these fixed arrays are
rarely ideal. As a result, many fNIRS researchers prefer to
design their own arrays, tailored to their specific studies. In
this paper, we have presented an approach that we believe
will allow this array design step to become fully automated.
Array Designer will save researchers time and effort and is
highly likely to improve data quality and promote experimental
standardization.

The GRASP algorithm that underpins Array Designer per-
forms extremely well when compared to the benchmark MIP
formulation MIPNEW, and (unlike both MIP approaches) does
not require specific third-party software. MIPMACH was origi-
nally designed by Machado et al.25 to produce arrays that opti-
mally cover focal ROIs, which were the source of epileptic
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Fig. 8 Comparison between the two MIP approaches, with cW > 0
for MIPNEW. The percentage coverage of each solution achieved
by the MIPNEW approach (on the y axis) is plotted against the equiv-
alent achieved by the MIPMACH approach for 450 simulations. For
a given ROI, nS and nD, the solution achieved by the MIPMACH
approach at different cWs will be always the same, while the solution
obtained by MIPNEW will vary. Each dot (representing one simulation)
is color-coded based on the ratio of the total sensitivity of the solution
achieved by MIPNEW to that obtained by MIPMACH. Note that the sen-
sitivity achieved by MIPNEW is almost always comparable to that
achieved by MIPMACH except in cases, where the new algorithm
has improved coverage (the blue streak of points). The cluster of sim-
ulations where greater than ∼75% coverage was achieved with both
MIP formulations corresponds to ROIs 1 and 2, which are focal and
thus easy to cover.
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discharges in adult patients. Our results confirm that MIPMACH

is very effective in covering focal ROIs but fails to provide an
appropriate solution when the ROI is extended or consists of
multiple noncontiguous regions. The objective function
employed by bothMIPNEW and Array Designer, which accounts
for both the total sensitivity and the coverage provided by an
array, is generalizable, i.e., it is applicable to any fNIRS array
design problem. Because cW is a user-defined input, each
researcher can decide whether coverage is or is not an important
feature for their study and employ Array Designer to meet their
requirements: if dense coverage of a small ROI is required, the
user can set cW to 0, and they will obtain solutions similar to
MIPMACH; if a large ROI must be covered, cW should be set to a
higher value to promote the spreading of the array over the ROI.

Once we had demonstrated that MIPNEW performs compa-
rably to MIPMACH when cW ¼ 0, we were able to use MIPNEW
as a benchmark for the performance of the Array Designer
algorithm across a full range of array design simulations. The
results of Fig. 9 demonstrate that the two algorithms perform
comparably, with Array Designer providing marginally superior

objective values on average while also having the great advan-
tage of being much faster than MIPNEW: an essential feature
when a tool is designed to be practical for fNIRS users.

Importantly, Array Designer also easily outperforms the
manually constructed, single-distance arrays that were built to
emulate the standard grid or star-like arrays employed in
many fNIRS studies. Array Designer always achieves higher
sensitivity to the ROI compared with these manual single-
distance arrays and always achieves both higher sensitivity
and coverage when cW is set to a high value to promote the
spreading of the array. These results also highlight the complex-
ity of the array design problem: they show that it is very difficult
for a user to manually design an array that is optimized without
exploiting information coming from the asymmetric anatomy of
the human brain and from the sensitivity distribution of a given
channel.

In this paper, we have established the methodology and data
flow that underpin Array Designer. Our goal now is to move
toward the release of Array Designer as an easy-to-use,
open-source toolbox for fNIRS users. Our hope is that this
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Fig. 9 Comparison between Array Designer (GRASP) and the MIPNEW approach. (a) Comparison
between the two approaches in terms of the time required by each algorithm to converge.
(b) Comparison between the two approaches in terms of the value of the objective function obtained
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tool will soon be integrated into the Homer2/AtlasViewer fNIRS
analysis package. We envisage the workflow as follows. First, a
user will select a head model: this could be an adult atlas, such as
the MNI152 atlas27 that we have used here or the Colin27 atlas40

