
Embedded hyper-parameter tuning
by Simulated Annealing

Matteo Fischetti ∗
Department of Information Engineering

University of Padova, Italy
matteo.fischetti@unipd.it

Matteo Stringher
Department of Information Engineering

University of Padova, Italy
stringher.matteo@gmail.com

Abstract

We propose a new metaheuristic training scheme that combines Stochastic Gradient
Descent (SGD) and Discrete Optimization in an unconventional way. Our idea is
to define a discrete neighborhood of the current SGD point containing a number
of “potentially good moves” that exploit gradient information, and to search this
neighborhood by using a classical metaheuristic scheme borrowed from Discrete
Optimization.
In the present paper we investigate the use of a simple Simulated Annealing (SA)
metaheuristic that accepts/rejects a candidate new solution in the neighborhood
with a probability that depends both on the new solution quality and on a parameter
(the temperature) which is modified over time to lower the probability of accepting
worsening moves. We use this scheme as an automatic way to perform hyper-
parameter tuning, hence the title of the paper. A distinctive feature of our scheme
is that hyper-parameters are modified within a single SGD execution (and not in an
external loop, as customary) and evaluated on the fly on the current minibatch, i.e.,
their tuning is fully embedded within the SGD algorithm.
The use of SA for training is not new, but previous proposals were mainly intended
for non-differentiable objective functions for which SGD is not applied due to the
lack of gradients. On the contrary, our SA method requires differentiability of (a
proxy of) the loss function, and leverages on the availability of a gradient direction
to define local moves that have a large probability to improve the current solution.
Computational results on image classification (CIFAR-10) are reported, showing
that the proposed approach leads to an improvement of the final validation accuracy
for modern Deep Neural Networks such as ResNet34 and VGG16.

1 Introduction

Stochastic Gradient Descent (SGD) is de facto the standard algorithm for training Deep Neural
Networks (DNNs). Leveraging the gradient, SGD allows one to rapidly find a good solution in
the very high dimensional space of weights associated with modern DNNs; moreover, the use
of minibatches allows one to exploit modern GPUs and to achieve a considerable computational
efficiency.

It is well known that SGD uses a number of hyper-parameters that are usually very hard to optimize,
as they depend on the algorithm and on the underlying dataset. Hyper-parameter search is commonly
performed manually, via rules-of-thumb or by testing sets of hyper-parameters on a predefined
grid [2]. In SGD, momentum [13] or Nesterov [8] are widely recognized to increase the speed of
convergence. Instead, effective learning rates are highly dependent on DNN architecture and on the

∗corresponding author: http://www.dei.unipd.it/~fisch

Preprint. Under review.

ar
X

iv
:s

ub
m

it/
27

17
29

8 
 [

cs
.L

G
] 

 4
 J

un
 2

01
9



dataset of interest [12], so they are typically selected on a best-practice basis, although methods such
as CLR [11] have been proposed to reduce the number of choices. Finally, [1] shows empirically and
theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than
trials on a grid.

In the present paper we investigate the use of an alternative training method borrowed from Mathemat-
ical Optimization, namely, the Simulated Annealing (SA) algorithm [4]. The use of SA for training is
not new, but previous proposals are mainly intended to be applied for non-differentiable objective
functions for which SGD is not applied due to the lack of gradients; see, e.g., [9, 6]. Instead, our SA
method requires differentiability of (a proxy of) the loss function, and leverages on the availability of
a gradient direction to define local moves that have a large probability to improve the current solution.

A notable application of our approach is in the context of SGD hyper-parameter tuning—hence
the title of the paper. Assume all possible hyper-parameter values (e.g., learning rates for SGD)
are collected in a discrete set H . At each SGD iteration, we randomly pick one hyper-parameter
from H , temporarily implement the corresponding move as in the classical SGD method (using the
gradient information) and evaluate the new point on the current minibatch. If the loss function does
not deteriorate too much, we accept the move as in the classical SGD method, otherwise we reject it:
we step back to the previous point, change the minibatch, randomly pick another hyper-parameter
from H , and repeat. The decision of accepting/rejecting a move is based on the classical SA criterion,
and depends of the amount of loss-function worsening and on a certain parameter (the temperature)
which is modified over time to lower the probability of accepting worsening moves.