available in AtlasViewer,21 an infant/child atlas or even an indi-
vidual’s head model derived from a participant’s MRI. If the
selected head model is already part of the toolbox, the precom-
puted PMDFs can simply be loaded. If not, a one-time-only
process of PMDF computation will be performed, and the
results saved for future use. Second, users will be asked to select
their preferred solution space. In this study, we have used the
10-2.5 system, which we believe is the maximum density sol-
ution space that can reasonably be expected to be precisely
transferred into a real-world array. As the computational chal-
lenge of array design increases exponentially with the size of the
solution space, the 10-2.5 space that we selected for this inves-
tigation represents a likely worst-case problem, and thus an
array design algorithm that is successful in this solution
space is likely generalizable to any other. The fixed nature of
the head caps associated with some commercial fNIRS systems
means that some users may wish to employ a vastly smaller sol-
ution space to match their system. There is no reason to believe
Array Designer would not perform very effectively in this
scenario, as such problems will be easier to solve than those
presented here. In the third step, the user will input the param-
eters that define the problem at hand: the number of available
sources and detectors (nS and nD), the minimum physical dis-
tance between any two optodes (minRhoOpt), the maximum
source–detector distance that reliably produces a good signal-
to-noise with their system (maxGoodRho), the minimum and
maximum source–detector distances allowed for a viable chan-
nel (minRho and maxRho, respectively) and the coverage weight
value (cW). Finally, the user will be asked to define the ROI they
wish to target. This last step could be performed via a number of
different approaches, including: (a) building the ROIs by select-
ing one or more parcellated brain regions, created (for example)
using automated anatomical labeling41 software; (b) entering the
MNI coordinates of the brain ROIs and a radius to indicate the
size of the ROI(s) centered over those coordinates; or (c) man-
ually selecting the ROIs over the brain surface using a point-
and-click approach. Once this information has been provided,
Array Designer will be run and will output an optimized
array solution. Each optode that forms part of the array solution
will be associated with a 10-2.5 label (or equivalent if a different
solution space is selected), to make it as easy as possible for
users to relate the output of Array Designer to their actual
fNIRS hardware. Every Array Designer solution will also
include associated array quality measures, specifically the
total sensitivity of the optimized array design over the ROI
(in mm), the percentage of the ROI covered by that array
and the average, minimum, and maximum source–detector sep-
aration of its channels. Although AtlasViewer can provide quali-
tative comparisons of array quality, no fNIRS study to date has
(to our knowledge) reported any quantified measure of “array
quality” as part of its experimental methods. The ability to pro-
vide these (particularly in some standard, parcellated brain
spaces) would significantly improve interstudy comparisons
and would likely improve standardization across the fNIRS
field. Ideally, each fNIRS paper would specify their defined
ROI and their array’s sensitivity to and coverage of that ROI,
as well as the range of source–detector separations employed
[e.g., adult MNI152 model, left precentral gyrus, 2000 mm,

85%, SD separation mean (range): 35 mm, (25 to 50 mm)],
so that array quality can be compared from problem to problem.
These metrics are easy to understand and compare, and could
easily be computed for manually designed arrays. One could
even quote these metrics on a subject-by-subject basis in
a way that accounts for excluded or noisy channels.

It is worth noting that the brain template we employed is
asymmetric. As such, the arrays designed by Array Designer
will likely also be asymmetric between hemispheres. Given
the natural asymmetry of the human brain that is evident in
our selected atlas, we feel it is correct to design bilateral arrays
in one step and accept their asymmetry. However, given that
individual variability might far exceed the subtle asymmetry
of the average brain template, users may prefer to use Array
Designer to produce symmetric arrays. A “force symmetry”
option, which will force solutions to maintain hemispheric sym-
metry, can be easily incorporated into the framework of Array
Designer, and is an option we expect to provide in the future.

Array Designer does have several important limitations.
First, Array Designer considers surface PMDFs rather than
volumetric PMDFs: depth information is therefore somewhat
neglected. While this is a valid assumption when the goal is to
design fNIRS arrays, depth sensitivity is an essential element
when designing diffuse optical tomography (DOT) arrays.
However, future amendments to Array Designer could well
incorporate fully 3-D PMDFs, which would allow users to
specify a volume of interest and design appropriate DOTarrays
to sample that volume. We believe these modifications will be
relatively straightforward, given the framework of Array
Designer established here. Second, Array Designer does not
take into account the need for short-separation channels:4,42

we recommend that users wishing to include short-separation
channels in their array should simply add these to the array
solutions provided by Array Designer in a manner that
meets the requirements of their device. Third, while the algo-
rithm performs exceptionally well when compared to the MIP
formulations, the GRASP algorithm provides no guarantee that
the solution it provides is the optimum solution. When large
arrays and large ROIs are employed, it is in fact likely that
better solutions do exist (for context, the relatively simple
case depicted in the first column of Figs. 4, 6, and 10 has
∼200 billion possible solutions). An advantage of the MIP
approaches is that they provide a measure of how far a
given solution is likely to be from the true optimum solution
(the bounds described above); GRASP does not provide this
type of information. However, while Array Designer may
not tell users how far they are from an optimum solution,
the superior results achieved by GRASP relative to MIPNEW
suggest that users can be relatively confident that any solution
provided by Array Designer is likely to be the best currently
achievable through any method.

In this paper, we have described a generalizable methodo-
logical framework for the automated design of fNIRS arrays.
Array Designer works effectively in large solution spaces, on
standard consumer-grade computers, requires limited user
inputs that are easy to define and understand, and provides quan-
tified array quality metrics that can be compared across subjects,
experiments and groups. By developing Array Designer in to an
easy-to-use toolbox, we hope to redefine the way in which
fNIRS arrays are designed: saving researchers’ time, improving
their data quality by increasing cortical sensitivity, and promot-
ing experimental standardization.
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Appendix
In this section, the formulation of the MIP approaches is
detailed. The following notation will be employed:

• P: set of possible scalp positions for optode placement

• V: set of all nodes

• R ⊆ V: subsets of nodes included in the ROI

• I1 ⊆ P × P: set of incompatible pairs of positions because
of the minRhoOpt distance constraints between any two
optodes

• I2 ⊆ P × P: set of incompatible pairs of positions because
of the minRho and maxRho distance constraints between
source and detectors.

• avpq: sensitivity value at node v for channel composed by
source p and detector q. This is equivalent to PMDFiðnÞ
of Eq. (2).

A.1 MIPMACH

This model defines the following variables and parameters:

EQ-TARGET;temp:intralink-;e004;63;508 xp ¼
�
1; if a source is placed in positionp
0; otherwise

; (4)

EQ-TARGET;temp:intralink-;e005;63;464yq ¼
�
1; if a detector is placed in position q
0; otherwise

; (5)

EQ-TARGET;temp:intralink-;e006;63;425bpq ¼
X
v∈R

avpq; (6)

EQ-TARGET;temp:intralink-;e007;63;389wq ¼
� P

p∈P
bpqxp; if yq ¼ 1

0; otherwise
: (7)

The model uses binary variables (x and y) to encode the main
decisions of where to place optodes on the scalp and artificial
continuous variables w to correctly evaluate objective function.
The model reads as follows:

EQ-TARGET;temp:intralink-;e008;63;300 max
X
q∈P

wq; (8)

with the following constraints:

EQ-TARGET;temp:intralink-;e009;63;246

X
p∈P

xp ¼ nS; (9)

EQ-TARGET;temp:intralink-;e010;63;208

X
q∈P

yq ¼ nD; (10)

EQ-TARGET;temp:intralink-;e011;63;170xp þ yp ≤ 1 ∀ p ∈ P; (11)

EQ-TARGET;temp:intralink-;e012;63;145wq ≤ Myq ∀ q ∈ P; (12)

EQ-TARGET;temp:intralink-;e013;63;119wq ≤
X
p∈P

bpqxp ∀ q ∈ P; (13)