A distinctive feature of our scheme is that hyper-parameters are modified within a single SGD
execution (and not in an external loop, as customary) and evaluated on the fly on the current
minibatch, i.e., their tuning is fully embedded within the SGD algorithm.

Computational results are reported, showing that the proposed approach leads to an improvement of
the final validation accuracy for modern DNN architectures (ResNet34 and VGG16 on CIFAR-10).
Also, it turns out that the random seed used within our algorithm modifies the search path in a very
significant way, allowing one to use this seed as a single hyper-parameter to be tuned in an external
loop for a further improved generalization.

2 Simulated Annealing

The basic SA algorithm for a generic optimization problem can be outlined as follows. Let S be the
set of all possible feasible solutions, and f : S → R be the objective function to be minimized. An
optimal solution s∗ is a solution in S such that f(s∗) ≤ f(s) holds for all s ∈ S.

SA is an iterative method that constructs a trajectory of solutions s(0), · · · , s(k) in S. At each iteration,
SA considers moving from the current feasible solution s(i) (say) to a candidate new feasible solution
snew (say). Let ∆(s(i), snew) = f(snew)−f(s(i)) be the objective function worsening when moving
from s(i) to snew—positive if snew is strictly worse than s(i). The hallmark of SA is that worsening
moves are not forbidden but accepted with a certain acceptance probability p(s(i), snew, T ) that
depends on the amount of worsening ∆(s(i), snew) and on a parameter T > 0 called temperature. A
typical way to compute the acceptance probability is through Metropolis’ formula [7]:

p(s, snew, T ) =

{
e−∆(s(i),snew)/T if ∆(s(i), snew) > 0
1 if ∆(s(i), snew) ≤ 0 .

(1)

Thus, the probability of accepting a worsening move is large if the amount of worsening ∆(s(i), s′) >
0 is small and the temperature T is large. Note that the probability is 1 when ∆(s(i), s′) ≤ 0, meaning
that improving moves are always accepted by the SA method.

Temperature T is a crucial parameter: it is initialized to a certain value T0 (say), and iteratively
decreased during the SA execution so as to make worsening moves less and less likely in the final
iterations. A simple update formula for T is based on a cooling factor α ∈ (0, 1) and reads

T = α · T ; (2)
typical ranges for α are 0.95−0.99 (if cooling is applied at each SA iteration) or 0.7−0.8 (if cooling
is only applied at the end of a “computational epoch”, i.e., after several SA iterations with a constant
temperature).

2



The basic SA scheme is outlined in Algorithm 1; more advanced implementations are possible, e.g.,
the temperature can be restored multiple times to the initial value.

Algorithm 1 : SA

Input: function f to be minimized, initial temperature T0 > 0, cooling factor α ∈ (0, 1), number
of iterations nIter
Output: the very last solution s(nIter)

1: Compute an initial solution s(0) and initialize T = T0

2: for i = 0, . . . , nIter − 1 do
3: Pick a new tentative solution snew in a convenient neighborhood N (s(i)) of s(i)

4: worsening = f(snew)− f(s(i))
5: prob = e−worsening/T

6: if random(0, 1) < prob then
7: s(i+1) = snew
8: else
9: s(i+1) = s(i)

10: end if
11: T = α · T
12: end for

At Step 6, random(0, 1) is a pseudo-random value uniformly distributed in [0,1]. Note that, at
Step 5, the acceptance probability prob becomes larger than 1 in case worsening < 0, meaning that
improving moves are always accepted (as required).

2.1 A naive implementation for training without gradients

In the context of training, one is interested in minimizing a loss function L(w) with respect to a
large-dimensional vector w ∈ <M of so-called weights. If L(w) is differentiable (which is not
required by the SA algorithm), there exists a gradient∇(w) giving the steepest increasing direction
of L when moving from a given point w.