EQ-TARGET;temp:intralink-;e014;63;81xi þ xj ≤ 1 ∀ ði; jÞ ∈ I1; (14)

EQ-TARGET;temp:intralink-;e015;326;752yi þ yj ≤ 1 ∀ ði; jÞ ∈ I1; (15)

EQ-TARGET;temp:intralink-;e016;326;731xp þ yq ≤ 1 ∀ ðp; qÞ ∈ I2; (16)

EQ-TARGET;temp:intralink-;e017;326;705xp ∈ f0;1g ∀ p ∈ P; (17)

EQ-TARGET;temp:intralink-;e018;326;679yq ∈ f0;1g ∀ q ∈ P; (18)

EQ-TARGET;temp:intralink-;e019;326;653wq ≥ 0 ∀ q ∈ P; (19)

whereM is a so-called big-M, i.e., a suitable large enough coef-
ficient. Constraint in Eq. (9) [Eq. (10)] makes sure that the
required number of sources (detectors) is placed, while con-
straint in Eq. (11) encodes the fact that a source and a detector
cannot be placed in the same position. Constraints in Eqs. (12)
and (13) are a linear encoding of Eq. (7), and constraints in
Eqs. (14)–(16) encode the incompatibilities between optode
positions based on distance constraints. Because of the big-M
constraint linking variables w with the binary variables y,
the linear programming relaxation is usually rather weak in
this model.

A.2 MIPNEW

First, we will describe the MIPNEW formulation when using
cW ¼ 0, and then the one employed when cW > 0. MIPNEW
does not use continuous variables w, but introduces binary var-
iables zpq ¼ xpyq, one for each possible channel.

The model reads as follows:

EQ-TARGET;temp:intralink-;e020;326;426 max
X
p∈P

X
q∈P

bpqzpq; (20)

EQ-TARGET;temp:intralink-;e021;326;384

X
p∈P

xp ¼ nS; (21)

EQ-TARGET;temp:intralink-;e022;326;346

X
q∈P

yq ¼ nD; (22)

EQ-TARGET;temp:intralink-;e023;326;309xp þ yp ≤ 1 ∀ p ∈ P; (23)

EQ-TARGET;temp:intralink-;e024;326;283

X
q∈P

zpq ¼ nDxp ∀ p ∈ P; (24)

EQ-TARGET;temp:intralink-;e025;326;245

X
p∈P

zpq ¼ nSyq ∀ q ∈ P; (25)

EQ-TARGET;temp:intralink-;e026;326;208xi þ xj ≤ 1 ∀ ði; jÞ ∈ I1; (26)

EQ-TARGET;temp:intralink-;e027;326;182yi þ yj ≤ 1 ∀ ði; jÞ ∈ I1; (27)

EQ-TARGET;temp:intralink-;e028;326;156xp þ yq ≤ 1 ∀ ðp; qÞ ∈ I2; (28)

EQ-TARGET;temp:intralink-;e029;326;130xp ∈ f0;1g ∀ p ∈ P; (29)

EQ-TARGET;temp:intralink-;e030;326;104yq ∈ f0;1g ∀ q ∈ P; (30)
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EQ-TARGET;temp:intralink-;e031;63;752zpq ∈ f0;1g ∀ p; q ∈ P: (31)

Most constraints have the same meaning as in the previous
formulation. Constraints in Eqs. (24) and (25) link variables zpq
to variables x, y, and encode the definition zpq ¼ xpyq.
Furthermore, the constraints in this new model are very combi-
natorial, with sensitivity coefficients only appearing in the
objective. MIP solvers are usually tailored to exploit these struc-
tures. This model uses the same precomputed bpq, as there is no
need to compute the sensitivity at each individual voxel yet.
Note that there is no need to explicitly linearize the products
zpq ¼ xpyq, as this is effectively taken care of by constraints
in Eqs. (24) and (25).

Furthermore, the LP relaxation can be strengthened by add-
ing the following family of valid inequalities:

EQ-TARGET;temp:intralink-;e032;63;587zpq ≤ xp ∀ p; q ∈ P; (32)

EQ-TARGET;temp:intralink-;e033;63;556zpq ≤ yq ∀ p; q ∈ P: (33)

However, those should not be added directly to the model, as
they slow down the solution of the LP relaxation significantly,
but rather separated on the fly when needed. In our implemen-
tation, we just declared them as user cuts, letting the MIP solver
to deal with them in the most efficient way.

When taking coverage into account, the model presented
above can be easily extended to deal with the individual
node sensitivities by adding the following variables:

EQ-TARGET;temp:intralink-;e034;63;441sv ¼
X
p∈P

X
q∈P

avpqzpq; (34)

EQ-TARGET;temp:intralink-;e035;63;398cv ¼
�
1; if node v is covered
0; otherwise

: (35)

Note that binary variable c is used for counting the number of
covered voxels, whereas continuous variable s encodes the sen-
sitivity at each node of the ROI.

The model thus reads as follows:

EQ-TARGET;temp:intralink-;e036;63;314 max
1

Smax

X
v∈R

sv þ
cW
jRj

X
v∈R

cv; (36)

EQ-TARGET;temp:intralink-;e037;63;269

X
p∈P

xp ¼ nS; (37)

EQ-TARGET;temp:intralink-;e038;63;231

X
q∈P

yq ¼ nD; (38)

EQ-TARGET;temp:intralink-;e039;63;194xp þ yp ≤ 1 ∀ p ∈ P; (39)

EQ-TARGET;temp:intralink-;e040;63;168

X
q∈P

zpq ¼ nDxp ∀ p ∈ P; (40)

EQ-TARGET;temp:intralink-;e041;63;130

X
p∈P

zpq ¼ nSyq ∀ q ∈ P; (41)

EQ-TARGET;temp:intralink-;e042;63;93sv ¼
X
p∈P

X
q∈P

avpqzpq ∀ v ∈ R; (42)

EQ-TARGET;temp:intralink-;e043;326;752sv ≥ Cthreshcv ∀ v ∈ R; (43)

EQ-TARGET;temp:intralink-;e044;326;731xi þ xj ≤ 1 ∀ ði; jÞ ∈ I1; (44)

EQ-TARGET;temp:intralink-;e045;326;706yi þ yj ≤ 1 ∀ ði; jÞ ∈ I1; (45)

EQ-TARGET;temp:intralink-;e046;326;680xp þ yq ≤ 1 ∀ ðp; qÞ ∈ I2; (46)

EQ-TARGET;temp:intralink-;e047;326;654xp ∈ f0;1g ∀ p ∈ P; (47)

EQ-TARGET;temp:intralink-;e048;326;628yq ∈ f0;1g ∀ q ∈ P; (48)

EQ-TARGET;temp:intralink-;e049;326;602zpq ∈ f0;1g ∀ p; q ∈ P; (49)

EQ-TARGET;temp:intralink-;e050;326;576sv ≥ 0 ∀ v ∈ R; (50)

EQ-TARGET;temp:intralink-;e051;326;551cv ∈ f0;1g ∀ v ∈ R: (51)

Equation (36) coincides with Eq. (1). Constraint in Eq. (42)
encodes the definition in Eq. (34) of the s variable, and con-
straint in Eq. (43) makes sure that the binary variable cv can
be set to one, and thus counts the node as covered, only if
the signal at that node is above the threshold. Differently
from the previous model, this model cannot use the precom-
puted bpq quantity, and avpq has to be used directly instead.
In addition to a number of variables quadratic in the number
of possible positions on which to put an optode, this new
model also needs two further variables (one binary and one con-
tinuous) for each node in the ROI. Finally, the LP relaxation can
be strengthened with the same family of valid inequalities
described for the previous model.

Disclosures
R.J.C. has financial interests in the UCL spin-out company
Gowerlabs Ltd. This interest had no bearing on this research.