Here is a very first attempt to use SA in this setting. Given the current solution (i.e., set of weights) w,
we generate a random move ∆(w) ∈ <M and then we evaluate the loss function in the nearby point
w′ := w − ε∆(w), where ε is a small positive real number. If the norm of ε∆(w) is small enough
and L is differentiable, due to Taylor’s approximation we know that

L(w′) ' L(w)− ε ∇T (w)∆(w) . (3)

Thus the objective function improves if ∇(w)T ∆(w) > 0. As we work in the continuous space, in
the attempt of improving the objective function we can also try to move in the opposite direction and
move to w′′ := w + ε ∆(w). Thus, our actual move from the current w consists of picking the best
(in terms of objective function) point wnew, say, between the two nearby points w′ and w′′: if wnew

improves L(w), then we surely accept this move; otherwise we accept it according to the Metropolis’
formula (1). Note that the above SA approach is completely derivative free: as a matter of fact, SA
could optimize directly over discrete functions such as the accuracy in the context of classification.

In a preliminary work we implemented the simple scheme above in a stochastic manner, using
minibatches when evaluating L(w′) and L(w′′), very much in the spirit of the SGD algorithm.
Figure 1 compares the performance of the resulting Stochastic SA algorithm, called SSA, with that
of a straightforward SGD implementation with constant learning rate and no momentum/Nesterov
acceleration, using the Fashion-MNIST [14] dataset and the VGG16 [10] architecture. Figure 1(d)
reports accuracy on both the training and the validation sets, showing that SSA does not suffer from
overfitting as the accuracy on the training and validation sets are almost identical—a benefit deriving
from the derivative-free nature of SSA. However, SSA is clearly unsatisfactory in terms of validation
accuracy (which is much worse than the SGD one) in that it does not exploit well the VGG16 capacity.

We are confident that the above results could be improved by a more advanced implementation. E.g.,
one could vary the value of ε during the algorithm, and/or replace the loss function by (one minus) the
accuracy evaluated on the current minibatch—recall that SSA does not require the objective function
be differentiable. However, even an improved SSA implementation is unlikely to be competitive with

3



0 200 400 600 800 1000
Epochs

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

Lo
ss

Validation loss comparison
SSA
SGD

(a) Validation loss

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Validation accuracy comparison

SSA
SGD

(b) Validation accuracy

0 200 400 600 800 1000
Epochs

0.000

0.001

0.002

0.003

0.004

Lo
ss

Loss comparison
SSA train
SSA validation
SGD train
SGD validation

(c) Loss comparison

0 200 400 600 800 1000
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

SSA train
SSA validation
SGD train
SGD validation

(d) Accuracy comparison

Figure 1: Naive SA implementation for VGG16 on Fashion-MNIST. SGD: learning rate η = 0.001,
no momentum/Nesterov acceleration. SSA: ε = 0.01, α = 0.97, T0 = 1. Subfigure (d) clearly shows
that SSA has no overfitting but is not able to exploit well the capacity of VGG16, resulting into an
unsatisfactory final accuracy.

SGD. In our view, the main drawback of the SSA algorithm (as stated) is that, due the very large
dimensional space, the random direction±∆(w) is very unlikely to lead to a substantial improvement
of the objective function as the effect of its components tend to cancel out randomly. Thus, a more
clever definition of the basic move is needed to drive SSA in an effective way.

3 Improved SGD training by SA

We next introduce an unconventional way of using SA in the context of training. We assume the
function L(w) to be minimized be differentiable, so we can compute its gradient ∇(w). From
SGD we borrow the idea of moving in the anti-gradient direction −∇(w), possibly corrected using
momentum/Nesterov acceleration techniques. Instead of using a certain a priori learning rate η,
however, we randomly pick one from a discrete set H (say) of possible candidates. In other words, at
each SA iteration the move is selected randomly in a discrete neighborhoodN (w(i)) whose elements
correspond to SGD iterations with different learning rates. An important feature of our method is that
H can (actually, should) contain unusually large learning rates, as the corresponding moves can be
discarded by the Metropolis’ criterion if they deteriorate the objective function too much.