Acknowledgments
The authors would like to thank Prof. David Boas for his helpful
input to this work, and for the discussions on integration with
the Homer2 toolbox. S.B. was supported by grant STPD
11B8HM during the work and by grant “Progetti di Ateneo
Bando 2015” C92I1600012005 during the writing of the
paper, both from the University of Padova. R.J.C. is supported
by an Engineering and Physical Sciences Research Council
(EPSRC) fellowship (EP/N025946/1).

References
1. A. Villringer et al., “Near infrared spectroscopy (NIRS): a new tool to

study hemodynamic changes during activation of brain function in
human adults,” Neurosci. Lett. 154, 101–104 (1993).

2. B. Chance et al., “Cognition-activated low-frequency modulation of
light absorption in human brain,” Proc. Natl. Acad. Sci. U. S. A. 90,
3770–3774 (1993).

3. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocar-
dial oxygen sufficiency and circulatory parameters,” Science 198, 1264–
1267 (1977).

4. S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-
detector distance for short-separation channels in functional near-infra-
red spectroscopy,” Neurophotonics 2, 025005 (2015).

Neurophotonics 035010-18 Jul–Sep 2018 • Vol. 5(3)

Brigadoi et al.: Array Designer: automated optimized array design for functional near-infrared spectroscopy

https://doi.org/10.1016/0304-3940(93)90181-J
https://doi.org/10.1073/pnas.90.8.3770
https://doi.org/10.1126/science.929199
https://doi.org/10.1117/1.NPh.2.2.025005


5. M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared tech-
nology in neuroscience: past, present and future,” Neurol. Res. 31, 605–
614 (2009).

6. G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-
detector separations for near infrared spectroscopy based on the Colin27
brain template,” PLoS One 8, e66319 (2013).

7. T. Li, H. Gong, and Q. Luo, “Visualization of light propagation in
visible Chinese human head for functional near-infrared spectroscopy,”
J. Biomed. Opt. 16, 045001 (2011).

8. K. L. Perdue, Q. Fang, and S. G. Diamond, “Quantitative assessment of
diffuse optical tomography sensitivity to the cerebral cortex using a
whole-head probe,” Phys. Med. Biol. 57, 2857–2872 (2012).

9. H. Zhao and R. J. Cooper, “Review of recent progress toward a fiberless,
whole-scalp diffuse optical tomography system,” Neurophotonics 5,
011012 (2017).

10. S. Dravida et al., “Comparison of oxyhemoglobin and deoxyhemoglo-
bin signal reliability with and without global mean removal for digit
manipulation motor tasks,” Neurophotonics 5, 011006 (2017).

11. M. Okamoto et al., “Three-dimensional probabilistic anatomical cranio-
cerebral correlation via the international 10–20 system oriented for
transcranial functional brain mapping,” Neuroimage 21, 99–111 (2004).

12. V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems
revisited: their validity as relative head-surface-based positioning sys-
tems,” Neuroimage 34, 1600–1611 (2007).

13. C. Kabdebon et al., “Anatomical correlations of the international 10–20
sensor placement system in infants,” Neuroimage 99, 342–356 (2014).

14. D. Tsuzuki et al., “Macroanatomical landmarks featuring junctions of
major sulci and fissures and scalp landmarks based on the international
10–10 system for analyzing lateral cortical development of infants,”
Front. Neurosci. 11, 394 (2017).

15. S. Cutini, P. Scatturin, and M. Zorzi, “A new method based on
ICBM152 head surface for probe placement in multichannel fNIRS,”
Neuroimage 54, 919–927 (2011).

16. Q. Fang et al., “Accelerating mesh-based Monte Carlo method on
modern CPU architectures,” Biomed. Opt. Express 3, 3223–3230
(2012).

17. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration
in 3D turbid media accelerated by graphics processing units,” Opt.
Express 17, 20178–20190 (2009).

18. M. Schweiger and S. Arridge, “The Toast++ software suite for forward
and inverse modeling in optical tomography,” J. Biomed. Opt. 19,
040801 (2014).

19. S. R. Arridge et al., “A finite element approach for modeling photon
transport in tissue,” Med. Phys. 20, 299–309 (1993).

20. S. Arridge and J. Schotland, “Optical tomography: forward and inverse
problems,” Inverse Probl. 25, 123010 (2009).

21. C. M. Aasted et al., “Anatomical guidance for functional near-infrared
spectroscopy: AtlasViewer tutorial,” Neurophotonics 2, 020801 (2015).

22. T. J. Huppert et al., “HomER: a review of time-series analysis methods
for near-infrared spectroscopy of the brain,” Appl. Opt. 48, D280–D298
(2009).

23. S. Wijeakumar et al., “Validating a new methodology for optical probe
design and image registration in fNIRS studies,” Neuroimage 106, 86–
100 (2015).

24. G. A. Zimeo Morais, J. B. Balardin, and J. R. Sato, “fNIRS optodes’
location decider (fOLD): a toolbox for probe arrangement guided by
brain regions-of-interest,” Sci. Rep. 8, 3341 (2018).

25. A. Machado et al., “Optimal optode montage on electroencephalogra-
phy/functional near-infrared spectroscopy caps dedicated to study epi-
leptic discharges,” J. Biomed. Opt. 19, 026010 (2014).

26. S. Brigadoi et al., “A 4D neonatal head model for diffuse optical im-
aging of pre-term to term infants,” Neuroimage 100, 385–394 (2014).

27. V. Fonov et al., “Unbiased average age-appropriate atlases for pediatric
studies,” Neuroimage 54, 313–327 (2011).

28. L. A. Dempsey et al., “Data-driven approach to optimum wavelength
selection for diffuse optical imaging,” J. Biomed. Opt. 20, 016003
(2015).

29. “UCL adult MNI head model,” www.ucl.ac.uk/medphys/research/
adultMNImodel.

30. Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric
binary and grayscale images,” in IEEE Int. Symp. on Biomedical
Imaging: From Nano to Macro, pp. 1142–1145, IEEE (2009).

31. R. Oostenveld and P. Praamstra, “The five percent electrode system for
high-resolution EEG and ERP measurements,” Clin. Neurophysiol. 112,
713–719 (2001).

32. F. Scholkmann et al., “A review on continuous wave functional near-
infrared spectroscopy and imaging instrumentation and methodology,”
Neuroimage 85(Pt. 1), 6–27 (2014).

33. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting
the accuracy of near-infrared spectroscopy concentration calculations
for focal changes in oxygenation parameters,” Neuroimage 18, 865–
879 (2003).

34. A. Custo et al., “Effective scattering coefficient of the cerebral spinal
fluid in adult head models for diffuse optical imaging,” Appl. Opt.
45, 4747–4755 (2006).

35. F. Bevilacqua et al., “In vivo local determination of tissue optical proper-
ties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).

36. T. A. Feo and M. G. C. Resende, “A probabilistic heuristic for a com-
putationally difficult set covering problem,” Oper. Res. Lett. 8, 67–71
(1989).

37. T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search
procedures,” J. Glob. Optim. 6, 109–133 (1995).

38. F. Glover et al., “Integrating Tabu search and VLSN search to develop
enhanced algorithms: a case study using bipartite Boolean quadratic
programs,” Eur. J. Oper. Res. 241, 697–707 (2015).

39. IBM CPLEX Optimizer Software, https://www.ibm.com/support/
knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_
Studio/topics/COS_home.html (2017).

40. D. L. Collins et al., “Design and construction of a realistic digital brain
phantom,” IEEE Trans. Med. Imaging 17, 463–468 (1998).

41. N. Tzourio-Mazoyer et al., “Automated anatomical labeling of activa-
tions in SPM using a macroscopic anatomical parcellation of the MNI
MRI single-subject brain,” Neuroimage 15, 273–289 (2002).

42. L. Gagnon et al., “Short separation channel location impacts the perfor-
mance of short channel regression in NIRS,” Neuroimage 59, 2518–
2528 (2012).