A possible interpretation of our approach is in the context of SGD hyper-parameter tuning. According
to our proposal, hyper-parameters are collected in a discrete set H and sampled within a single SGD
execution: in our tests, H just contains a number of possible learning rates, but it could involve
other parameters/decisions as well, e.g., applying momentum, or Nesterov (or none of the two) at
the current SGD iteration, or alike. The key property here is that any element in H corresponds to
a reasonable (non completely random) move, so picking one of them at random has a significant

4



probability of improving the objective function. As usual, moves are accepted according to the
Metropolis’ criterion, so the set H can also contain “risky choices” that would be highly inefficient if
applied systematically within a whole training epoch.

Algorithm 2 : SGD-SA

Parameters: A set of learning rates H , initial temperature T0 > 0
Input: Differentiable loss function L to be minimized, cooling factor α ∈ (0, 1), number of
epochs nEpochs, number of minibatches N
Output: the best performing w(i) on the validation set at the end of each epoch

1: Divide the training dataset into N minibatches
2: Initialize i = 0, T = T0, w(0) = random_initialization()
3: for t = 1, . . . , nEpochs do
4: for n = 1, . . . , N do
5: Extract the n-th minibatch (x, y)
6: Compute L(w(i), x, y) and its gradient v = backpropagation(w(i), x, y)
7: Randomly pick a learning rate η from H
8: wnew = w(i) − η v
9: Compute L(wnew, x, y)

10: worsening = L(wnew, x, y)− L(w(i), x, y)
11: prob = e−worsening/T

12: if random(0, 1) < prob then
13: w(i+1) = wnew

14: else
15: w(i+1) = w(i)

16: end if
17: i = i+ 1
18: end for
19: T = α · T
20: end for

Our basic approach is formalized in Algorithm 2, and will be later referred to as SGD-SA. More
elaborated versions using momentum/Nesterov are also possible but not investigated in the present
paper, as we aim at keeping the overall computational setting as simple and clean as possible.

4 Computational analysis of SGD-SA

We next report a computational comparison of SGD and SGD-SA for a classical image classification
task involving the CIFAR-10 [5] dataset. As customary, the dataset was shuffled and partitioned
into 50,000 examples for the training set, and the remaining 10,000 for the test set. As to the DNN
architecture, we tested two well-known proposals from the literature: VGG16 [10] and ResNet34 [3].
Training was performed for 100 epochs using PyTorch, with minibatch size 512. Tests have been
performed using a single NVIDIA TITAN Xp GPU.

Our Scheduled-SGD implementation of SGD is quite basic but still rather effective on our dataset:
it uses no momentum/Nesterov acceleration, and the learning rate is set according the following
schedule: η = 0.1 for first 30 epochs, 0.01 for the next 40 epochs, and 0.001 for the final 30
epochs. As to SGD-SA, we used α = 0.8, initial temperature T0 = 1, and learning-rate set H =
{0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05}.
Both Scheduled-SGD and SGD-SA use pseudo-random numbers generated from an initial random
seed, which therefore has some effects of the search path in the weight space and hence on the final
solution found. Due to the very large number of weights that lead to statistical compensation effects,
the impact of the seed on the initialization of the very first solution w(0) is very limited—a property
already known for SGD that is inherited by SGD-SA as well. However, random numbers are used by
SGD-SA also when taking some crucial “discrete” decisions, namely: the selection of the learning
rate η ∈ H (Step 7) and the acceptance test (Step 12). As a result, as shown next, the search path of
SGD-SA is very dependent on the initial seed. Therefore, for both Scheduled-SGD and SGD-SA we
decided to repeat each run 10 times, starting with 10 random seeds, and to report results for each

5



seed. In our view, this dependency on the seed is in fact a positive feature of SGD-SA, in that it allows
one to treat the seed as a single (quite powerful) hyper-parameter to be randomly tuned in an external
loop.