Sabrina Brigadoi studied bioengineering before receiving her PhD in
cognitive science from the University of Padova, Italy. In 2018, she
was awarded a starting grant from the University of Padova to
apply diffuse optical methods on the very preterm population. Her
research interests are focused on advancing the applicability of dif-
fuse optical techniques in both infant and adult populations, with par-
ticular interest in signal processing techniques, image reconstruction,
and head model development.

Domenico Salvagnin is an assistant professor in operations
research at DEI, University of Padova. His research interests include
theory and algorithms for linear and mixed integer linear program-
ming, constraint programming, and hybrid methods for optimization.
He was the lead development scientist for the IBM ILOG CPLEX
team, 2015–2017, and is currently a scientific consultant for IBM
ILOG CPLEX.

Matteo Fischetti is a full professor of operations research at
the University of Padova, Italy. He is an associate editor of the jour-
nals Operations Research and Mathematical Programming
Computation. He won the “best PhD dissertation on transportation”
prize awarded by ORSA (1987) and the INFORMS Edelman
Award (2008). In 2015, he won the Harold Larnder prize from the
Canadian Operational Research Society. His research interests
include integer programming, combinatorial optimization, railway opti-
mization, and vehicle and crew scheduling problems.

Robert J. Cooper is an EPSRC early career fellow at University
College London (UCL), United Kingdom. He studied physics at
New College, Oxford (United Kingdom), before obtaining his PhD
in medical physics from UCL. He previously worked as a postdoc
at the Martinos Center for Biomedical Imaging at Massachusetts
General Hospital, Boston, Massachusetts (USA). His research is
focused on advancing and translating diffuse optical imaging meth-
ods. He is a codirector of neoLAB: an interdisciplinary neonatal neuro-
imaging research group based in UCL and Cambridge.

Neurophotonics 035010-19 Jul–Sep 2018 • Vol. 5(3)

Brigadoi et al.: Array Designer: automated optimized array design for functional near-infrared spectroscopy

https://doi.org/10.1179/174313209X383286
https://doi.org/10.1371/journal.pone.0066319
https://doi.org/10.1117/1.3567085
https://doi.org/10.1088/0031-9155/57/10/2857
https://doi.org/10.1117/1.NPh.5.1.011012
https://doi.org/10.1117/1.NPh.5.1.011006
https://doi.org/10.1016/j.neuroimage.2003.08.026
https://doi.org/10.1016/j.neuroimage.2006.09.024
https://doi.org/10.1016/j.neuroimage.2014.05.046
https://doi.org/10.3389/fnins.2017.00394
https://doi.org/10.1016/j.neuroimage.2010.09.030
https://doi.org/10.1364/BOE.3.003223
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1117/1.JBO.19.4.040801
https://doi.org/10.1118/1.597069
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1117/1.NPh.2.2.020801
https://doi.org/10.1364/AO.48.00D280
https://doi.org/10.1016/j.neuroimage.2014.11.022
https://doi.org/10.1038/s41598-018-21716-z
https://doi.org/10.1117/1.JBO.19.2.026010
https://doi.org/10.1016/j.neuroimage.2014.06.028
https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.1117/1.JBO.20.1.016003
www.ucl.ac.uk/medphys/research/adultMNImodel
www.ucl.ac.uk/medphys/research/adultMNImodel
www.ucl.ac.uk/medphys/research/adultMNImodel
www.ucl.ac.uk/medphys/research/adultMNImodel
www.ucl.ac.uk/medphys/research/adultMNImodel
https://doi.org/10.1109/ISBI.2009.5193259
https://doi.org/10.1109/ISBI.2009.5193259
https://doi.org/10.1016/S1388-2457(00)00527-7
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1016/S1053-8119(03)00021-1
https://doi.org/10.1364/AO.45.004747
https://doi.org/10.1364/AO.38.004939
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1007/BF01096763
https://doi.org/10.1016/j.ejor.2014.09.036
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.7.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://doi.org/10.1109/42.712135
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.neuroimage.2011.08.095