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Probability decay of worsening moves

SGD-SA (seed #0)

(a) Probability of accepting worsening moves

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training accuracy comparison

Scheduled-SGD
SGD-SA

(b) Training accuracy

Figure 2: Optimization efficiency over the training set (VGG16 on CIFAR-10)

Our first order of business is to evaluate the convergence property of SGD-SA on the training set—after
all, this is the optimization task that SA faces directly. In Figure 2 we plot the average probability
prob (clipped to 1) of accepting a move at Step 12, as well as the training-set accuracy as a function
of the epochs. Subfigure 2a shows that the probability of accepting a move is almost one in the
first epochs, even if the amount of worsening is typically quite large in this phase. Later on, the
probability becomes smaller and smaller, and only very small worsenings are more likely to be
accepted. As a result, large learning rates are automatically discarded in the last iterations. Subfigure
2b is quite interesting: even in our simple implementation, Scheduled-SGD quickly converges to the
best-possible value of one for accuracy, and the plots for the various seeds (gray lines) are almost
overlapping—thus confirming that the random seed has negligible effects of Scheduled-SGD. As to
SGD-SA (black lines), its convergence to accuracy one is slower than Scheduled-SGD, and different
seeds lead to substantially different curves—a consequence of the discrete random decisions taken
along the search path.

Plots in Figures 3 and 4 show the performance (on both the training and validation sets) of
Scheduled-SGD and SGD-SA when using the ResNet34 and VGG16 architectures, respectively.
As expected, the search path of SGD-SA is more diversified (leading to accuracy drops in the first
epochs) abut the final solutions tend to generalize better than Scheduled-SGD (as witnessed by the
performance on the validation set).

Table 1 gives more detailed results for each seed, and reports the final validation accuracy and
loss reached by Scheduled-SGD and SGD-SA. The results show that, for all seeds, SGD-SA always
produces a significantly better (lower) validation loss than Scheduled-SGD. As to validation accuracy,
SGD-SA outperforms Scheduled-SGD for all seeds but seeds 3, 4 and 6 for ResNet34. In particular,
SGD-SA leads to a significantly better (1-2%) validation accuracy than Scheduled-SGD if the best
run for the 10 seeds is considered.

6



Method Seed VGG16 ResNet34

Loss Accuracy Loss Accuracy

Scheduled-SGD

0 0.001640 85.27 0.001519 82.18
1 0.001564 84.94 0.001472 82.58
2 0.001642 84.84 0.001467 82.27
3 0.001662 84.93 0.001468 82.37
4 0.001628 84.92 0.001602 81.69
5 0.001677 85.37 0.001558 81.80
6 0.001505 84.91 0.001480 82.24
7 0.001480 85.28 0.001532 82.07
8 0.001623 85.26 0.001574 81.52
9 0.001680 85.41 0.001499 82.41

SGD-SA

0 0.001127 86.44 0.001306 82.55
1 0.001206 86.18 0.001231 84.11
2 0.001121 86.04 0.001238 83.32
3 0.001133 86.76 0.001457 81.39
4 0.001278 85.17 0.001585 76.31
5 0.001112 86.30 0.001276 83.74
6 0.001233 85.71 0.001405 82.07
7 0.001130 86.59 0.001261 82.57
8 0.001167 86.14 0.001407 83.12
9 0.001084 86.28 0.001240 83.19

Best Scheduled-SGD 0.001480 85.41 0.001467 82.58
Best SGD-SA 0.001084 86.76 0.001240 84.11

Table 1: Final validation accuracy and loss, seed by seed.

0 20 40 60 80 100
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Lo
ss

Validation loss comparison
Scheduled-SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Validation accuracy comparison

Scheduled-SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.002

0.004

0.006

0.008

0.010

Lo
ss

Loss comparison
Scheduled-SGD train
Scheduled-SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

Scheduled-SGD train
Scheduled-SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 3: ResNet34 on CIFAR-10

7



0 20 40 60 80 100
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Lo
ss

Validation loss comparison
Scheduled-SGD
SGD-SA

(a) Validation loss

0 20 40 60 80 100
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Validation accuracy comparison

Scheduled-SGD
SGD-SA

(b) Validation accuracy

0 20 40 60 80 100
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Lo
ss

Loss comparison
Scheduled-SGD train
Scheduled-SGD validation
SGD-SA train
SGD-SA validation

(c) Loss comparison

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy comparison

Scheduled-SGD train
Scheduled-SGD validation
SGD-SA train
SGD-SA validation

(d) Accuracy comparison

Figure 4: VGG16 on CIFAR-10

5 Conclusions and future work

We have proposed a new metaheuristic training scheme that combines Stochastic Gradient Descent
and Discrete Optimization in an unconventional way.

Our idea is to define a discrete neighborhood of the current solution containing a number of “po-
tentially good moves” that exploit gradient information, and to search this neighborhood by using a
classical metaheuristic scheme borrowed from Discrete Optimization. In the present paper, we have
investigated the use of a simple Simulated Annealing metaheuristic that accepts/rejects a candidate
new solution in the neighborhood with a probability that depends both on the new solution quality
and on a parameter (the temperature) which is varied over time. We have used this scheme as an
automatic way to perform hyper-parameter tuning within a single training execution, and have shown
its potentials on a classical test problem (CIFAR-10 image classification using VGG16/ResNet34
deep neural networks).

In a follow-up research we plan to investigate the use of two different objective functions at training
time: one differentiable to compute the gradient (and hence a set of potentially good moves), and one
completely generic (possibly black-box) for the Simulated Annealing acceptance/rejection test—the
latter intended to favor simple/robust solutions that are likely to generalize well.

Replacing Simulated Annealing with other Discrete Optimization metaheuristics (tabu search, variable
neighborhood search, genetic algorithms, etc.) is also an interesting topic that deserves future research.

8



Acknowledgments

Work supported by MiUR, Italy (project PRIN 2015 on “Nonlinear and Combinatorial Aspects of
Complex Networks”). We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPU used for this research.

References
[1] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.

Learn. Res., 13:281–305, February 2012.

[2] Marc Claesen and Bart De Moor. Hyperparameter search in machine learning. CoRR,
abs/1502.02127, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. ArXiv
e-prints, December 2015.

[4] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. Optimization by simulated annealing.
Science, 220 4598:671–80, 1983.

[5] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian Institute for Advanced
Research). http://www.cs.toronto.edu/~kriz/cifar.html.

[6] Sergio Ledesma, Miguel Torres, Donato Hernández, Gabriel Aviña, and Guadalupe García.
Temperature cycling on simulated annealing for neural network learning. In Alexander Gelbukh
and Ángel Fernando Kuri Morales, editors, MICAI 2007: Advances in Artificial Intelligence,
pages 161–171, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[7] Nicholas Constantine Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculation by fast computing machines. Journal of
Chemical Physics, 21:1087–1092, 1953.

[8] Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–376, 1983.

[9] Randall Sexton, Robert Dorsey, and John Johnson. Beyond backpropagation: Using simulated
annealing for training neural networks. Journal of End User Computing, 11, 07 1999.

[10] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. ArXiv e-prints, September 2014.

[11] Leslie N. Smith. Cyclical learning rates for training neural networks, 2015. cite
arxiv:1506.01186Comment: Presented at WACV 2017; see https://github.com/bckenstler/CLR
for instructions to implement CLR in Keras.

[12] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 - learning
rate, batch size, momentum, and weight decay. CoRR, abs/1803.09820, 2018.

[13] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th International Con-
ference on International Conference on Machine Learning - Volume 28, ICML’13, pages
III–1139–III–1147. JMLR.org, 2013.

[14] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

9


	1 Introduction
	2 Simulated Annealing
	2.1 A naive implementation for training without gradients

	3 Improved SGD training by SA
	4 Computational analysis of SGD-SA
	5 Conclusions and future work

